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Coarse-graining and hydrodynamics 
Much progress in the understanding of phases and dynamics of systems of 
many interacting degrees of freedom (liquids, solids, liquid crystals) has been 
obtained via a coarse-grained description in terms of few macroscopic fields: 

   

ri ,
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cf. field theories in particles physics,  
hard condensed matter, cosmology 

Can an effective continuum theory or hydrodynamics 
of active systems describe bacteria, vibrated rods, 

birds, cell cytokeleton and more? 

First: a quick review of hydrodynamics as an effective 
field theory 



Hydrodynamics as an effective field theory 

Two Routes: 
 Phenomenology: based on symmetries, generic, but with 
undetermined parameters 
 Derivation from microscopic models: approximations needed, model-
dependent expression for various parameters 
Interplay between the two approaches crucial for full understanding 

First step: identify the hydrodynamic fields as “slow variables”, with 
relaxation rates that vanish at large wavelength (Martin, Parodi, Pershan, PRA 
6, 2401 (1972)) 

Two classes of hydrodynamic fields: 
  densities of conserved variables: # particles, momentum , energy 
  broken symmetry fields in systems with spatial order 



Conserved field 
Example: colloidal fluid = large particles           
in a solvent 
 only one conserved field: density 
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The decay of fluctuations in time is 
controlled by a conservation law 
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Periodic density modulation 
of wavelength    λ = 2π / k

hydrodynamic mode 

Homogeneity is restored in a time 
              that diverges as k0 or   1 /ω (k)



Broken symmetry field: magnetic system 

Order parameter: magnetization  
   


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The magnitude of M in the ordered state is determined by T and materials 
properties. 
The energy does not depend on the direction of M. When the system 
magnetizes rotational symmetry is broken spontaneously. 

                                                    broken symmetry field: 
   
m̂ =


M


M

A uniform twist of      costs no energy; long 
wavelength fluctuations have finite stiffness.                               
 spin wave excitations: low energy 
Goldstone/hydrodynamic modes with 
relaxation rate that vanishes when k0 

  m̂



Constructing a hydrodynamic theory 
1.  Identify hydrodynamic variables (conserved densities and 

broken symmetry fields). The hydrodynamic equations must 
contain only these variables and their gradients. 

2.  Identify symmetries. 

3.  Identify conservation laws. 

4.  Construct coarse-grained free energy (equilibrium) or directly a 
set of hydrodynamic equations (nonequilibrium). 

5.  Construct constitutive equations for the fluxes as functions of 
the hydrodynamic fields and their gradients: 
a)  Rule out any term explicitly forbidden by symmetry or conservation 

laws 

b)  Since one is interested in large scales and slow variation, keep 
terms to leading order in the gradients of the hydrodynamic fields 



Example: isotropic fluid 
1.  Conserved densities:       

2.  Symmetries: 

3.  Conservation laws: 

4.  Constitutive equation for the fluxes: 
 
∂tρ = −


∇ ⋅ g          ∂t gi = −∂ jπ ij

 

g = ρv
density  
momentum          
(energy) 

rotational invariance, space & time translational 
invariance, Galileian invariance 

  

density flux   g = ρv   

momentum flux    π ij = ρviv j − σ ij(ρ, g,ε, ∇ρ,

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driving forces
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)
stress tensor 

ρ



Constitutive Eqs & Hydrodynamics 

 

R ≡ T
dS
dt

= − flux × force∑
r
∫        "rate of entropy production"

Reversible process  R=0 

Irreversible process R>0 

 

σ ij = σ ij
r +σ ij

d     stress tensor

σ ij
r = − pδ ij        σ ij

d = 2η(vij − 1
3δ ijvkk ) +ηbδ ijvkk

flux=(flux)rev+ (flux)diss 

Crucial role of parity under time reversal 
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1
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Hydrodynamic Equations: 

Navier-Stokes 
equation 



Examples of hydrodynamics of active 
particles on a substrate 

1.  Hydrodynamics as a phenomenological theory based on 
symmetries and conservation laws: continuum theory of Vicsek 
model  polar particles with polar interactions1 (Toner & Tu, 1995 
& 1998; Ramaswamy et al, 2003-08; Bertin et al., 2006 & 2009; Mishra et al 
2010; Ihle 2011) 

2.  Derivation of hydrodynamics from a microscopic model of SP 
hard rods: polar particles with apolar interactions2 (Baskaran & 
Marchetti, 2008 & 2010; Peruani et al. 2006, Ginelli et al 2010; Yang et al 
2010) 

3.  [Not covered in the lecture: active nematic  apolar active 
particles with apolar interactions (Ramaswamy et al 2003; Chate’ et al 
2006; Mishra & Ramaswamy 2006) 

1.Toner, Tu & Ramaswamy, Ann. Phys. 318, 170 (2005) 
2. Baskaran & MCM, PRE 77, 011920 (2008); PRL 101, 268101 (2008) 



Question 
•  The Vicsek model with an explicit alignment rule 

yields “flocking”, i.e., collective coherent motion 
at large scales 

•  Can we obtain flocking in models with only 
“physical interactions”? 
–  Excluded volume 
–  [Medium mediated interactions] 



Continuum Effective Theory of Vicsek Model 
Phenomenology:Toner & Tu, 1995 & 1998 
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Microscopic derivations of the continuum equations have been carried 
out by explicit coarse-graining of Vicsek model  yield parameter 
values (Bertin et al, 2003, 2009; Ihle, 2010) 

Slow Variables: 
 Conserved: concentration 
 Broken symmetry: P – dual role: order parameter/current v0P 

advection 
breaking of Galileian 

invariance 

pressure 

alignment 

noise 
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Most of the terms in the equation for P can be obtained in terms of 
derivatives of the free energy of a polar (ferroelectric) liquid crystal 
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Let γ=1 

  

w '→ λ3 / 2
2w '→ λ2

Terms in blue are unique to polar systems, not present in 
nematic 
Term in red is intrinsically nonequilibrium and cannot be 
obtained from a free energy 



Homogeneous Steady States 

MF model yields continuous transition at  
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1)  Ordered & disordered state support traveling density (sound) 
waves  (Baskaran & MCM, 2008)   

Properties of Ordered Phase: Linearized theory 
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
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2)   Giant number fluctuations near onset of 
putative continuous transition (Toner & Tu 1995; 
Ramaswamy & Simha, EPL 2003; Narayan et al, Science 
2007) Chate et al, 2008: a=0.8 (2d) 

3)   Ordered state is linearly unstable near MF transition 
      Characteristic longitudinal length scale ~ 

       (Gregoire et al, 2009; Mishra, Baskaran & MCM, 2010) 

  

 ΔN( )2
~ Na

a = 1/2+1/d

  
K /α( )1/2



Mishra, Baskaran & MCM, PRE 2010 

Numerical Solution of Continuum Eqs. 



Vicsek model: numerics 
Gregoire & Chate, PRL 2004 
Chate et al PRE 2008  Discontinuous onset of order 

 Coexistence of ordered & disordered states 
 Traveling bands 
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Actin motility assays at high actin density traveling 
density waves 

  ρactin > 20 fils / µm2

V. Schaller et al, 
Nature 467, 73 –77 
(2010) 

http://www.nature.com.libezproxy2.syr.edu/nature/journal/v467/n7311/extref/nature09312-s3.mov 



Nex Lecture: 

Hydrodynamics of Self-Propelled hard rods: derivation 
by explicit coarse-graining of a microscopic model. 


