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Nematic Shells

A thin film of nematic liquid crystal deposited on a colloidal particle

is a nematic shell, which is treated here as a two-dimensional order

texture.

Defects in the order texture are

potential hot spots where ligands

may adhere bridging one particle to

another in a metamaterial struc-

ture. Nelson (2002)

tetravalent tennis balls
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Mathematical Model

Molecules are envisaged as ribbons lying flat on a closed surface S

and freely gliding on it.

planar degenerate anchoring

This picture is perhaps too naive: a degenerate planar anchoring di-

luted in a thin layer is a more realistic microscopic picture.

ℓ molecular director

S closed orientable surface

ν outer unit normal

ℓ · ν ≡ 0
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order tensor

Q :=
〈

ℓ ⊗ ℓ − 1
2
P

〉

P := I − ν ⊗ ν

〈·〉 ensemble average

Q is a fully biaxial tensor

Q = λ(n ⊗ n − n⊥ ⊗ n⊥) n⊥ := ν × n

Defects occur whenever λ = 0 and so Q = 0

order bounds

0 ≤ λ ≤ 1
2
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q-representation

Q = q1(e ⊗ e − e⊥ ⊗ e⊥) + q2(e ⊗ e⊥ + e⊥ ⊗ e)

e, e⊥ tangent unit vector fields

e⊥ := ν × e e · ν ≡ 0

n = cosϕe + sin ϕe⊥

n⊥ = − sin ϕe + cosϕe⊥

cos 2ϕ =
q1

√

q2
1 + q2

2

sin 2ϕ =
q2

√

q2
1 + q2

2
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Levi-Civita Parallel Transport

For planar director fields, the topological charge of a defect is di-

rectly related to the winding number.

For non-flat fields, an intrinsic distortion is due to the curvature of

the underling surface.

Along a curve C on S

ν
′ = Ω‖ × ν

Ω‖ = ν × (∇sν)t
′ arc-length derivative

∇sν surface gradient of ν

t unit tangent to C
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principal curvatures

∇sν = σ1e1 ⊗ e1 + σ2e2 ⊗ e2

H := 1
2
(σ1 + σ2) mean curvature

K := σ1σ2 Gaussian curvature

intrinsic distortion

Transporting a tangent unit vector u

u
′ = Ω‖ × u

∆ϑC =

∫

SC

Kda

SC surface on S enclosed by C
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topological charge

n
′ = Ω× n

Ω = Ωνν + Ω‖

Ων := n
′ · n⊥ n⊥ := ν × n

For the field n

2πmn =

∮

C

n
′ · n⊥ds +

∫

SC

Kda ∀C

2mn ∈ Z n and −n give the same Q

4



Slide 9

2πmn =

∮

C

n
′ · n⊥ds +

∫

SC

Kda

For another tangent unit vector field e

2πme =

∮

C

e
′ · e⊥ds +

∫

SC

Kda

In the q-representation

Q = q1(e ⊗ e − e⊥ ⊗ e⊥) + q2(e ⊗ e⊥ + e⊥ ⊗ e)

mn = me +
1

4π

∮

C

q1q
′
2 − q′1q2

q2
1 + q2

2

ds

mn = me +
1

2π

∮

C

ϕ′ds
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It is easily shown that the topological charge is additive in the contour

enclosure.

total charge

If S splits into the union of N patches, each containing a defect of n

2πmi =

∮

Ci

n
′ · n⊥ds +

∫

Si

Kda S =

N
⋃

i=1

Si

2π

N
∑

i=1

mi =

∫

S

Kda

Euler characteristics

∫

S

Kda = 2πχ(S ) = 2(1 − g(S ))

5

Slide 11

χ(S ) = F − E + V

F number of faces

E number of edges

V number of vertices

of any tessellation of S

g(S ) number of handles

S g χ

sphere 0 2

torus 1 0

Poincaré Theorem

N
∑

i=1

mi = χ(S )
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Surface Nematic Elasticity

The measure of surface order distortion is ∇sQ

ιi := Qij;kQij;k = |∇sQ|2

ι2 := Qij;kQik;j

ι3 := Qij;jQik;k = (divs Q)2

; surface derivative

null-Langrangian ?

∫

S

(ι2 − ι3)da = −

∫

S

K(trQ2)da
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elastic free-energy density

fe : = c1ι1 + c2ι2 + c24(ι2 − ι3)

=
1

2
(k1 + k3)Qij;kQij;k +

1

2
(k1 − k3)Qij;kQik;j −

1

2
k24K trQ2

k1 = c1 + c2 k3 = c1 − c2 k24 = c24
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Ericksen’s inequalities

fe is positive definite in the admissible region

γ12

γ24

1

A

B

5

γ12 =
2c1 + c2

2c1 − c2 − c24

γ24 =
c24

2c1 − c2 − c24
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one-constant approximation

k1 = k3 = 1
2
k

fe =
1

2

(

k|∇sQ|2 − k24K(trQ2)
)

−1 ≤
k24

k
≤ 1

internal potential

fp(Q) =
A

2
trQ2 +

C

4
(trQ2)2

A = A0

T − Tc

Tc

A0 > 0

T temperature

Tc critical temperature
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condensation order

λc =

√

A0

2C

(

Tc − T

Tc

)

T < Tc

nematic coherence length

ξ0 :=

√

k

A0

reduced temperature

t :=
T − Tc

Tc

free-energy functional

F :=
1

2

∫

S

{

k|∇sQ|2 + (A − k24K)(trQ2) +
C

2
(trQ2)2

}

da
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Valence Control

Both k24 and K appear capable of controlling both number and loca-

tion of defects

sphere

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R = 20ξ0 k24 = 0 t = −0.03
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oblate ellipsoids

(a)

(c)

(b)

(d)

R = 20ξ0 k24 = 0 t = −0.03
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prolate ellipsoids

(a) (b)

R = 40ξ0 k24 = 0 t = −0.03

Defects migrate towards the region the largest K, to the point of

possibly merging.

This confirms simulations of Bates, Skačej & Zannoni (2010),

which however did not show defect merging.
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role of k24

(a)

k24 = k

(b)

k24 = −k

R = 20ξ0 t = −0.03
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(c)

k24 = k

(d)

k24 = −k

R = 20ξ0 t = −0.03

For K > 0 a negative k24 enhances the migration of defects towards

the regions with the largest K.
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torus

11

Slide 23

Credits

Co-workers

D. Jesenek

S. Kralj

L. Mirantsev

R. Rosso

M. Svetec

Discussion

G. E. Durand

More information

Soft Matter Mathematical Modelling

Department of Mathematics

University of Pavia, Italy

http://smmm.unipv.it

12


