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Nematic Shells

A thin film of nematic liquid crystal deposited on a colloidal particle
is a nematic shell, which is treated here as a two-dimensional order
texture.

tetravalent tennis balls

Slide 2 Defects in the order texture are
potential hot spots where ligands
may adhere bridging one particle to
another in a metamaterial struc-
ture. NELSON (2002)

Slide 3

Slide 4

Mathematical Model

Molecules are envisaged as ribbons lying flat on a closed surface .
and freely gliding on it.

planar degenerate anchoring
This picture is perhaps too naive: a degenerate planar anchoring di-

luted in a thin layer is a more realistic microscopic picture.

£ molecular director
.7 closed orientable surface
v outer unit normal
L-v=0

order tensor

Q:= <£ QL — %P>
P=I-vev
) ensemble average
Q is a fully biaxial tensor
Q=An®n-n, n,) n,=vxn
Defects occur whenever A = 0 and so Q = 0
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q-representation

Q=q(e®e-e ®el)+plewe e @e)
e, el tangent unit vector fields
e =vXe e-v=_0
N = cos pe + sin pe |
Slide 5 n | = —sinye + cos pe |

q sin2p = 92
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Levi-Civita Parallel Transport

For planar director fields, the topological charge of a defect is di-
rectly related to the winding number.

For non-flat fields, an intrinsic distortion is due to the curvature of
the underling surface.

Along a curve % on .
Slide 6 vV =Q xv
QH =V X (Vsl/)t
arc-length derivative

Vv surface gradient of v
t unit tangent to ¢

principal curvatures

Vv =01e1 ® ey + 02e3 @ en

H = %(o’l + 09) mean curvature

K =009 Gaussian curvature

intrinsic distortion

Slide 7 Transporting a tangent unit vector u
u’ = QH X u
Ay = Kda
S
S surface on . enclosed by ¢
topological charge
n'=Qxn
Q= Q,,V —+ QH
Q,:=n"-n, n, =vxn
For the field n
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2mMy, = 7{ n -n,ds+ Kda Y€
€ J L
2my, € 7Z n and —n give the same Q
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ZWmn:%n'-nLds-i- Kda
Je Feg
For another tangent unit vector field e

2TMe = % e e ds+ Kda
Je e

In the g-representation

Slide 9 Q=q(eve—e ®e ) +pleve +e, ®e)
L [ ¢ —dig
My =Me +— § —5—5—d
" an e dita
1 7{ ,
My = Me + — ©'ds
2 Je
It is easily shown that the topological charge is additive in the contour
enclosure.
total charge
If . splits into the union of N patches, each containing a defect of n
N
2’””"?:]{ n’-md.e+/ Kdo =]
i i i=1
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N
27szi =/ Kda
i=1 =4

FEuler characteristics

/ Kda = 2mx(.7) = 2(1 — g(.7))
S

xX()=F—-E+V

F number of faces
E number of edges of any tessellation of .7
1% number of vertices

9(-7) number of handles

s gl x
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torus | 1] 0

N
Poincaré Theorem Z m; = x()
i=1

Surface Nematic Elasticity

The measure of surface order distortionis V Q
ti = QijrQijik = |VsQJ?
12 := QijikQiksj
t3 = Qij:j Qi = (divs Q)2
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null-Langrangian ?

/y(L2 —13)da = — / K(tr Q?)da
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elastic free-energy density

fe 1= cit1 + caty + cos(t2 — 13)

1 1 1
= 5(161 + k3)QijikQijik + 5(161 — k3)QijikQiksj — §k24K trQ?
ki =ci+co ks =c1 —ca oy = co4
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Ericksen’s inequalities
fe is positive definite in the admissible region
2t
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C24
Y24 =

2¢1 — g — C24

one-constant approrimation

fe = (MVSQ‘Z - k24K(tI‘ Qz))

Fas
k
internal potential

1
2

1< <
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Q) = 5 uQ?+ CurQ?

T-T
A=A < Ao >0
0 T, 0
T temperature
Te critical temperature

condensation order

- f%(ﬂfT

20\ T,

nematic coherence length

b 1= /2
0=/
Slide 16 Ap

reduced temperature

) T<T.

T-T.
=%

free-energy functional

t:

lﬁ:zgi/ {Mvgm2+(A7kukj@rQ%4—g@rQ%Z}da
2/, 2



prolate ellipsoids

Valence Control

Both ko4 and K appear capable of controlling both number and loca-

tion of defects
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Defects migrate towards the region the largest K

possibly merging.

u/@m)

This confirms simulations of BATES, SKACEJ & ZANNONI (2010),

which however did not show defect merging.
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For K > 0 a negative koy enhances the migration of defects towards
the regions with the largest K.
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