11/05/2011

Motor Powered Alignment of Cytoskeletal Filaments

Shahid Khan

LUMS_SSE Lifesciences, Lahore. PAKISTAN Molecular Biology Consortium, Chicago. USA

Team Members

LUMS_SSE

Lifescience

- Tariq Butt
- Rehan Ali
- Nimra Asi
- Shahid Khan
- **Computer Science**
 - Tabish Mufti
 - Ahmad Humayun
 - Sohaib Khan

NIMR

Physical Biochemistry

- Steve Rosenthal
- Justin Molloy

The Cell Cytoskekeleton

Functions

1.-Architectrure2.-Transport3.-Cell \ Organelle Dynamics

Mechanical Modes

- 1.-Twisting
- 2.-Bending
- 3.-Breakage
- 4.-Alignment

Actin Organization in Cells

In Vitro Motility Assay

Ingredients 1.-Skeletal muscle meromyosin 2.-Rhodamine-phalloidin F-actin. 3.-2 mM ATP 4.-Nitrocellulose coated glass coverslips 5.-Non-fluorescent F-actin

Butt, T., et al. (2010) J Biol Chem 285: 4964-4974

Alignment of Cytoskeletal Polymers - Theory

Kierfeld, Kraikivsky and Lipowsky. 2008. Biophys. Revs. Letts. 4:363-

Shearing - Control of Filament Length

"Normal" *In vitro* Motility Assay (~ 2 pMolar F-actin)

10 μ**m**

Real Time

In vitro Motility with 20μM unlabelled F-actin (~10⁷ x "Normal" amount)

A Quantitative Measure of Alignment

Alignment Strongest when Filament Length > 1µm

Formation of Aligned Domains - an Active Process

1. Alignment takes about 5-10 minutes to establish.

2. Rapid solution flow causes immediate alignment of filaments in bulk phase (in direction of flow).

Pattern Formation

See also Schaller, V et al. 2010. Nature. 467, 73.

Myosin Filaments do not disrupt Oriented Actin Domains

Persistence of motion is slightly greater at higher filament "crowding"

- +0.5mg/ml non-fluorescent actin
- No added non-fluorescent actin

Filament Collisions

A. Filaments bend due to motor forces. Segmentation of a collision complex into individual filaments is a challenging computer vision problem

B. At low densities filaments transiently align by "kinking" upon collision

Observations of Single Collisions

High Motor Density Entrainment Bending

Low Motor Density

Crossover Weak alignment

Alignment Probability depends on Motor Density

Does Surface Filament Sliding produce Convection Currents?

10µm

20x normal speed

Liverpool & Marchetti. 2003. Phys. Rev. Lett. 90, 38012

CONCLUSIONS

1. Quantitative measure of population orientation.

2. Microdomain formation increases with filament crowding

3. Microdomain formation is an active process.

4. Optimal filament length ca. 1 μm.

5. Actin microdomains reorganize on micrometer – second time scales.

6. Single collisions - Alignment probability depends on motor density.

PROSPECTS

Extension of theory and measurement in 2D and towards 3D

- a- Finite crossover probability.
- b- Relaxation of rigid rod approximation
- c- Non-processive motors
- d- Fluctuations in motor surface density e-Weak forces