Colloidal interactions and dynamics at liquid interfaces and lateral motion of proteins and lipids on live cell membrane

Penger Tong

Department of Physics Hong Kong University of Science and Technology

ICTP Conference on Mathematics and Physics of Soft and Biological Matter, May 9-13, 2011

OUTLINE:

- 1. Physics at interfaces
- 2. Colloidal interactions at liquid interfaces
- 3. Brownian dynamics of interfacial particles
- 4. Lateral motion of membrane-bound proteins and lipids
- 5. Summary

Collaborators:

Wei Chen, Yuan Peng, Hao Song, Wei He (HKUST) Tai-Kai Ng, Lin Geng, Ben Peng (HKUST) Su-Sheng Tan, Warren Ford (OSU) Thomas Fischer (U of Bayreuth) David Weitz (Harvard U)

Work supported by the Hong Kong Research Grants Council

1. Physics at interfaces

Graphene

3D topological insulator

Surface @ P ⁽¹⁾ 0 atm and T ⁽¹⁾ 0K

Water drop on a super-hydrophobic surface (www.itg.uiuc.edu)

Spreading parameter:

$$S = \gamma_{sv} - \left(\gamma_{ls} + \gamma_{lv}\right)$$

Water droplets on a nonwetted lotus leaf

 S > 0, liquid likes the surface and a liquid film forms (complete wetting)
 S < 0, liquid droplets form on solid surface (partial wetting)

Wetting properties of a fluid droplet on a solid surface represents a class of common natural phenomena. Understanding of these phenomena not only presents challenges to basic research but also leads to a variety of practical implications.

Schematic phase diagram of a surfactant/water/oil ternary solution

Liquid-liquid interfaces (e.g., water-air interface) covered by a monolayer of surfactant molecules

Fluid mosaic membrane of Singer and Nicholson (1972)

Revision on Fluid Mosaic Model (Jacobson et al., Science, 1995)

A: hindering by obstacle clusters

B: confinement by cytoskeleton traps (0.3-1 Om)

C: directed motion along microtubeles (motor driven?)

D: free diffusion

A monolayer of surfactant/lipid molecules at water-air interface

Polymer-supported membrane

Colloids as surfactants (1000): a model system to study interactions and dynamics at liquid interfaces

A 2D system without influence of gravity and clearly visible at any concentration without multiple scattering

Charged latex spheres at a water-air interface

Nearly hard spheres (PMMA) at a decalin-water interface

Our recent experiments on interfacial dynamics and interactions

Interactions between strongly charged polystyrene spheres

Interactions between weakly charged silica spheres

Short-time self-diffusion of nearly hard spheres (PMMA)

Short-time self-diffusion of weakly charged silica spheres

Current experiments on interfacial dynamics and interactions

Self-diffusion of stronglyGlassy dynamics in monolayer suspensioncharged polystyrene spheresof bidisperse colloidal particles

- W. Chen, S.-S. Tan, T. K. Ng, W. T. Ford, and P. Tong, *Phys. Rev. Lett.* **95**, 218301 (2005).
- W. Chen, S.-S. Tan, Z.-S. Huang, T. K. Ng, W. T. Ford, and P. Tong, *Phys. Rev. E* **74**, 021406 (2006).
- W. Chen and P. Tong, Europhys. Letters **84**, 28003 (2008).
- Y. Peng, W. Chen, Th. M. Fischer, D. A. Weitz, and P. Tong, J. Fluid Mech. **618**, 243 (2009).
- W. Chen, S.-S. Tan, Y. Zhou, T.-K. Ng, W. T. Ford, and P. Tong, *Phys. Rev. E* **79**, 041403 (2009).

2. Colloidal interactions at liquid interfaces

(i) Strongly charged polystyrene spheres (\bullet_0 $(12.5 \ \mu C/cm^2)$

Measured g(r) at low surface coverage and the corresponding interaction potential U(r)/ k_BT (I) -ln[g(r)]

Formation of particle clusters by stirring the air-water interface

Periodic dilation of the interface provides kinetic energy $mv^2/2 \oplus 9k_BT$ to the interfacial particles to overcome an energy barrier.

Particle clusters

- "Coulombic molecules" result from a minimization of the total electrostatic energy of the entire cluster.
- Formation of circular chains is a hallmark of dipole-like attractions without an external field.

Where does attraction come from?

AFM images of the carboxyl polystyrene spheres

Topographic images of the particle surfaces

Phase images of the particle surfaces

Characteristic features of the measured U(r)

(ii) Weakly charged silica spheres (* $_0 \oplus 1 \Leftrightarrow 10^{-2} \,\mu\text{C/cm}^2$)

Effect of adding salt (NaCl)

Shortening of the screening range with increasing salt concentration *C*

Gradual development of an attractive well of $-0.3 k_B T$

Gradual development of a repulsive barrier of ~0.15 $k_B T$

$$U(r) = U_{C}(r) + \beta \frac{1}{r^{3}} - \gamma \frac{1}{r^{6}}$$

Fitted value of $\frac{1}{20}$ suggests that there are N 0 50 charge patches randomly distributed on the particle surface with a mean separation s 0 130 nm

AFM phase images of the silica spheres

solution; patch size ~100 nm

3. Brownian dynamics of interfacial particles

- Monodisperse polymethylmethacrylate (PMMA) spheres at a decalin-water interface: $d = 1.2 \ \mu m$ (PMMA1) and $d = 0.7 \ \mu m$ (PMMA2)
- Silica sphere samples: S1: $0.73 \pm 0.04 \ \mu m$, S2: d = $1.57 \pm 0.06 \ \mu m$, S3: $0.97 \pm 0.05 \ \mu m$, $\bullet_0 \oplus 0.014 \ \mu C/cm^2$.
- Strongly charged polystyrene sphere at a water-air interface: $d = 1.1 \mu m$.

PMMA1 (d = 1.2 Om)

Particle tracking

$$\Delta \mathbf{r}(\tau) = \mathbf{r}(t+\tau) - \mathbf{r}(t)$$
$$\langle \Delta \mathbf{r}^2(\tau) \rangle = 4D_S^S \tau$$

$$\ell = d\left(\frac{\pi}{4n}\right)^{1/2} \Box 2d$$

Particle diffusion is hindered by the surrounding spheres Concentration dependence of the diffusion coefficient

PMMA spheres (d = 1.2 Om)

Highly charged polystyrene spheres (d = 1.1 Om)

 $D_S^S = \alpha D_0 (1 - \beta n)$

PMMA spheres at the decalin-water interface

Sample	d ($\mu m)$ (±5%)	$D_0 \ (\mu m^2/{ m s})$	$\alpha~(\pm 7\%)$	$\beta~(\pm 10\%)$
PMMA1	1.2	0.145	$0.97 \ (0.97)$	1.4(1.2)
PMMA2	0.7	0.26	1.04	2.8

Silica spheres at the water-air interface

Sample	d (μm)	$\alpha \ (\pm 7\%)$	$eta~(\pm 10\%)$	Manufacturer
Si2	1.57 ± 0.06	1.19(1.17)	1.6 (0.84)	Duke Scientific
Si3	0.97 ± 0.05	1.45(1.45)	1.84(1.53)	Bangs Laboratories
Si1	0.73 ± 0.04	1.18(1.17)	2.89(2.44)	Duke Scientific

Viscous drag for a sphere moving in a membrane

incompressible surface

decalin-water interface

$$k^{(0)} = \frac{6\pi}{\alpha} \frac{\eta_2}{\eta_1} \square 47.28$$

9
$$z/a = -2$$
 or **1 (1)** 180°

Leunissen et al. (PNAS, 2007): PMMA spheres sit at (from the decalin side) but not in the decalin-water interface

Dense colloids as a model system to study 2D phase transitions, nucleation, crystal growth and glass dynamics

(i) Dense silica spheres (short-range repulsion)

(ii) Glassy behavior in a binary mixture of hard spheres (PMMA)

3. Lateral motion of membrane-bound proteins and lipids

Muscle cells cultured from Xenopus (African clawed frog) embryos, a model system to study the neuromuscular junction

bright field image of a muscle cell (stage 22) with yolk in the center

(i) Lateral motion of the nicotinic acetylcholine receptors (AChR)

height: 20 nm

diameter: 7 nm

A cation selective, ligand-gated ion channel Biolinkers: biotin-bungarotoxin- Subunits

Quantum Dots (Q-dots) for live cells and in vivo imaging

Advantages: brighter, longer fluorescence lifetime, and allows for single-molecule tracking

Experimental challenges: blinking, non-uniform intensity distribution among Q-dots, somewhat larger than typical protein molecules

Fluorescent imaging of Q-dot labeled acetylcholine receptors

Focused at the middle plane of the cell

Focused at the bottom plane facing the substrate

Original positions

Final linked trajectories (60%)

broken trajectories due to Q-dot's blinking

Reconstructed real-time (5 fps) movie of Q-dot labeled AChRs (each Q-dot is coded with a different color)

Typically, we take movies at 10-0.3 fps and ~400 frames per movie, each frame containing 50-150 Q-dots, and track 5-20 cells for each experiment. For each movie, we find ~640 (broken) trajectories and obtain ~360 linked trajectories.

Optimal sample/imaging conditions allow us to have accurate data with good statistics to study the single molecular motion in living cells.

Understanding of the lateral diffusion of membrane-bound proteins

Hydrodynamic model by Saffman and Delbrück (PNAS 1975)

A viscous layer bounded by aqueous phases on both sides

$$D_{S} = \frac{k_{B}T}{\xi} = \frac{k_{B}T}{4\pi\mu h} (\ln\frac{\mu h}{\mu' a} - 0.5772)$$

For $h \approx 8$ nm, $a \approx 4$ nm, and $\mu' = 1$ cP (water), we have

$$\frac{\mu}{\mu'} \approx 7500, \quad \mu \approx 75 \text{ poise}$$

The viscosity of the cell membrane is far from being settled; the reported values varies from 1 poise up to 1000 poise.

Diffusion time over a protein diameter:

$$\tau_0 \approx \frac{d^2}{D_s} \approx \frac{(7 \text{ nm})^2}{0.05 \ (\mu \text{m}^2/\text{s})} \approx 1 \text{ ms}$$

• Longest diffusion distance $r_1 \approx 6.3 \ \mu m \approx 900d$; protein separation $r_2 \approx d[\pi/(4 \times 0.01)]^{1/2} \approx 10d \ll r_1$; long-time self-diffusion.

• Measured MSD is a linear function of delay tine Δt even for very large values of Δt , suggesting that the cell membrane is really fluid-like for trans-membrane proteins.

5. Summary

• Colloidal monolayers can serve as a model system to study interactions and dynamics at liquid interfaces.

• Optical observations of stable bonded particle clusters and the measured g(r) demonstrate that the attractive interaction between the interfacial particles is of dipole origin.

• AFM phase images reveal that surface heterogeneity is a general feature of the colloidal surface, which may develop either during the synthesis of the particles or during the ionization process in the aqueous phase.

• Such patchy charges introduce in-plane dipoles at the interface, leading to an attraction at intermediate inter-particle separations.

5. Summary (continued)

• Measured short-time self-diffusion coefficient has the form

$$D_s^s = \alpha D_0 (1 - \beta n)$$

• Obtained value of α is in good agreement with the numerical calculation for the drag coefficient of interfacial particles, assuming the interface is incompressible.

• Measured value of β differs from that of bulk suspensions and changes with the particle size, indicating that hydrodynamic interactions between the particles have interesting new features at the interface.

• Membrane-bound proteins show interesting dynamics different from that of Brownian motion. The lateral motion of proteins in cell membrane is constricted by a variety of constrains imposed by the soundings and may also be affected by the active processes inside the cell, such as protein motors. Further experimental and theoretical studies are needed.