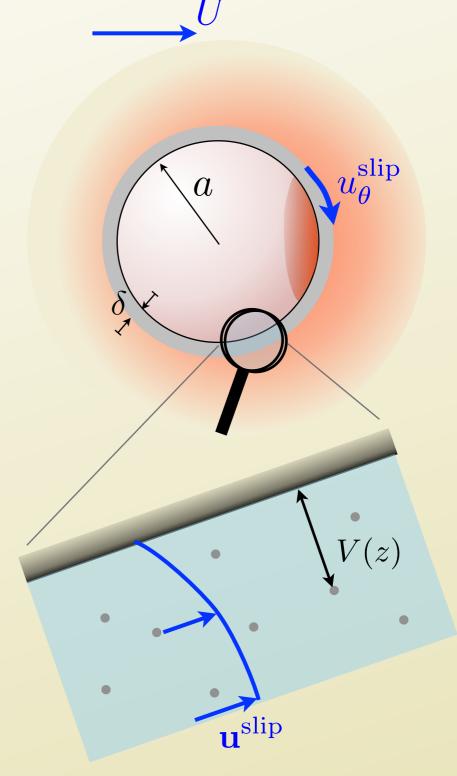
SELF-DIFFUSIOPHORESIS IN THE STRONGLY ADVECTING REGIME

GARETH ALEXANDER

TIMON IDEMA

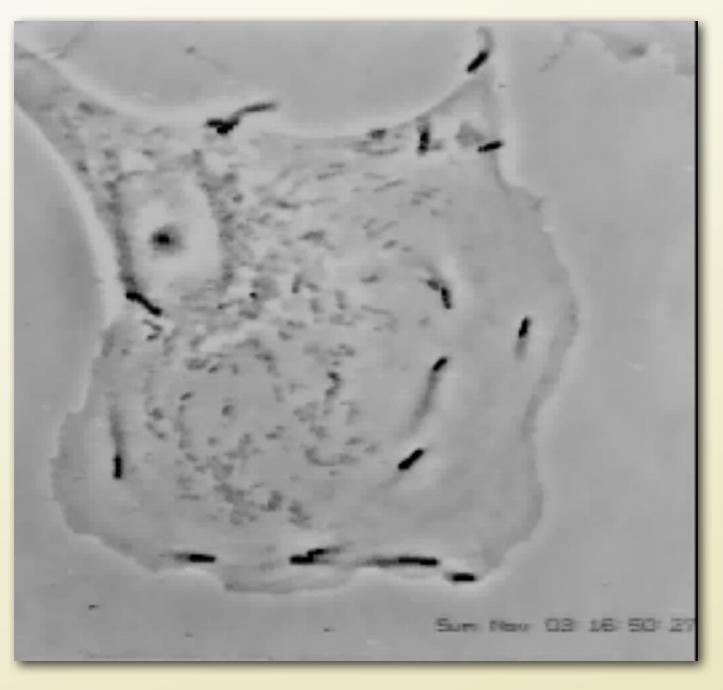
Andrea Liu

Department of Physics & Astronomy University of Pennsylvania



ACTIN BASED PROPULSION

Listeria monocytogenes



Courtesy of Julie Theriot http://cmgm.stanford.edu/theriot/movies.htm

IN-VITRO REALISATIONS

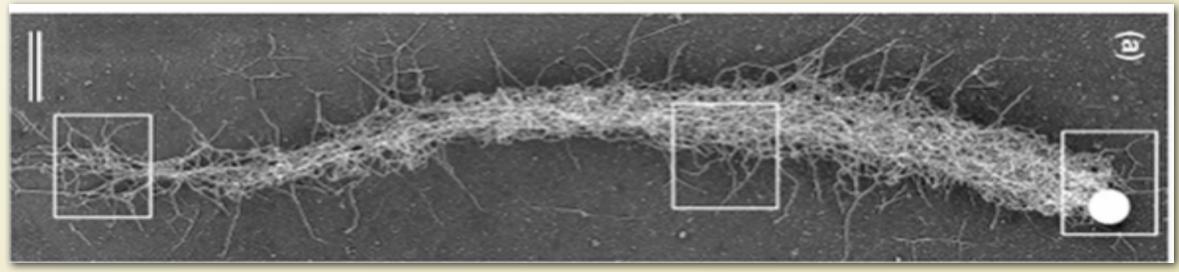
Courtesy of Julie Theriot http://cmgm.stanford.edu/ theriot/movies.htm

 $\times 60$

sphere

"All" you need is

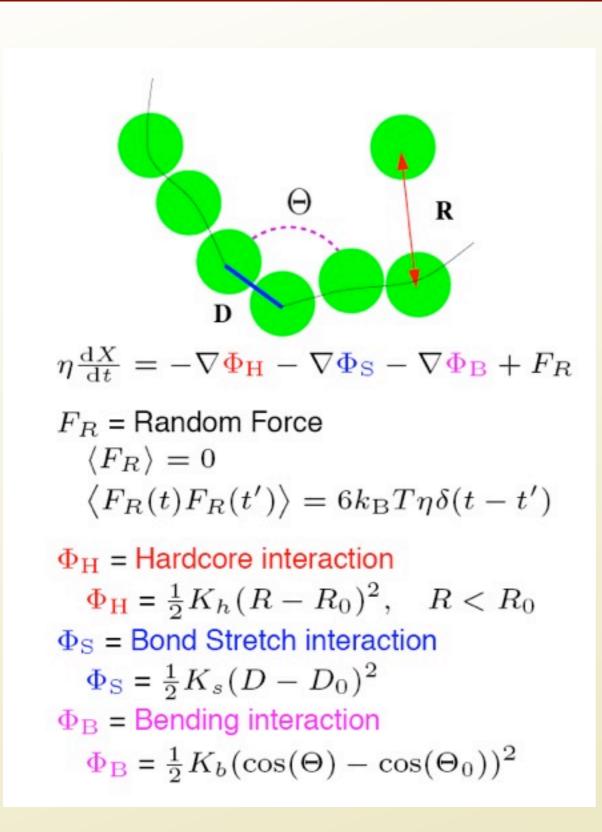
- Actin and buffer w/ATP
- Arp2/3 makes new growing ends
- Capping protein kills them off
- ADF/cofilin severs filaments
- Profilin converts ADP-G-actin to ATP-G-actin
- Bead coated with ActA, VCA, activates Arp2/3

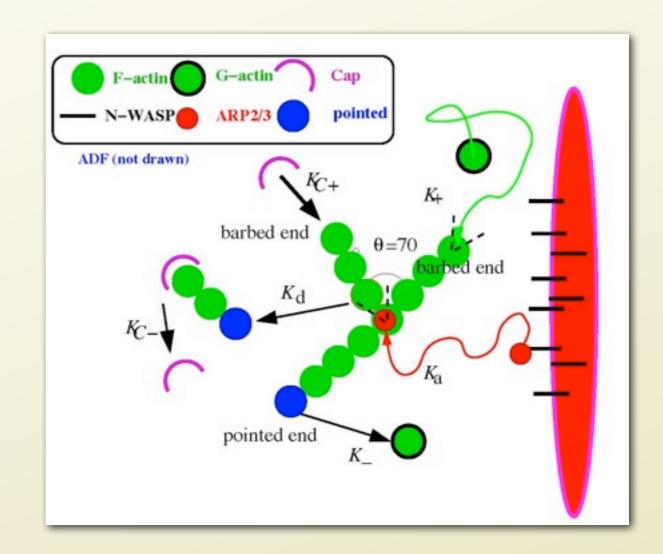


Cameron et al *Curr. Biol.* **11**, 130 (2001)

How does self-assembly into a branched structure lead to motility?

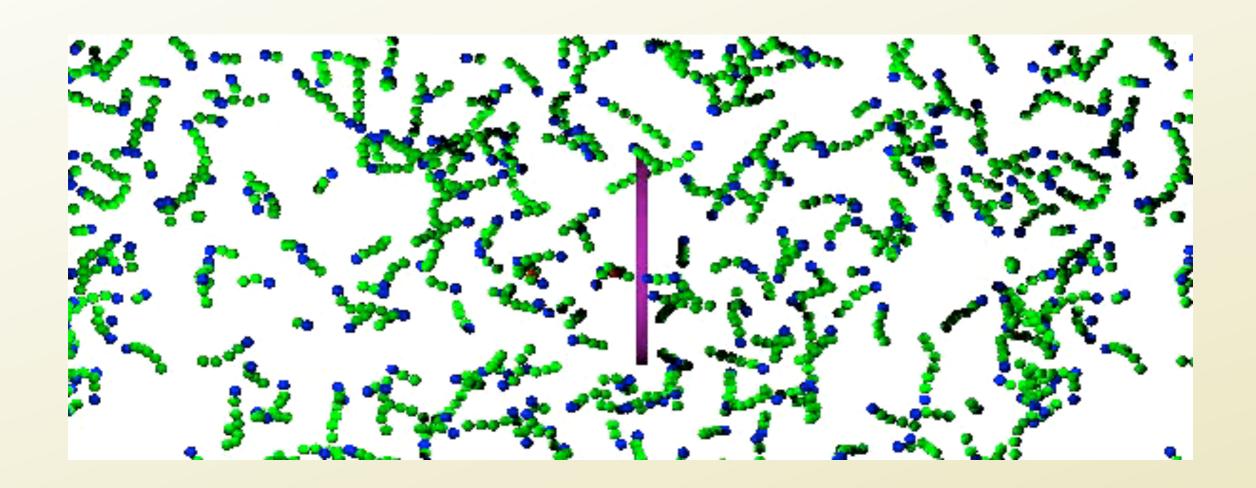
BROWNIAN DYNAMICS SIMULATIONS





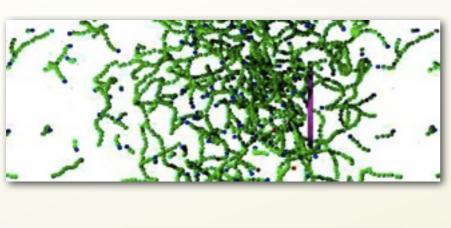
- Polymerisation at + end (K_{+})
- Depolymerisation at end (K_{-})
- Branching (K_a)
- Debranching (K_d)
- Capping

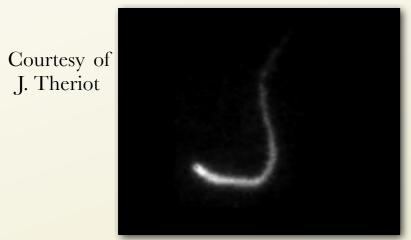
BROWNIAN DYNAMICS SIMULATIONS

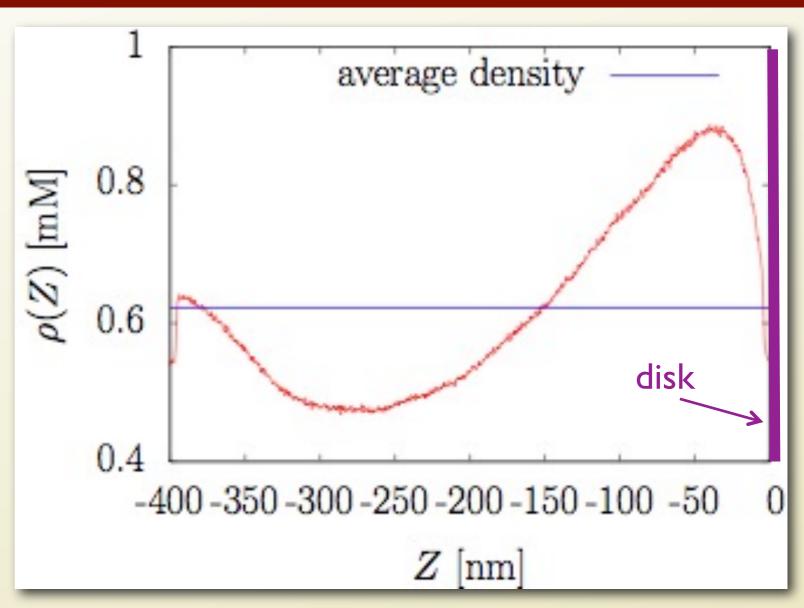


- 2D projection of 3D simulation
- Motion allowed in $\pm z$ direction only

ACTIN CONCENTRATION GRADIENT





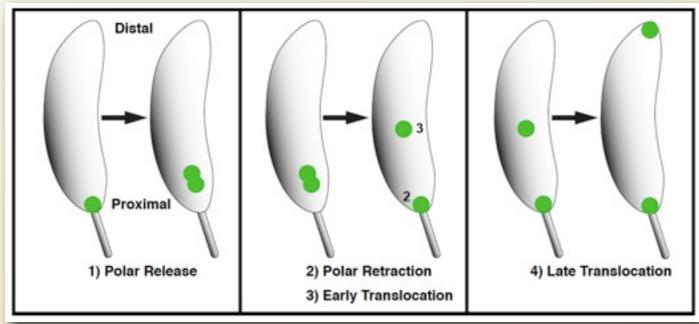


- Disk activates Arp2/3, which recruits F-actin
- Concentration of F-actin is high behind the disk compared to average
- If the disk repels actin then it will move forwards to avoid F-actin
- In real systems the concentration gradient is even bigger; mechanism should still apply

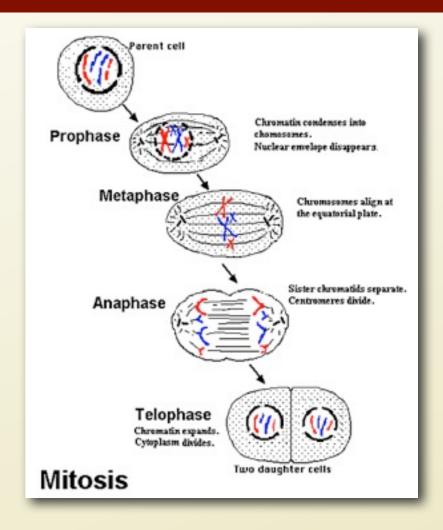
ASYMMETRIC CELL DIVISION

Most cells divide symmetrically

Caulobacter crescentus and Vibrio cholerae divide asymmetrically

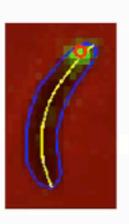


• What is the mechanism for chromosomal motility?

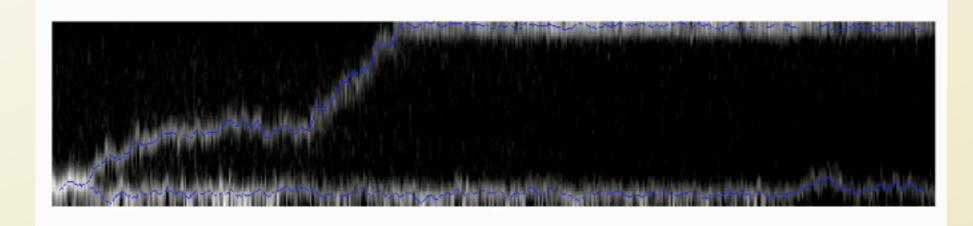


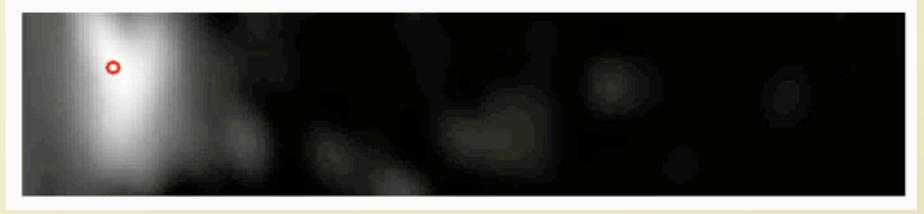
DISASSEMBLY DRIVEN MOTILITY

• How does the chromosome move across the cell during chromosomal segregation in certain asymmetric bacteria?



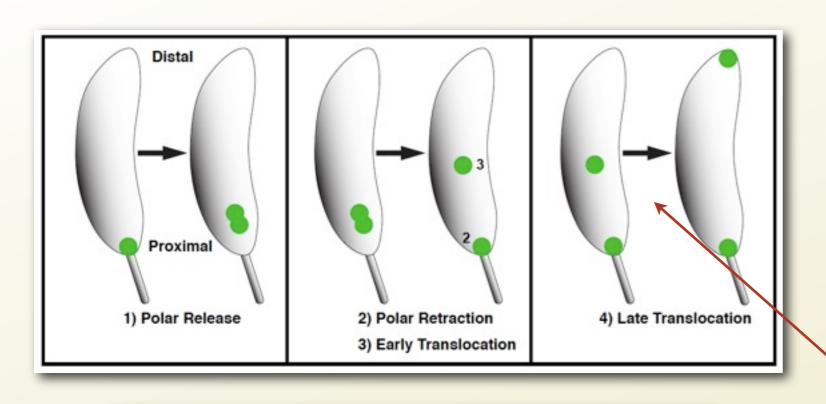
Caulobacter crescentus



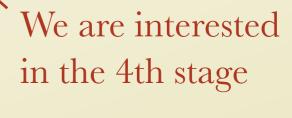


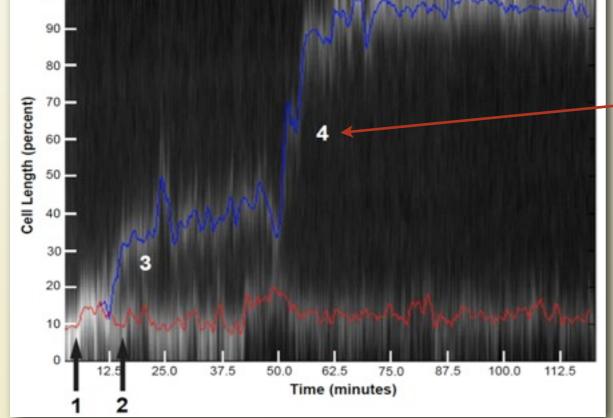
Courtesy of C. W. Shebelut, J. M. Guberman and Z. Gitai

CHROMOSOMAL SEGREGATION IN C. CRESCENTUS AND V. CHOLERAE



Caulobacter crescentus

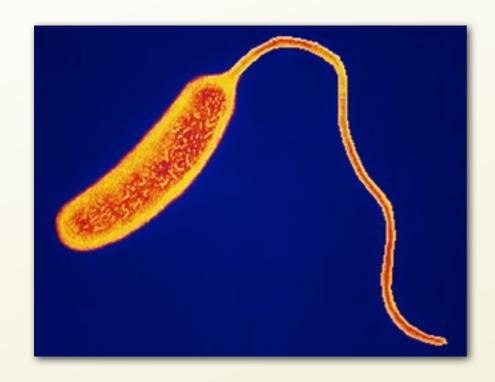




How does the chromosome (ori) scoot across the cell?

100

VIBRIO CHOLERAE



Courtesy of Popular Logistics

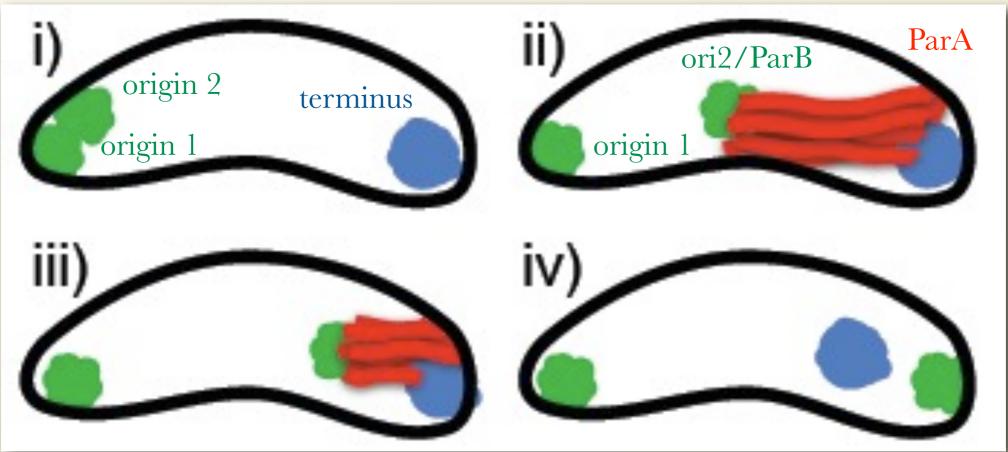
FOGEL & WALDOR Genes & Dev. 20, 3269–3282 (2006)

A CLOSER LOOK AT THE PROCESS

FOGEL & WALDOR Genes & Dev. 20, 3269–3282 (2006)

Replication

ParB on origin attaches to ParA

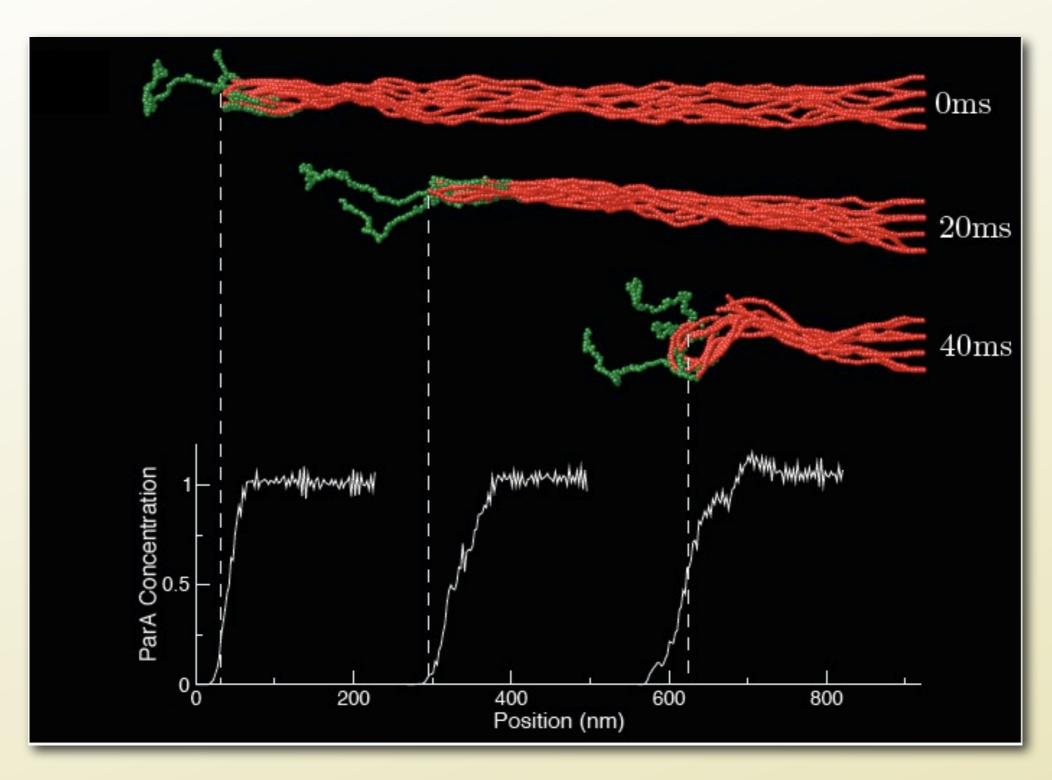


ParA disassembles and origin moves

Origin and terminus switch places

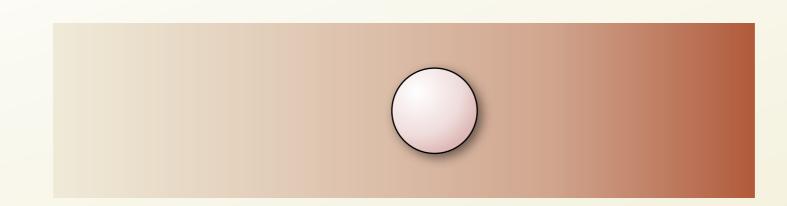
- Origin is decorated with ParB which binds to and hydrolyses ParA
- ParA filament structure depolymerises and drags ParB along

CONCENTRATION GRADIENT DRIVES MOTION



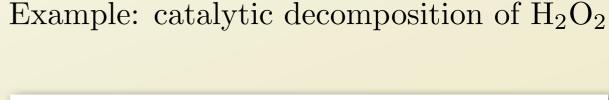
 System uses depolymerisation to create a steady-state concentration gradient to move up

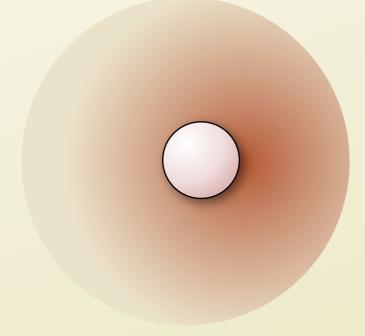
PARTICLE MOTION IN A CONCENTRATION GRADIENT

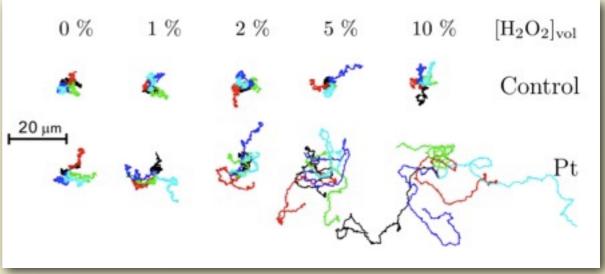


Particle interacts with the concentration field and moves dpwlmethraghiadientiifisitaitsmeethed

In self-diffusiophoresis the particle itself generates the concentration gradient

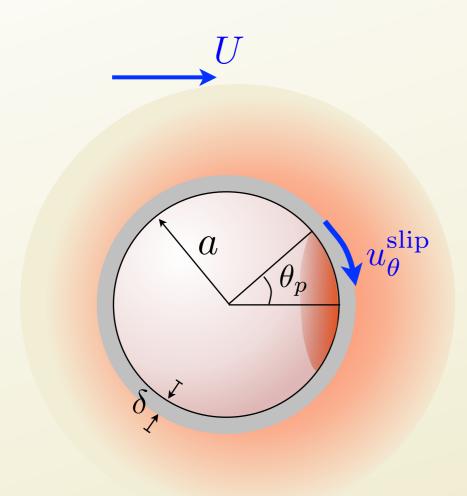






Howse et al *Phys. Rev. Lett.* **99**, 048102 (2007)

A PARED DOWN MODEL



Rest frame of the particle

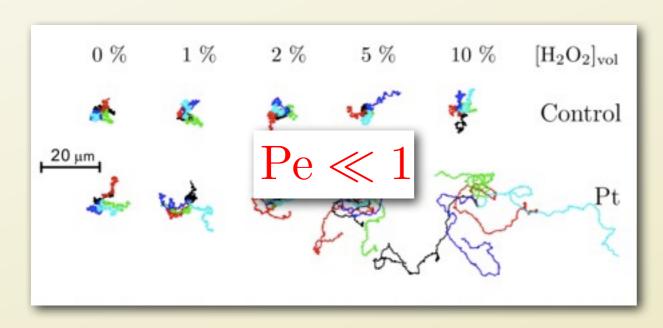
- Spherical particle
- Axisymmetry, steady state
- Single solute species
- Purely radial potential with compact support
- Zero Reynolds number

PARTICLE MOTION IN A CONCENTRATION GRADIENT

Motion involves a balance between diffusion and advection

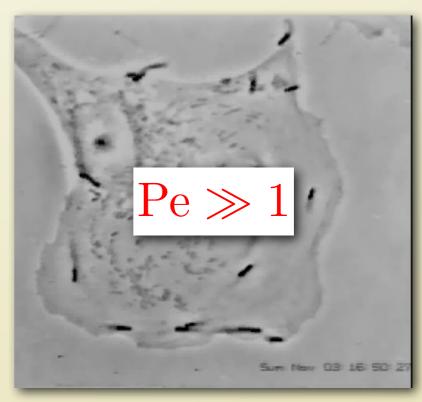
$$Pe = \frac{\text{advection}}{\text{diffusion}} = \frac{Ua}{D}$$

Diffusion dominated

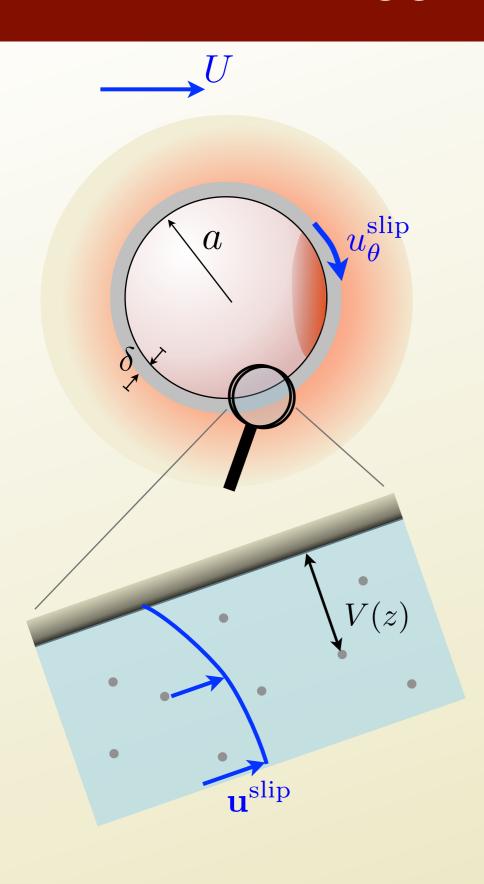


Howse et al Phys. Rev. Lett. 99, 048102 (2007)

Advection dominated



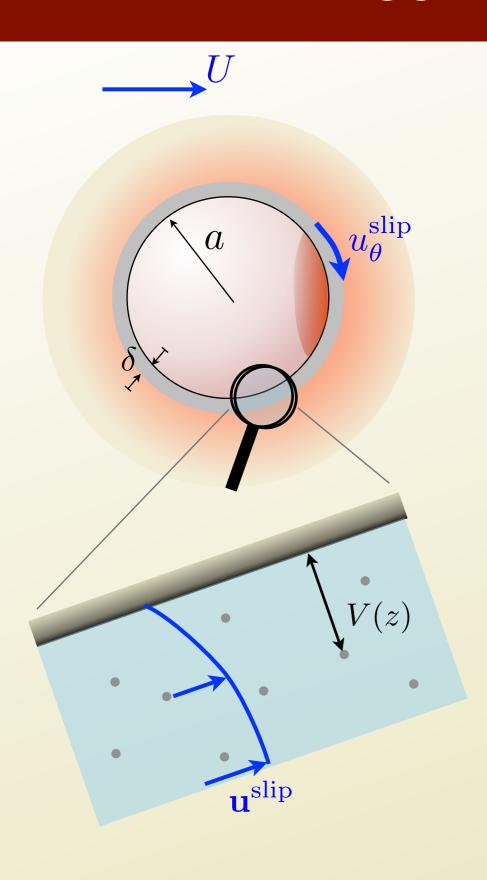
Courtesy of Julie Theriot http://cmgm.stanford.edu/theriot/movies.htm



The interaction occurs close to the surface in a boundary layer of thickness δ

Solve Stokes in the upper half space

$$\mathbf{0} = -\nabla p + \mu \nabla^2 \mathbf{u} - c \,\nabla V \qquad \qquad 0 = \nabla \cdot \mathbf{u}$$



The interaction occurs close to the surface in a boundary layer of thickness δ

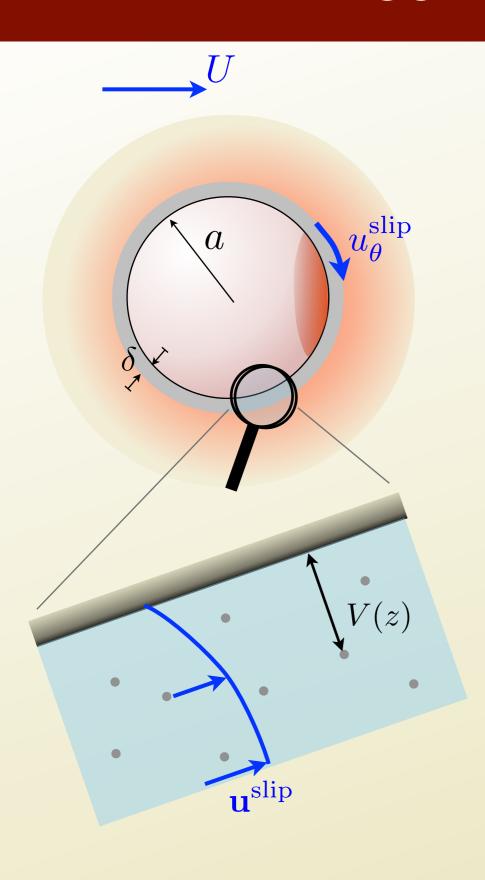
Solve Stokes in the upper half space

$$\mathbf{0} = -\nabla p + \mu \nabla^2 \mathbf{u} - c \,\nabla V \qquad \qquad 0 = \nabla \cdot \mathbf{u}$$

Tangential slip velocity

$$\mathbf{u}^{\text{slip}} = -\frac{\delta^2}{\mu} \int_0^1 dz \, \frac{1}{2} z^2 \, \nabla_{\parallel} c(z, \mathbf{x}) \, \partial_z V(z)$$

proportional to tangential concentration gradients



The interaction occurs close to the surface in a boundary layer of thickness δ

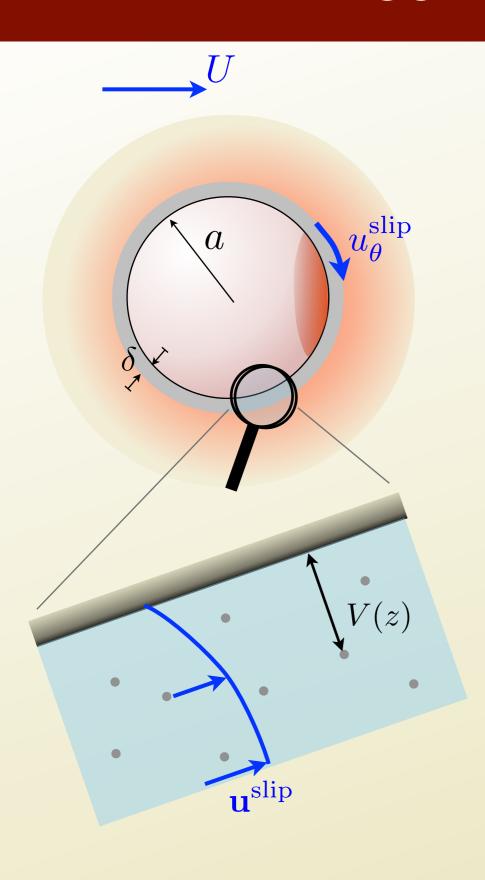
Solve Stokes in the upper half space

$$\mathbf{0} = -\nabla p + \mu \nabla^2 \mathbf{u} - c \,\nabla V \qquad \qquad 0 = \nabla \cdot \mathbf{u}$$

Tangential slip velocity

$$\mathbf{u}^{\text{slip}} = -\frac{\delta^2}{\mu} \int_0^1 dz \, \frac{1}{2} z^2 \, \nabla_{\parallel} c(z, \mathbf{x}) \, \partial_z V(z)$$

Boltzmann distribution $c(z, \mathbf{x}) = c(1, \mathbf{x}) e^{-V(z)/k_BT}$



The interaction occurs close to the surface in a boundary layer of thickness δ

Solve Stokes in the upper half space

$$\mathbf{0} = -\nabla p + \mu \nabla^2 \mathbf{u} - c \,\nabla V \qquad \qquad 0 = \nabla \cdot \mathbf{u}$$

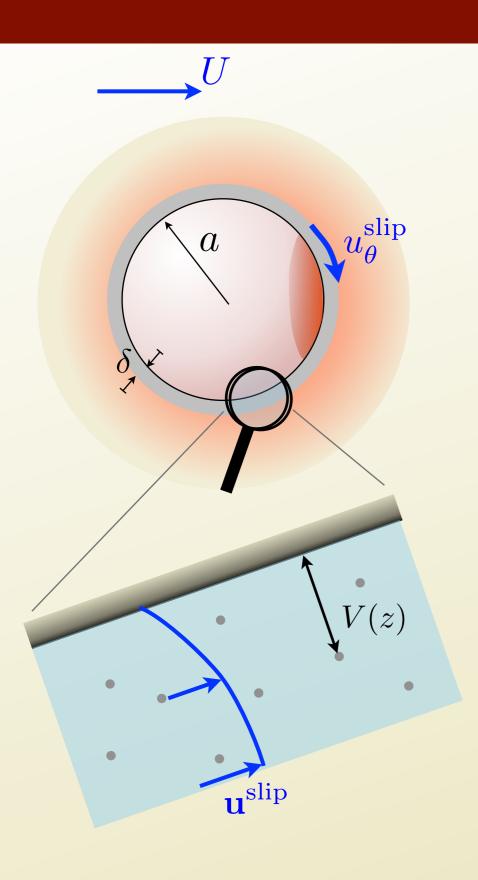
Tangential slip velocity

$$\mathbf{u}^{\mathrm{slip}} = m^D \nabla_{\parallel} c \big|_{z=1}$$

diffusiophoretic mobility (Derjaguin)

$$m^D = \frac{k_B T}{\mu} \delta^2 \int_0^1 dz \, z \left[1 - e^{-V/k_B T} \right]$$

SQUIRMERS



Slip velocity provides an inner boundary condition for the exterior flow

General solution provided by Lighthill's squirmer model

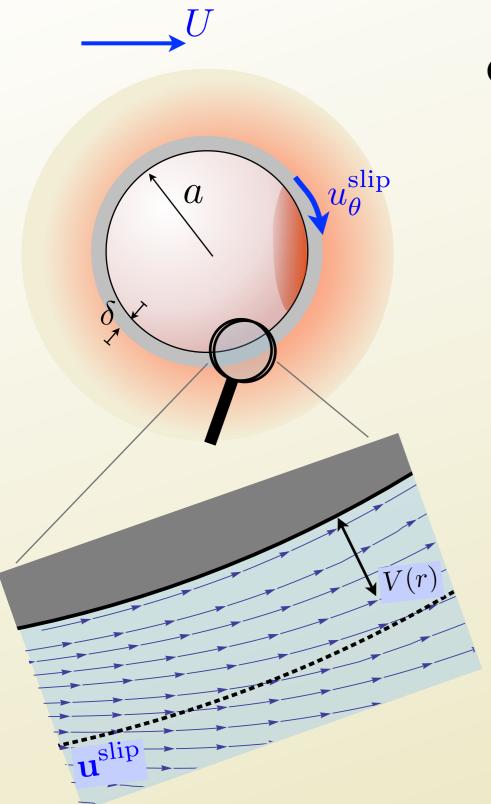
$$u_r = U\left[1 - \left(\frac{a}{r}\right)^3\right]\cos(\theta) + \sum_{l=2}^{\infty} B_l\left[\left(\frac{a}{r}\right)^l - \left(\frac{a}{r}\right)^{l+2}\right]P_l\left(\cos(\theta)\right)$$

$$u_{\theta} = -U\sin(\theta) + \sum_{l=2}^{\infty} B_l \left[\frac{l-2}{2} \left(\frac{a}{r} \right)^l - \frac{l}{2} \left(\frac{a}{r} \right)^{l+2} \right] V_l \left(\cos(\theta) \right)$$

Matching the boundary condition gives the speed

$$U=rac{2m^D}{3a}c_1$$
 first Legendre coefficient $c|_{r=a+\delta}=\sum_{l=0}^{\infty}c_lP_lig(\cos(heta)ig)$

SOLUTE PROFILE



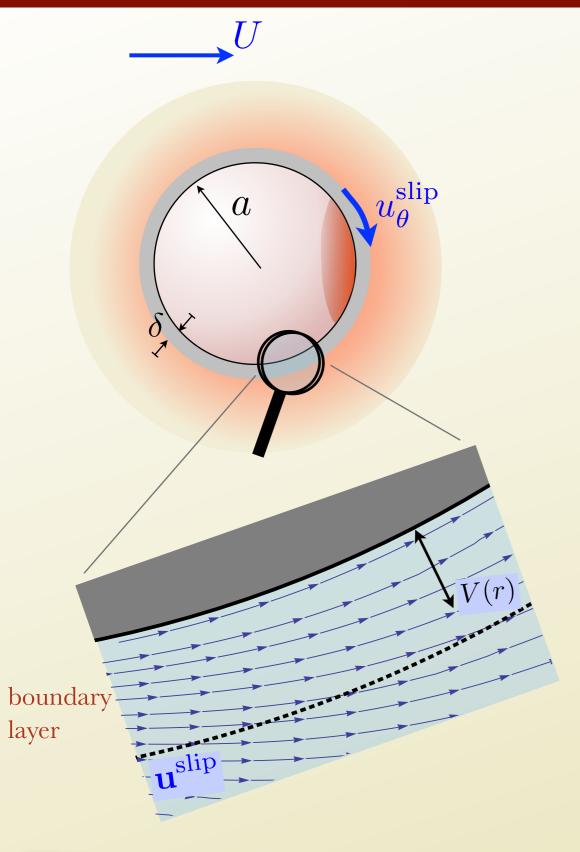
Outside the boundary layer the solute is conserved

$$\partial_t c + \mathbf{v} \cdot \nabla c - D \nabla^2 c = 0$$
 Pe $\ll 1$

Rate of transport across the boundary layer equals rate of production

$$\int_{r=a+\delta} (u^{\text{slip}}c - D\partial_r c) = \int_{r=a} \alpha$$
solve pointwise

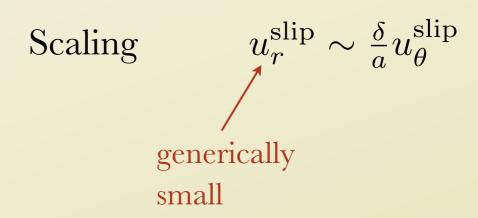
$$c(r,\theta) = \sum_{l=0}^{\infty} \frac{a+\delta}{(l+1)D} \alpha_l \left(\frac{a+\delta}{r}\right)^{l+1} P_l(\cos(\theta))$$

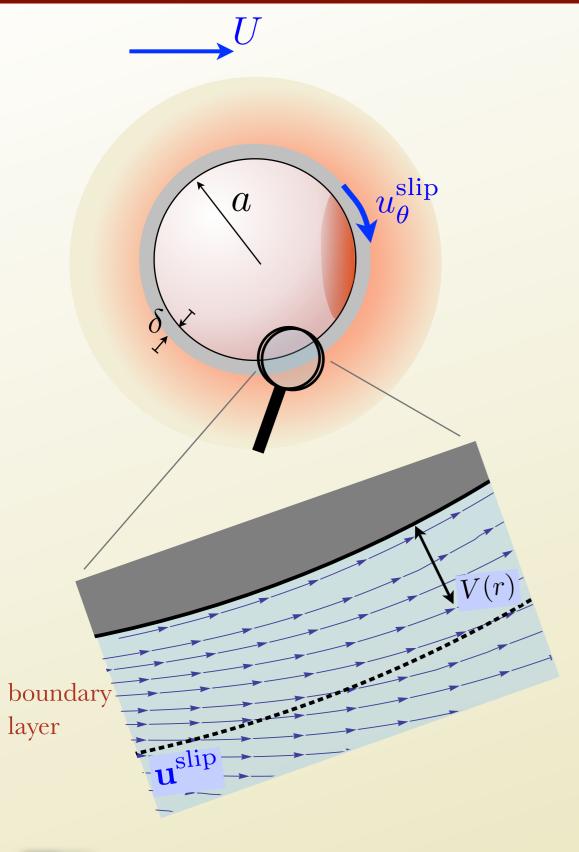


Boundary layer analysis neglects

fluid continuity; radial slip

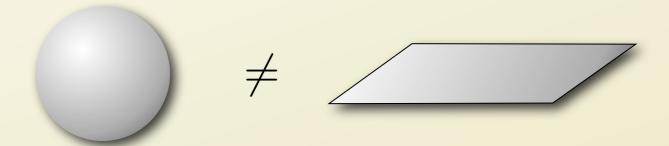
$$\frac{1}{r^2}\partial_r(r^2u_r) + \frac{1}{r\sin(\theta)}\partial_\theta(\sin(\theta)u_\theta) = 0$$
not constant

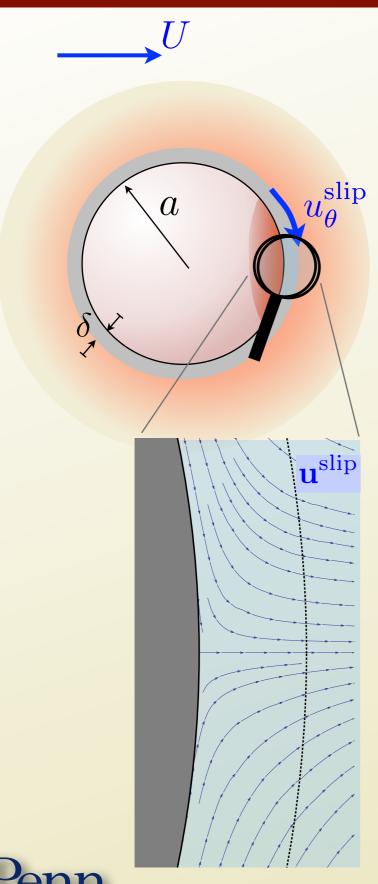




Boundary layer analysis neglects

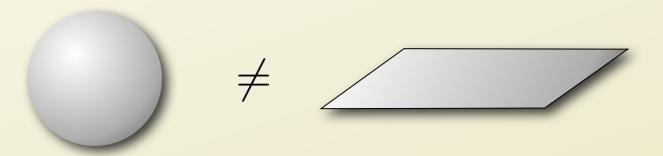
- fluid continuity; radial slip
- topology of the sphere





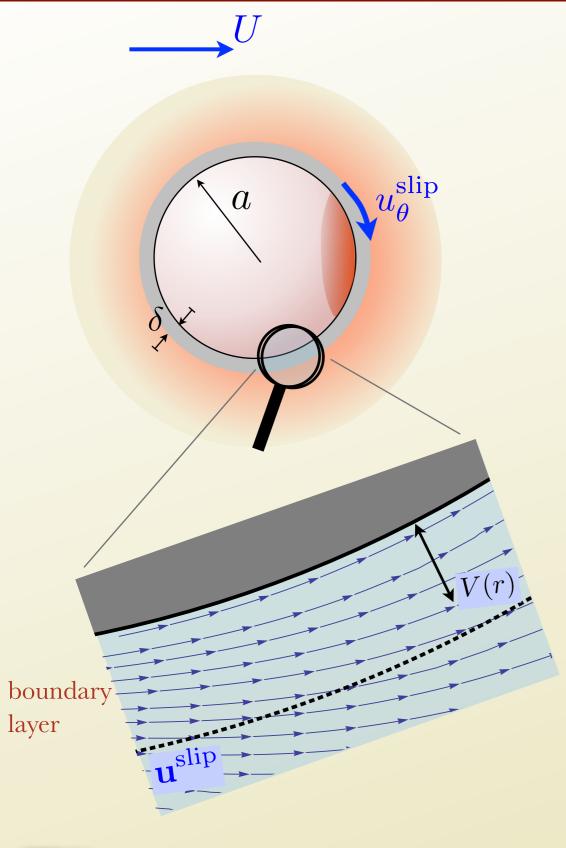
Boundary layer analysis neglects

- fluid continuity; radial slip
- topology of the sphere



Neglecting the radial slip is not a good approximation near $\theta = 0, \pi$

consequence of topology rather than axisymmetry (Poincaré-Hopf)



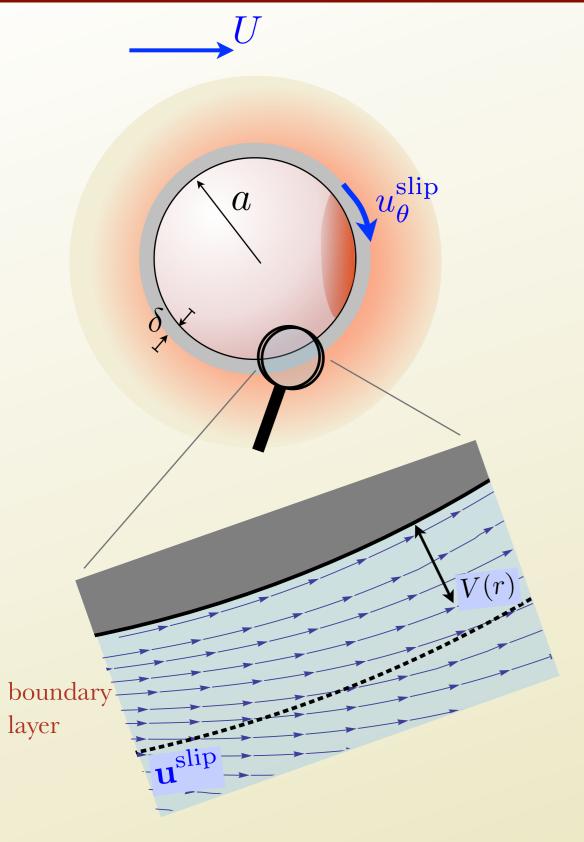
Boundary layer analysis neglects

- fluid continuity; radial slip $u_r^{\rm slip} \sim \frac{\delta}{a} u_{\theta}^{\rm slip}$
- topology of the sphere
 Poincaré-Hopf

Such a simple problem can be solved exactly

$$\mathbf{0} = -\nabla p + \mu \nabla^2 \mathbf{u} - \mathbf{e}_r \, c(r, \theta) \, \partial_r V \qquad 0 = \nabla \cdot \mathbf{u}$$

- Spherical particle
- Axisymmetry, steady state
- Single solute species
- Purely radial potential
- Zero Reynolds number
- Zero Péclet number



Boundary layer analysis neglects

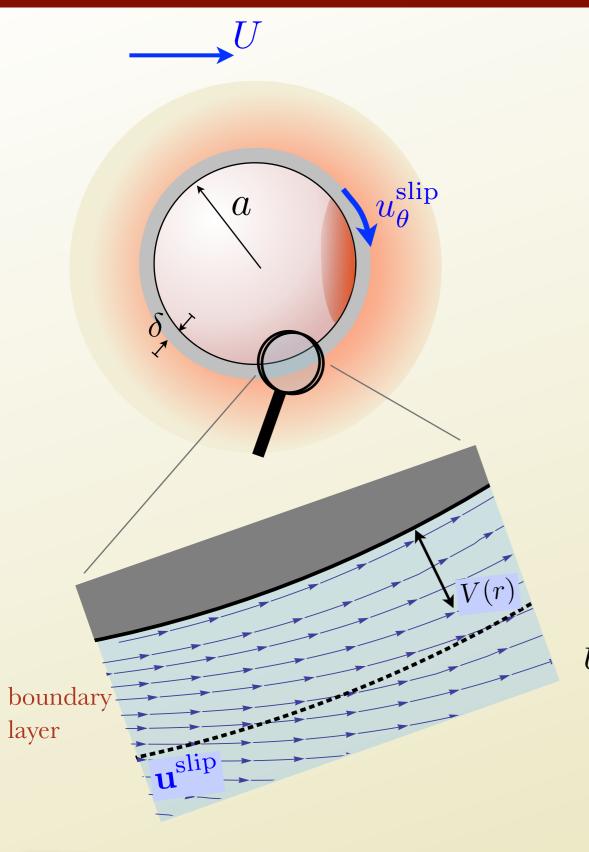
- fluid continuity; radial slip $u_r^{\rm slip} \sim \frac{\delta}{a} u_{\theta}^{\rm slip}$
- topology of the sphere
 Poincaré-Hopf

Such a simple problem can be solved exactly

$$\mathbf{0} = -\nabla p + \mu \nabla^2 \mathbf{u} - \mathbf{e}_r \, c(r, \theta) \, \partial_r V \qquad 0 = \nabla \cdot \mathbf{u}$$

E.g., the speed is

$$U = \frac{2}{3a} \frac{k_B T}{\mu} c_1 \delta^2 \int_0^1 dz \, z \left(1 - \frac{\delta}{6a} \frac{3z + 2\delta z^2 / a}{(1 + \delta z / a)^2} \right) \left[1 - e^{-V/k_B T} \right]$$
correction



Boundary layer analysis neglects

- fluid continuity; radial slip $u_r^{\rm slip} \sim \frac{\delta}{a} u_{\theta}^{\rm slip}$
- topology of the sphere
 Poincaré-Hopf

Such a simple problem can be solved exactly

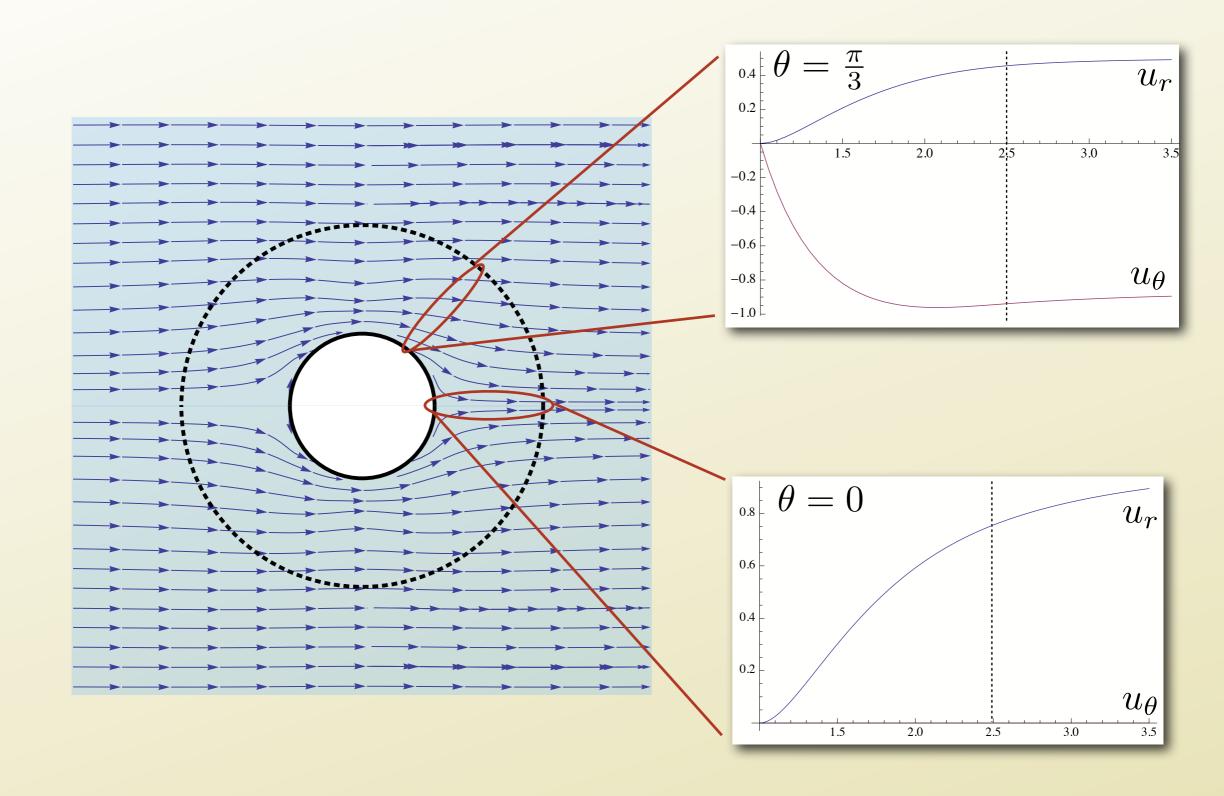
$$\mathbf{0} = -\nabla p + \mu \nabla^2 \mathbf{u} - \mathbf{e}_r \, c(r, \theta) \, \partial_r V \qquad 0 = \nabla \cdot \mathbf{u}$$

E.g., the speed is

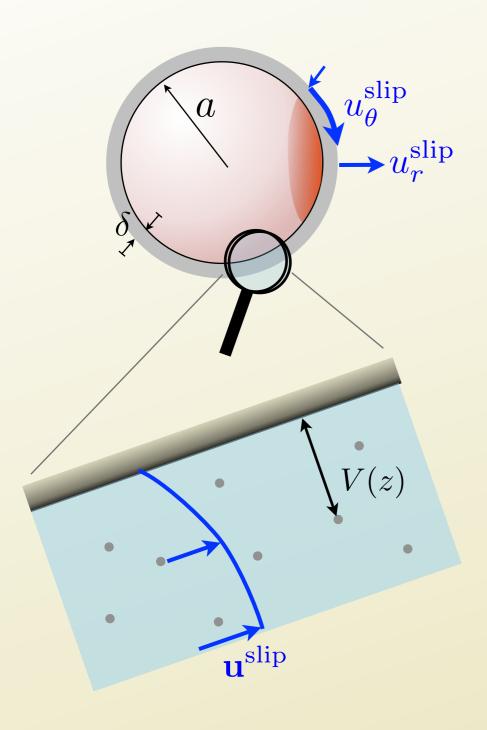
$$U = \frac{2}{3a} \frac{k_B T}{\mu} c_1 \delta^2 \int_0^1 dz \, z \left(1 - \frac{\delta}{6a} \frac{3z + 2\delta z^2 / a}{(1 + \delta z / a)^2} \right) \left[1 - e^{-V/k_B T} \right]$$

scaling
$$U \sim \frac{k_B T \alpha_1}{\mu D} \delta^2 \left(1 + \frac{\delta}{a}\right)$$

BOUNDARY LAYER FLOW



What changes if the Péclet number is large?

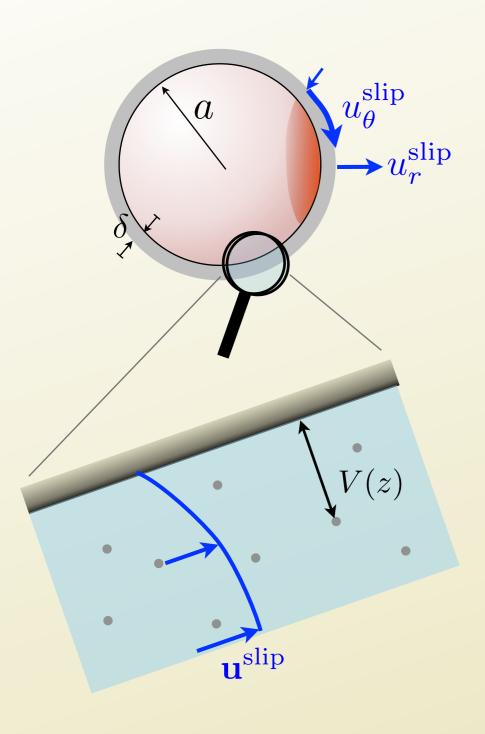


Basic mechanism remains unchanged

 concentration gradients drive tangential flow in a thin boundary layer

postulate
$$\mathbf{u}^{\mathrm{slip}} = m^A \nabla_{\parallel} c$$

What changes if the Péclet number is large?



Basic mechanism remains unchanged

 concentration gradients drive tangential flow in a thin boundary layer

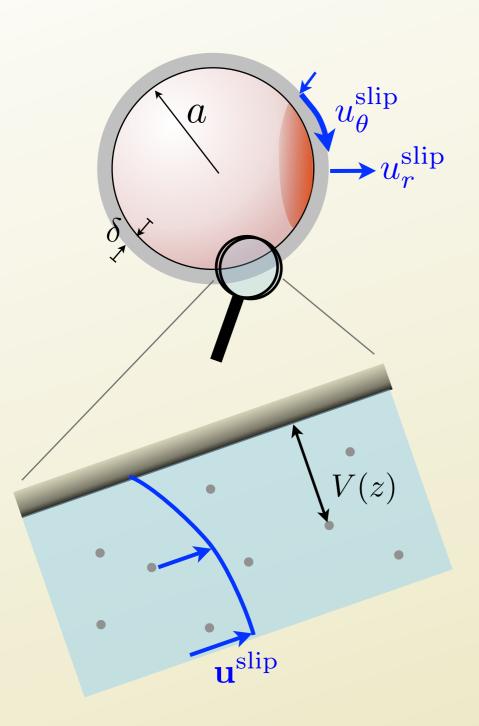
postulate
$$\mathbf{u}^{\mathrm{slip}} = m^A \nabla_{\parallel} c$$

But ...

- if the solute does not diffuse then it will only be found where it is produced
- tangential slip only generated within the active patch
- radial influx at the boundary and outflux from the interior

SOLUTE TRANSPORT

Outside the boundary layer the solute is conserved



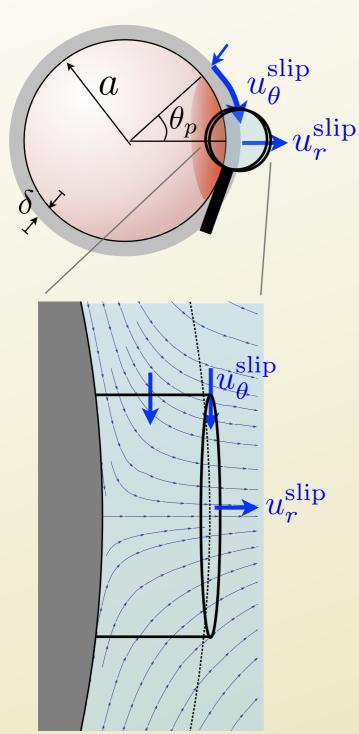
$$\partial_t c + \mathbf{u} \cdot \nabla c - D \nabla^2 c = 0$$
 Pe $\gg 1$

Rate of transport across the boundary layer equals rate of production

$$\int_{r=a+\delta} \left(u_r^{\text{slip}} c - D \partial_r c \right) = \int_{r=a} \alpha$$

radial slip is important

RADIAL SLIP



Radial outflux

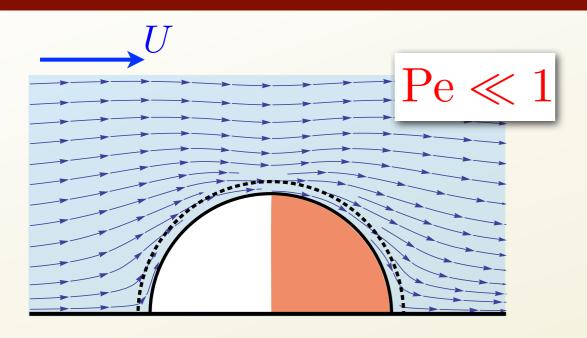
$$2\pi(a+\delta)^2 \int_0^{\theta_q} d\theta \sin(\theta) u_r^{\text{slip}}$$

Tangential influx

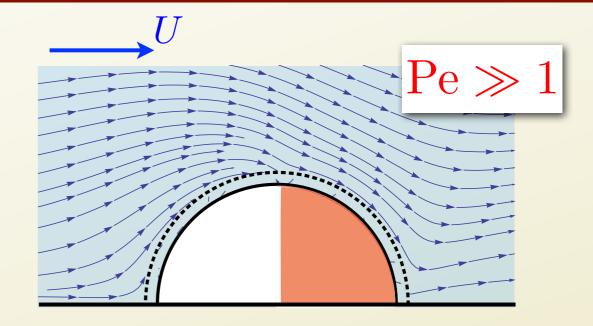
$$-2\pi \int_{a}^{a+\delta} dr \, r \sin(\theta) \, u_{\theta}(r,\theta)$$

$$\approx -2\pi a \delta \beta \, \sin(\theta) \, u_{\theta}^{\text{slip}}$$

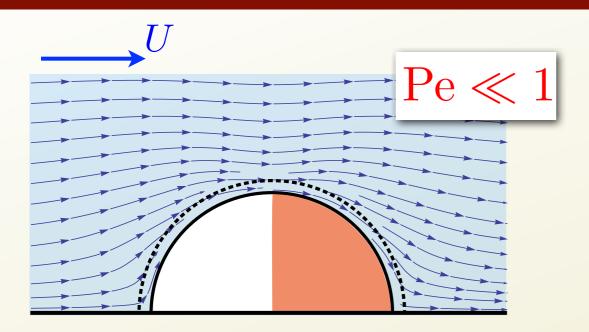
$$\cos(1) \qquad \cos(1) \qquad \cos($$



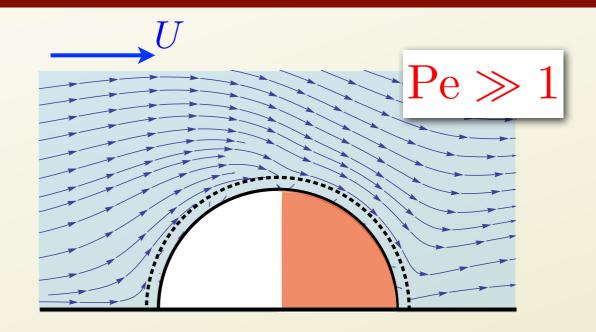
$$U \sim \frac{m^D \bar{\alpha}}{D} \sin^2(\theta_p)$$



$$U \sim \left(\frac{m^A \bar{\alpha}}{\delta \ln\left(\frac{a}{\delta}\right)}\right)^{1/2} \sin^3\left(\frac{1}{2}\theta_p\right)$$



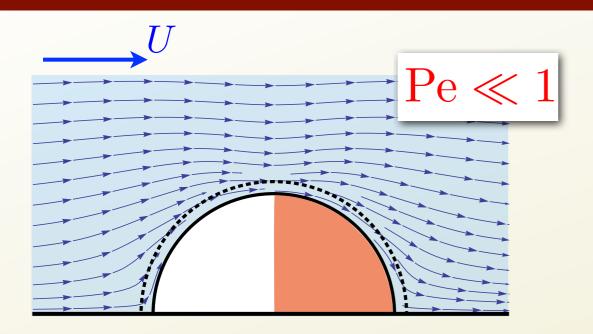
$$U \sim \frac{m^D \bar{\alpha}}{D} \sin^2(\theta_p)$$



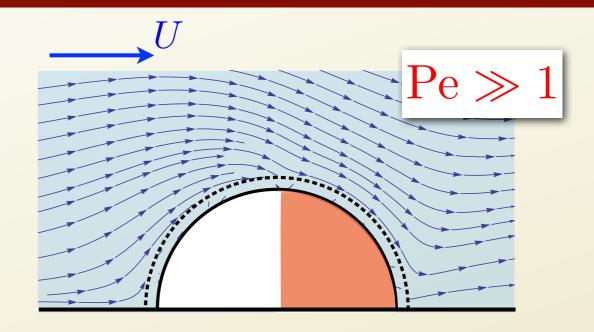
$$U \sim \left(\frac{m^A \bar{\alpha}}{\delta \ln(\frac{a}{\delta})}\right)^{1/2} \sin^3(\frac{1}{2}\theta_p)$$

Transport balance
$$\int_{r=a+\delta} \left(u_r^{\rm slip} c - D \partial_r c \right) = \int_{r=a} \alpha$$

$$\propto |u_\theta^{\rm slip}|$$

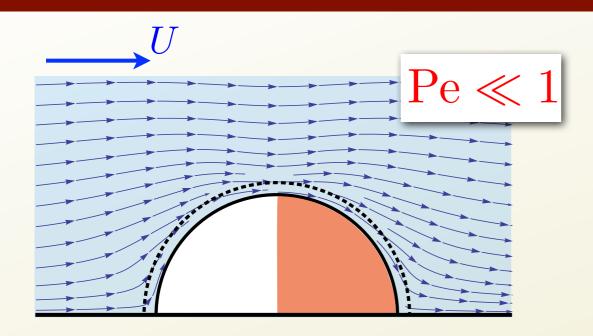


$$U \sim \frac{m^D \bar{\alpha}}{D} \sin^2(\theta_p)$$



$$U \sim \left(\frac{m^A \bar{\alpha}}{\delta \ln(\frac{a}{\delta})}\right)^{1/2} \sin^3(\frac{1}{2}\theta_p)$$

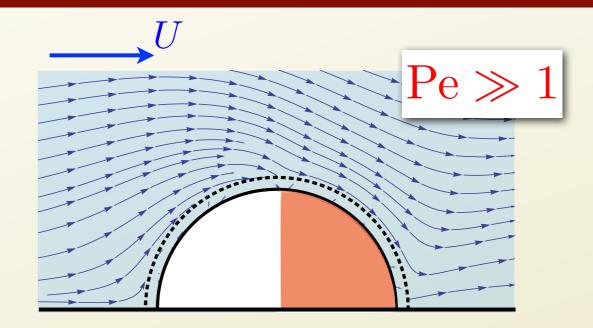
Transport balance $\int_{r=a+\delta} (u_r^{\rm slip} c - D\partial_r c) = \int_{r=a} \alpha$ $\propto |\sin(\theta) u_\theta^{\rm slip}| \qquad \propto |u_\theta^{\rm slip}|$ by postulate by fluid continuity



$$U \sim \frac{m^D \bar{\alpha}}{D} \sin^2(\theta_p)$$

$$U \sim \alpha_1 \sim \int_{\cos(\theta_p)}^1 ds \, s\bar{\alpha}$$
$$\sim \sin^2(\theta_p)$$

first Legendre coefficient of activity

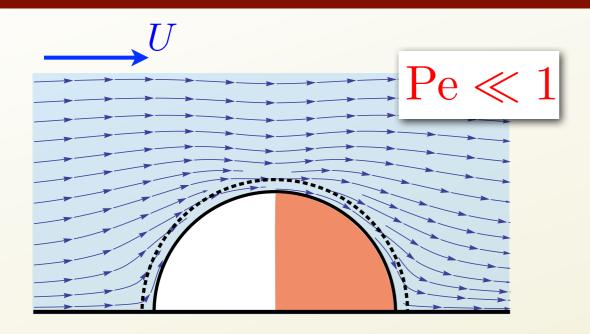


$$U \sim \left(\frac{m^A \bar{\alpha}}{\delta \ln\left(\frac{a}{\delta}\right)}\right)^{1/2} \sin^3\left(\frac{1}{2}\theta_p\right)$$

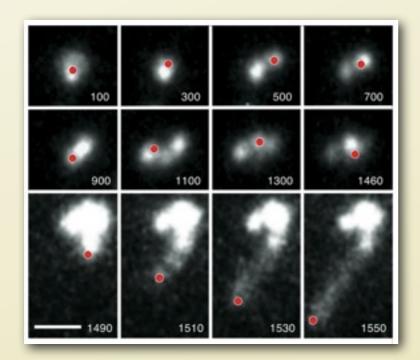
$$U \sim \int_0^{\theta_p} \mathrm{d}\theta \, \sin^2(\theta) u_\theta^{\mathrm{slip}}$$
 by Stone & Samuel $\sim \sin^2(\frac{1}{2}\theta_p)$

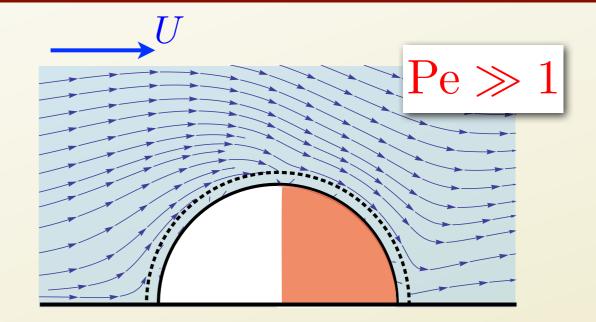
tangential flux is conserved

So, what's different?



$$U \sim \frac{m^D \bar{\alpha}}{D} \sin^2(\theta_p)$$



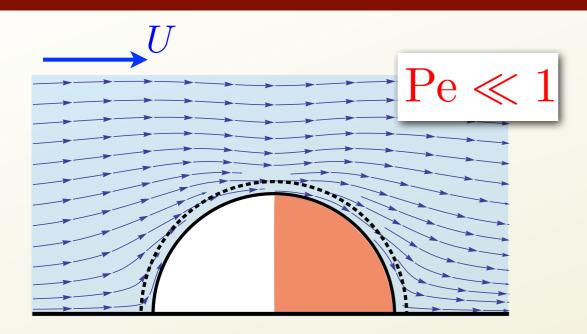


$$U \sim \left(\frac{m^A \bar{\alpha}}{\delta \ln\left(\frac{a}{\delta}\right)}\right)^{1/2} \sin^3\left(\frac{1}{2}\theta_p\right)$$

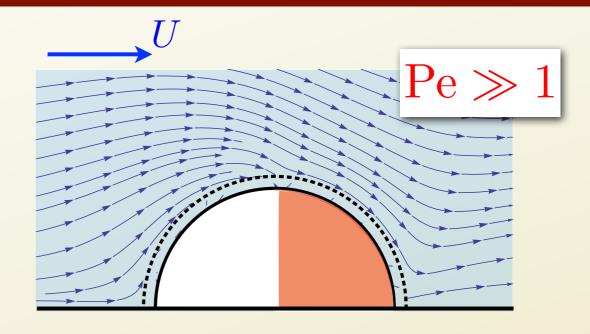
does not vanish for total coverage $\theta_p \to \pi$

- is state of total coverage unstable?
- if so, what is the critical Péclet number for the instability?

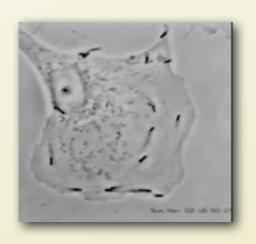
DIFFERENT SCENARIOS



$$U \sim \frac{m^D \bar{\alpha}}{D} \sin^2(\theta_p)$$



$$U \sim \left(\frac{m^A \bar{\alpha}}{\delta \ln\left(\frac{a}{\delta}\right)}\right)^{1/2} \sin^3\left(\frac{1}{2}\theta_p\right)$$



FOUR SCENARIOS

repulsive producer

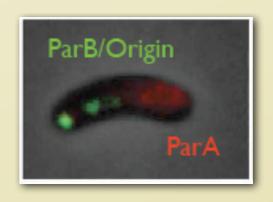
 $V > 0, \ \alpha > 0$ $V < 0, \ \alpha > 0$

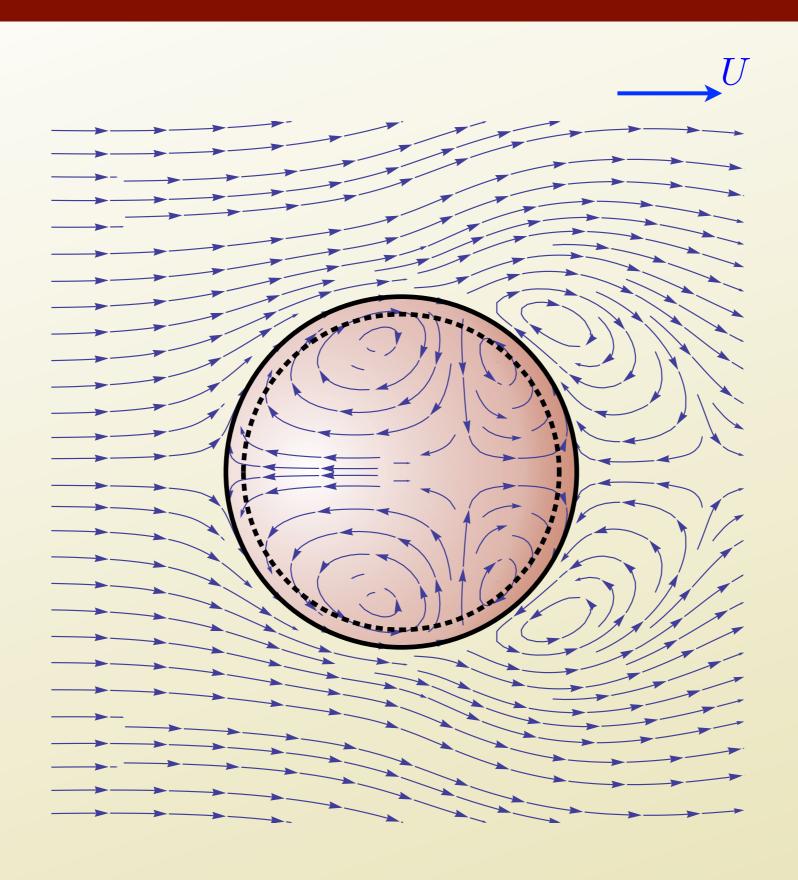
attractive producer

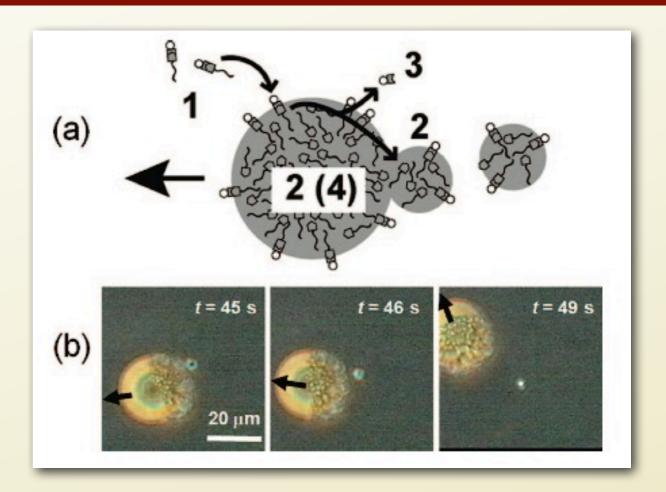
repulsive consumer

attractive consumer

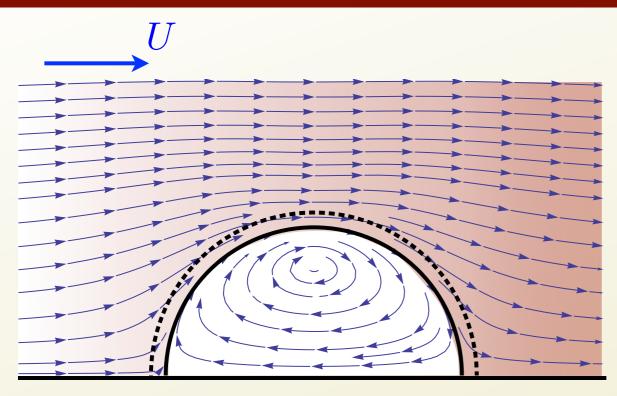
$$V > 0, \ \alpha < 0$$
 $V < 0, \ \alpha < 0$







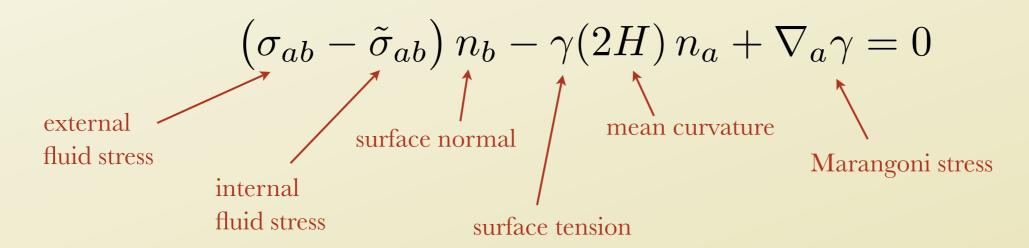
- Droplets containing a catalyst dispersed in a bulk fuel
- Fuel hydrolysed at the surface
- Waste product accumulates on the surface and is released at the rear
- Self-maintained surface tension gradients drive Marangoni flows

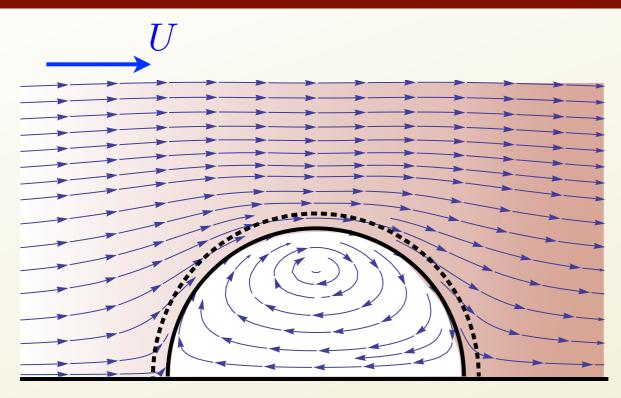


Rest frame of the particle

- Spherical particle
- Axisymmetry, steady state
- Single solute species
- Purely radial potential with compact support
- Zero Reynolds number
- Zero Péclet number

Stress balance at the interface





Rest frame of the particle

Solve as before; e.g., the speed is

- Axisymmetry, steady state
- Single solute species
- Purely radial potential with compact support
- Zero Reynolds number
- Zero Péclet number

$$U = \frac{k_B T}{3\mu} \frac{\mu + \tilde{\mu}}{\mu + \frac{3}{2}\tilde{\mu}} \frac{c_1 \delta^2}{a} \int_0^1 dz \left(\left(2 + \frac{\tilde{\mu}}{\mu + \tilde{\mu}} \right) z + \frac{\mu}{\mu + \tilde{\mu}} \frac{a}{\delta} - \frac{\delta}{2a} \frac{\tilde{\mu}}{\mu + \tilde{\mu}} \frac{3z^2 + 2\delta z^3/a}{(1 + \delta z/a)^2} \right) \left[1 - e^{-V/k_B T} \right]$$

$$\lim_{\tilde{\mu}} \frac{\mu}{\tilde{\mu}} \to 0$$
 (solid particle)

$$U \sim \frac{k_B T \alpha_1}{\mu D} \, \delta^2$$

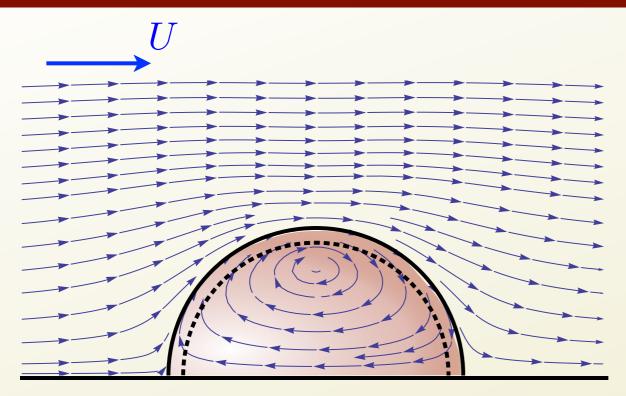
independent of particle size

$$U \sim \frac{k_B T \alpha_1}{\mu D} \, a\delta$$

$$\lim_{\mu} \frac{\tilde{\mu}}{\mu} \to 0$$
 (gas bubble)

proportional to particle radius

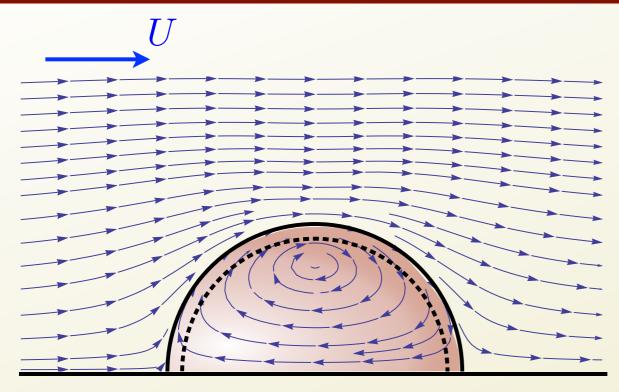
ACTIVITY ON THE INSIDE



Rest frame of the particle

- No need for a favourable environment
 take everything you need with you!
- "Clean" system; everything is internal
- Only interaction between droplets is hydrodynamic

ACTIVITY ON THE INSIDE



Rest frame of the particle

- No need for a favourable environment
 take everything you need with you!
- "Clean" system; everything is internal
- Only interaction between droplets is hydrodynamic

Solve as before; e.g., the speed is

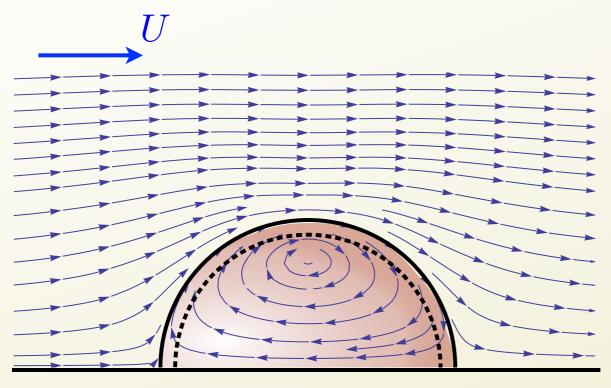
$$U = \frac{k_B T}{3\mu} \frac{\mu}{\mu + \frac{3}{2}\tilde{\mu}} \tilde{c}_1 \tilde{\delta} \int_0^1 dz \left(1 - 5\frac{\tilde{\delta}}{a}z + 6\left(\frac{\tilde{\delta}}{a}\right)^2 z^2 - 2\left(\frac{\tilde{\delta}}{a}\right)^3 z^3 \right) \left[1 - e^{-\tilde{V}/k_B T} \right]$$

Scaling

$$U \sim \frac{k_B T \alpha_1}{\mu D} \frac{\mu}{\mu + \frac{3}{2}\tilde{\mu}} a\tilde{\delta}$$

same as the "gas bubble"

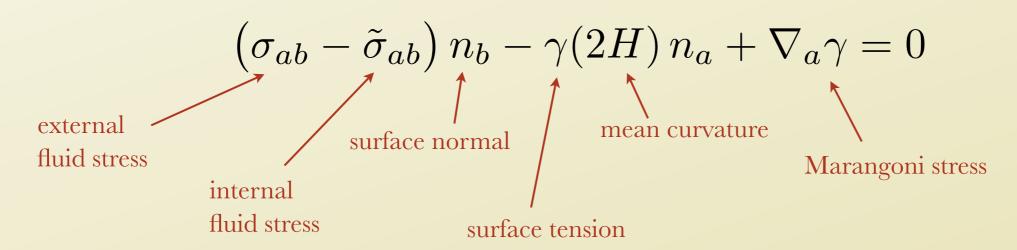
SURFACE TENSION GRADIENTS



Rest frame of the particle

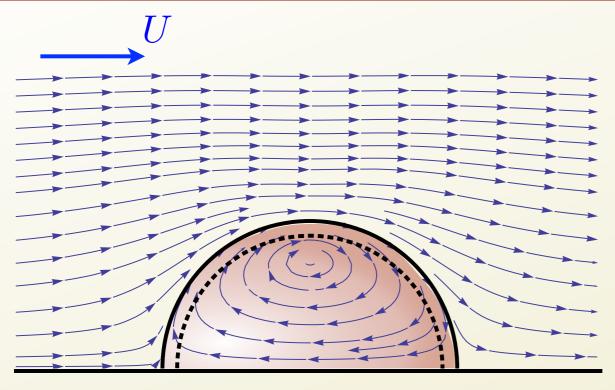
- Activity due to a surface active catalyst
- Surface adsorbed species lower the surface tension
- Chemical reaction near surface produces local heating; lowers surface tension
- Non-uniform surface tension drives Marangoni flows

Stress balance at the interface



LEVICH, KRYLOV Ann. Rev. Fluid Mech. 1, 293–316 (1969)

SURFACE TENSION GRADIENTS



Rest frame of the particle

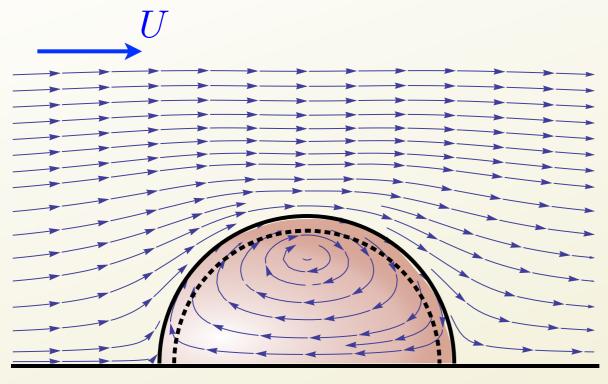
- Activity due to a surface active catalyst
- Surface adsorbed species lower the surface tension
- Chemical reaction near surface produces local heating; lowers surface tension
- Non-uniform surface tension drives Marangoni flows

Additional contribution to the speed

$$\frac{\mu + \tilde{\mu}}{3\mu(\mu + \frac{3}{2}\tilde{\mu})}\gamma_1$$

typically surface tension is **lowered** so that γ_1 is **negative** Marangoni flows then **oppose** self-diffusiophoresis

SURFACE TENSION GRADIENTS



Rest frame of the particle

- Activity due to a surface active catalyst
- Surface adsorbed species lower the surface tension
- Chemical reaction near surface produces local heating; lowers surface tension
- Non-uniform surface tension drives Marangoni flows

Additional contribution to the speed

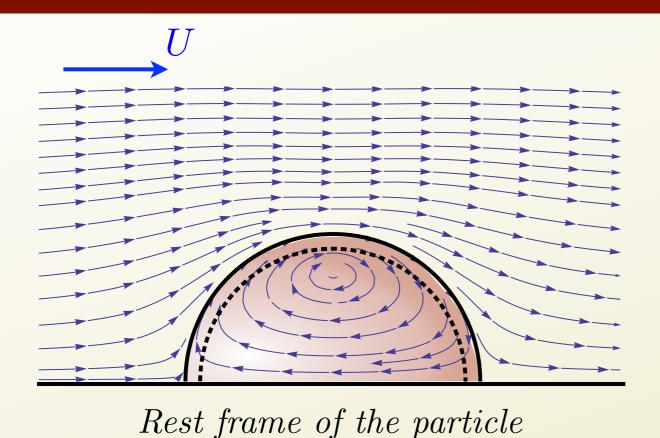
$$\frac{\mu + \tilde{\mu}}{3\mu\left(\mu + \frac{3}{2}\tilde{\mu}\right)}\gamma_1$$

ratio

$$\frac{\text{Marangoni}}{\text{diffusiophoresis}} \sim \frac{\mu + \tilde{\mu}}{\mu} \frac{D\gamma_1}{k_B T \alpha_1 a \delta}$$

can this be made small?

DROPLET DEFORMATION

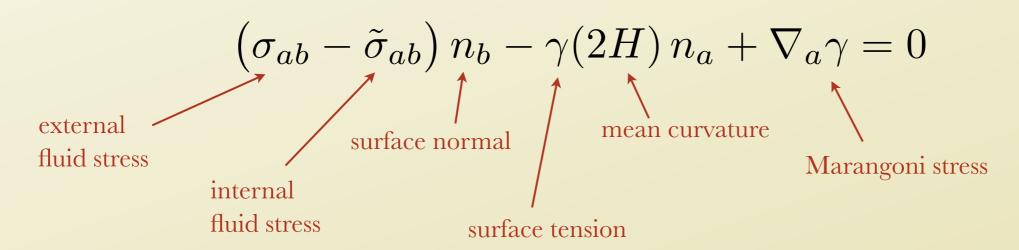


- Particle is a fluid droplet -- no reason why it won't deform
- Normal stress balance is really an equation for the drop shape

droplet remains
approximately
spherical provided

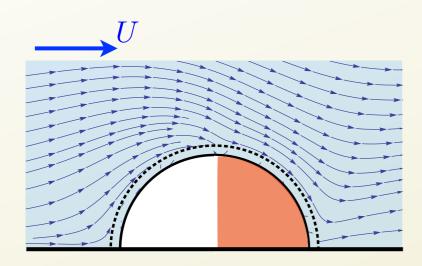
$$\frac{\mu U}{\gamma} \ll 1$$

Stress balance at the interface



THANKS!

Andrea Liu, Timon Idema



- High Péclet number relevant to biological motility
- Different scaling with activity, dependence on coverage and successful strategies

- Fluid drops can move due to internal motor
- "Clean" system
- Faster than a solid particle

ACKNOWLEDGEMENTS

We are grateful to Ed Banigan and Kun-Chun Lee for beneficial discussions and to Randy Kamien for his support and encouragement

FUNDING

