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Renormalization Group Improved Truncated Spectrum Approach
 (RGTSA) 

A combined numerical/analytical technique to study 
strongly correlated systems in 1 and 2 dimensions. 

This has been shown able to compute equilibrium 
quantities 

 - spectrum 
 - correlation functions/matrix elements 

in a number of cases 
 - perturbed minimal conformal models/sine-Gordon  

 - semi-conducting carbon nanotubes 
   RMK, PRL 106, 136805 (2011)   

RMK and Y. Adamov, PRL 98, 147205 (2007) 
G. Brandino, RMK, and G. Mussardo, J. Stat. Mech. T&E P07013 (2010) 

We now show that it can be used to study quantum 
quenches. 



Outline 

1)  Overview of the numerical renormalization 
     group (NRG) as applied to continuum field 
     theories 

2) Applying the NRG to study quenches in Z2 
    systems 
       - address the connection thermalization and integrability

 /non-integrability  (M. Rigol et al. Nature (2007)) 

3) Applying the NRG to study quenches in trapped  
    1D-Bose Gases 

   



Overview of Truncated Spectrum Approach
 (TSA) for One Dimensional Systems 

Basic idea is to study a known (i.e. integrable or conformal)  
continuum system together with some perturbation: 

Consider the model on a finite sized ring of 
circumference, R 

Spectrum of Hknown then becomes  
discrete: 

H = Hknown + Φ perturbation
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R�
i.e. critical quantum Ising           magnetic field 



Input of strongly correlated information
 in the form of matrix elements:  � Φij = i Φ perturbation j

Truncate Hilbert space, making it finite dimensional. 
This allows one to write full Hamiltonian as a finite 
dimensional matrix 

E1 Φ12 Φ1n

Φ21 E2

En−1 Φn−1n

Φn1 Φnn−1 E n

H  =�

Diagonalize H numerically and extract spectrum�
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Example of the TSA: Quantum Critical Ising Chain in a
 Magnetic Field 

H = −J σ i
zσ i+1

z + σ i
x − h σ i

z

i
∑

i
∑Hamiltonian:�

Δ2/Δ1 1.61 ± .01 2 cos(π/5) = 1.618...
Δ3/Δ1 1.98 ± .02 2 cos(π/30) = 1.989...
Δ4/Δ1 2.43 ± .04 4 cos(π/5)cos(7π/30) = 2.405...
Δ5/Δ1 3.03 ± .07 4 cos(π/5)cos(2π/15) = 2.956...

               TSA      Exact (infinite volume) 

Equivalent Exact Diagonalization Computation                  Chain with only five sites 

Φpert�Hknown�

⇓
H = dx(ψ∂xψ +ψ∂xψ − hσ∫ )

Hknown� Φpert�

continuum limit 
Model is exactly solvable 
(A. Zamolodchikov) and  
has a spectrum with 8 
excitations�

TSA Results keeping 39 states�

Ratios of 
spectral 
gaps�

Yurov and  
Zamolodchikov, 
1991 



 Why does this work so well? 

Two reasons:  1) Finite size errors are exponentially 
          suppressed 
      2) Perturbation is highly relevant and Hilbert 
          space is relatively simple 

But there are problems: 

1)  With less relevant perturbations or more complicated 
Hilbert spaces (i.e. 1D atomic Bose gases) convergence of  
spectrum is slower 

2) Matrix elements generically see slower convergence 



Using a Numerical Renormalization Group to Improve Results 

The TSA as is only can treat 
simple theories 

Convergence issues 
surrounding truncation 

However we have handled  
truncation in the crudest possible  
fashion: there is at least one way 
to improve on this  

Numerical Renormalization Group 
(in the same spirit K. Wilson 
used it to study the Kondo problem) 

NRG Recipe: 
     1) Take first N+Δ states of the theory 

     2) Compute the Hamiltonian and 
         numerically diagonalize  
     3) Form a new basis of states using first N  
         eigenstates (in red) plus next Δ states in original basis 
     4) Recompute Hamiltonian and numerically diagonalize 
     5) Repeat 

N N+Δ N+2Δ 

RMK and Y. Adamov, PRL 98, 147205 (2007) 
G. Brandino, RMK, and G. Mussardo, J. Stat. Mech. T&E P07013 (2010) 

N N+Δ N+2Δ 

N N+Δ N+2Δ 
E 



How NRG works in quenches 

Take prequench state, typically an eigenstate of a prequench  
Hamiltonian and express in the Hilbert space of Hknown: 

Because post-quench states are also expressed in terms of 
states of Hknown, 

G. Brandino, RMK, and G. Mussardo, J. Stat. Mech. T&E P07013 (2010 

we can expand one in terms of the other.  As part of this we 
need, however, to accurately determine the post-quench  
spectrum over a wide range of energies.  We can do so 
using a sweeping procedure (akin to the finite vol. DMRG  
algorithm). 



Quenches in Systems with Z2 Symmetries 

We will show that there for certain types of quenches, thermalization  
happens or does not happen independent of the underlying 
integrability/non-integrability of the model. 

In our case this arises because of how the Z2 symmetry determines  
the Hilbert space of the model. 

Number of examples  
of this general type 
of phenomena: 

C. Gogolin, M. Mueller, J. Eisert, Phys. Rev. Lett. 106, 040401 (2011) 
M. Banuls, J. Cirac, M. Hastings, Phys. Rev. Lett. 106, 050405 (2011) 
C. Kollath, A. M. Lauchli, E. Altman, Phys. Rev. Lett. 98, 180601 (2007) 

There has been considerable work on quenches in Ising systems: 
D. Fioretto, G. Mussardo, New J. Phys. 12, 055015 (2010) 
D. Rossini, S. Suzuki, G. Mussardo, G. Santoro, A. Silva, PRB 82, 144302 (2010) 
D. Rossini, A. Silva, G. Mussardo, G. Santoro, PRL 102, 127204 (2009) 
P. Calabrese and J. Cardy, PRL 96, 136801 (2006) 
P. Calabrese, F.H.L. Essler, M. Fagotti, arXiv: 1104.0154 



Hilbert Space in Ordered and Disordered Phase 

The Hilbert space of a Z2 model always has two 
sectors: 

            Sector even under Z2  
            Sector odd under Z2 

There are also ‘spin’ operators in the theory that  
connect the two sectors. 

Ordered Phase  
(with spontaneously broken symmetry): Two sectors  

          are degenerate 

Disordered Phase: Even and odd sectors are 
      not degenerate 



Example: Quantum Ising Hilbert Space 

Here the two sectors are known as the Ramond and Neveu-Schwarz: 

even

odd 

in ordered phase sectors have states with the same number of particles 

in disordered phase sectors have states with the differing number of particles 

only non-zero matrix elements connecting the sectors 

free fermionic modes 

Hamiltonian: 



Example: Tri-critical Ising Hilbert Space 

Hamiltonian: 

identity plus three non-trivial even (energy-like) operators:
   

two odd (spin-like) operators: 

In the scaling limit this model has a richer set of  
operators than Ising: 

Correspondingly there are a richer set of integrable and 
non-integrable perturbations of the critical theory. 

The even and odd sectors of the Hilbert space track the 
operators (there is a sector per operator).   

The two spin operators connect the even and odd parts. 

Si are spin-1 
operators 



Ordered Phase to Disordered Phase Quench with Z2 Preserved 

Typical pre-quench state (with spontaneous symmetry breaking): 

Post-quench this state becomes: 

Long time evolution post-quench: 

This thermalization happens independent of integrability: 

two different energy 
perturbations of 
tri-critical Ising 



Disordered Phase to Ordered Phase Quench with Z2 Preserved 

Typical pre-quench state: 

Post-quench expansion:  

Expectation value of spin operator is zero (so state 
does not thermalize) regardless of integrability/non
-integrability of theory:  



Quench with Z2 Broken 

We consider an action where the  
spin operator is a perturbation: 

Pre-quench state: 

Post quench expansion of pre-quench state 
under quench h     -h: 

dominant  
contributions: 

This will lead to broad or bi-modal distributions of pre-quench states in terms of  
the post-quench ones, and so a general lack of thermalization (independent of the
 integrability/non-integrability of the theory). 



Example: Tri-critical Ising (quench h         -h) 

model is non-integrable 

� : microcanonical 
     ensemble 
�: diagonal 
     ensemble 

post-quench energy of pre-quench state post-quench energy of pre-quench state 

distribution of non-thermalizing states over post-quench basis:  



Quenches of 1D Bose Gases in Traps 

The Lieb-Liniger model with a one-body potential: 

we will work at unit 
density and so γ=c; 
         m=1/2 

Motivation: T. Kinoshita, T. Wenger, and D. Weiss, Nature 440, 900 (2006) 
      M. Rigol, V. Dunjko, V. Yurovsky, and M. Olshanii, PRL 98, 050405 (2007) 

NRG on a non-relativistic system with an N-particle ground state is 
much more difficult numerically.  The operational size of the Hilbert 
space is much larger.  We thus equipped the NRG with a “variational 
metric” to allow it to better find it’s way in this Hilbert space. 

Matrix elements are handled with the algebraic Bethe ansatz (ABACUS). 

Type of quench we will consider here: 

Hknown Φpert 



Benchmarking Equilibrium Properties of Bose Gas in Trap 

ground state and excited state 
energies can be accurately 
predicted 

as can density profile in trap 



Time Evolution of Gas after Release of Trap 
N=L=56, ω/m=0.32 

c = 7200 c = 1 

Next task: Determine momentum distribution function and 
compare against thermal counterpart 

After that: 



Conclusions 

The NRG can be used to study quenches in a variety of systems. 

Quenches in Z2 symmetric systems: 

For models with a Z2 symmetry, you can use the symmetry to  
classify a set of quenches that thermalize/do not thermalize,  
independent of the model’s underlying integrability or lack thereof. 

Quenches in Trapped 1D Bose Gases: 

We can handle equilibrium properties – quench dynamics to  
follow shortly. 

Interested in particular in studying 
exciton dynamics in nanotubes 
functionalized with quantum dots. 


