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Mobile impurity = itinerant ferromagnet

Mobile impurity
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Excitations in one-dimensional itinerant ferromagnets

Take bosons or fermions in 1D carrying spin (1/2 for simplicity)

Consider ferromagnetic state (which is not necessarily ground state)

Excitations: longitudinal spin waves (linear dispersion = plasmons)
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Excitations: transverse spin waves (quadratic dispersion = magnons)
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O interacting bosons/fermions: Bethe-Ansatz solvable

N
(iso)spin 1/2 bosons/fermions, H = Z p + Z U(z; — x;)
spin-independent interaction: j=1 i<j

Uz) = U(z) + ad(x)

Bethe-Ansatz solvable when U(gg) — (0 Yang - Gaudin model

- Wave functions, spectrum C. N. Yang, PRL19, 1312 (1967):
and thermodynamics are known M. Gaudin, Phys. Lett. 24, 55 (1967)
. . . mo — _
Dimensionless coupling: |y = hT Y 19/ N
0.6 / N\
p/% \\\
Dispersion of spinless boson gas: “wo4r [/
w_(k)y=vk  k—0 1 - w_(k)|
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Dispersion of bosons with spin;: —
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Effective mass in the Yang-Gaudin model

Bogoliubov limit 1(¢ ~ This plot is for
(bosons)/ 08k fermionic |
no name ' Yang-Gaudin
(fermions) £ %°7 model
04 |
J. B. McGuire,
ﬂ i J. Math. PhysB, 432 (1965)
0r .
This plot is for 103 10t 10 10° Tonks-Girardeau
. limit
bosonic Yang- Y

Gaudin model J.N. Fuchs et. al., PR35, 150402 (2005)

Tonks-Girardeau (TG) limit: short-range potential Yy — OO

3
Effective mass diverges in the TG limit: m, = m—7 Y — 00

272’
(it costs no energy to flip a spin wheny = 00)



Limit of infinite repulsion (TG): logarithmic diffusion

Gj_(mat) = (M |3-|—($at)3—(07 O)| ™ Spin flip = change particle color
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Infinite repulsion: spin-down (red) particle cannot exchange the
position with its neighbors

G ( “logarithmic

Results: diffusion”

~ ! exp § — L_(mpo)
T, t) ~ N p{ K 21n(t/tF)}

asz,t o0 orzx=0, t — o

B2 ) Luttinger parameter K ~ 1
Here g = h/EF, EF = —(ﬂ'p) _
2m Ulz) =0 K=1

M. B. Zvonarev, V. V. Cheianov, T. Giamarchi, PBY, 240404 (2007)



How to get logarithmic diffusion: bosonization reminder

Consider equation of motion for the 1D fluid: ﬁfgb — ’UQQ%,gb =0

¢(x) gives deviation of the particle density p(x) from average value, p

p@) = p—~0ud(2)

Quantization: #(x) such that [0,.0(x), ¢(y)] = —imd(x — y) leads us to
v

Hx) = L K(0,0)% +

9 K(afc(é)z :

Luttinger parameter 0
J p K == K = vk, /i=<—'0>
Compressibility (5 L

Boson creation operator: | 4f(z) ~ \/p e~ ()




Solution: from spinful problem to spinless

Word lines of the 1 (a)
particles (path integral P

formalism):

Solid curves: spin up T

come from (ft|---| M)

Dashed curve: spin down
comes from sy (z,t)s—(0,0)

Yes

X

>

B

A

(b)
/ gio

Solid and dashed curves should not cross each other! — the only effect of spin

GJ-(xvt) — <5[N(£L‘,t)]p(33,t)p(0,0)>

i

S(N(z,7)) = / A\ AN (@.7)

Operator N (z,7) counts the number of crossings!

Solid lines do not disappear == continuity equation: Ozjz + Orjr =0

N(z,7) =

(o) 1
| oo drda—jedr = pr—=[6(z,7)~¢(0,0)]

(0,0)



Estimate for the escape time
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The “red” particle is trapped between impenetrable neighbors

Estimate for the escape time can be obtained from the Kronig-Penney model:

by ~ YIF, lr = h/EF, v>1

What happens when ¢ > t, ?

“Red” and “blue” particles can exchange positions:

—00© 000 0© Q{‘ © ©¢©




Green’s function for strong but finite repulsion

t ith 17 1/? imex?
e 1) ~ In { —
J_(CC,- ) [ﬁ 1 (t}?) ™ Qq’n*] exP { 2th — 41cemy lﬂ(t/tp) }

o = K my = m3—72, Yy — OO
2(mp)? 2m
‘Trapped’ regime: tp € t < t, ‘Open’ regime: t > t,
2

We recover limiting case
J C2KV? t/ty m

Lt
( ) mp 1Ilt/tF TNy

Y =00 = My =X

1 IM AT
1 _(mpz)® GH(z,t) ~ — { * }
In(t/tr) eXp{ K21n(t/tF)} Ji(x ) Vi P Tatn

Green’s function of the free particle
M. B. Zvonarev, V. V. Cheianov, T. Giamarchi, PB®, 240404 (2007)

GJ_(CU,t) ~




Dynamics of spin excitations at finite interaction strength

Intensity plot of Re G | (x, t) in the ,t plane at ¥ = 100
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Universal dynamics & edge singularity
INn the momentum space



Excitation spectrum of the 1D non-interacting Fermi gas

Single particle dispersion
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Single particle-hole pair spectrum
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Multiple particle-hole pair spectrum
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> Has a gap at
. finite momentum

Figure 1. (@) Single-particle spectrum of the free Fermi gas in 1D; () Particle~hole pair
spectrum; {c) full zero-charge (multiple particle~hole) excitation spectrum {energy differ-
ences E(n) = 2rmvpn’/L of extremal states at k = 2nkr greatly exaggerated).



Excitation spectrum of the 1D interacting Fermi gas

Like in the non-interacting case, has a gap at all finite momenta:
(except for multiple integers of 2kr )

Proved by perturbation theory, numerics, exactly solvable models

=> Threshold energy ,_(q) = miny Ey(q)

v enumerates all the states with total momentum @q

No excitations below w_

Multiple particle-hole pair spectrum
E

L
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Spectral functions: definition & non-interacting case

Dynamic structure factor: gives absorption rate of a photon with

Energy
Eﬁw) =" (v, q|n}|os)|?6(w — Ev(q))
Momentum v

@=§%wﬂ

No interaction = Photon creates single particle-hole pair:
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\S(g, w)
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Spectral functions: effects of the interaction

Interaction => Multiple particle-hole pairs can be excited

=> Some spread of structure functions is expected

£2S(q,w) S(q,w) 7
Interaction
=>
w : w
> A >
Ww—_ W /w_ W
Threshold remains

High momentum tail spreads



Spectral functions: threshold singularities
Old!

Looking for the universal properties = Looking at low energies

New!
<— Look at the behavior near the edge of the spectrum
S(Q7w) /
l Zoom in
"""""" S(q,w) S(q,w)
Or
. \w w w
W “t wW— w_

Universal behavior:

= ~ - _w )AW@
Power law singularity: ﬂq,w)_c(q)e(w w-—)(w —w-)

Momentum is arbitrary 1! The result of the last 4Tvear’s activity of
many! people (see Imambekov's talk)




Back to real space: get G (z,t) from S(q, w)

Fourier transform:  G/(x,t) = /dqei‘i’m/dw e S (q,w)

We know S(q,w) ~ ¢(q)0(w — w—)(w — w_)A(Q) near threshold

= we know S(q,w)as ¢,w — 0

Using symmetry S(g¢, w) = S(—¢,w)we expand A(q) and W_— (q) atq — 0

2
Alg) =-14+ag" +--- Logarithmic diffusion for m/m., < 1

=>
w_(q):q2/2m*_|_... 2?72 o for m/my >~ 1
r,t — o0

How Luttinger physics can appearas ¢ — 0 ?

B Luttinger

A(q) = —1+alq| + -+ = Gl 1) ~ 1 form of the
w_(q) = vslg| + - (@2 —ePP)r Green's
Tyt — 00 function!



Do we have experiments/numerics for

Momentum space =  S(q,w)

Real space => G (x,t)



Experiment/numerics in momentum space

<s” s">(k,0)ath =0[J]

1.24e+02
5.24¢+01
2.21e+01
19.32e+00
13.93¢+00

11.66¢+00
0 /2 T 3In/2 2n

6.99e—01

2.95¢-01

124¢-01
/ k[a]

“Typical” numerical plot of the structure factor (this one is for the
Heisenberg magnet).




More numerics in momentum space

LY N Y
\ 7/ \ 7/
“y \/ g

/
b 2 2m 0

q@’) / - q@")

Some structure factors for the spin ladder

Pierre Bouillotet. al., Phys. Rev. B3, 054407 (2011)



S(g,w) =) v, q|n2|gs)|25(w — Eu(q)) Example of numerics
1 4

2 2
|<fg=kpr2 M> |<fg=kp2l T>|
0.30F 0.1
0.25F .
0.01F ‘on |
0.20F .t
0.15F . 0.001k
0.10F
10—4 L
0.05F

0.00 o1 Sl i

: E/Er 1073

Spectral weight (q=k/2)
Spectral weight (q=kr/2)

1.5¢
1.0+

0.5F

s 4 3 E/EF

. . . 0.0
i 2 3 4 5 E/Er

How to extract exponents from numerics of such precision - see
Imambekov's talk)



There Is no "no go" theorem but!
To resolve the exponents of the edge singularitglof
em

the structure functions is a difficult and open pro
for both numerics and "solid state" experiment

May be experiments in cold gases could do it better?



Are so far done with the impurity subjected to the
external (gravity) force

driven motion problem
In the real space

Why should we always stick to the momentum space?



Atomic density [arb. units]

First (cold gases) experiment

Stefan Palzer, Christoph Zipkes, Carlo Sias, anchikt Kohl, PRL 103, 150601 (2009)
Quantum Transport through a Tonks-Girardeau Gas

Quantum impurity is driven by the gravity force
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FIG. 2 (color online). [In situ measure-
ment of the time evolution of both the
trapped component (upper curve) and the
impurity (lower curve) for different
times 7. The data are taken for y = 7.
The solid line is a two-point average of
o\ the data to guide the eye.
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FIG. 3 (color online). The circles show the measured center-
of-mass position taken for y = 7. The error bars are the statis-
tical error of the center of mass of the measured density distri-
bution. The solid line is the prediction according to the model
described in the text. The gray shaded area indicates the regime
of uncertainty of 10% of np given by our experimental parame-
ters. The dashed curve indicates purely ballistic motion. The
squares show the increase of the width of the impurity wave
packet. The data point at 2 ms contains atoms which have
already left the trapped gas which is not taken into account by
the theory.



Atomic density [arb. units]

Detalls of the experiment
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FIG. 2 (color online). [n situ measure-
ment of the time evolution of both the
trapped component (upper curve) and the
impurity (lower curve) for different
times 7. The data are taken for y = 7.
The solid line is a two-point average of
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Red: impurity; blue: host particles
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Red: host centre mass;
blue: impurity centre mass

dashed line: free falling particle
vy =7 = m/m.>~045

Looks like particle falling with effective

mass, m
4= —
TI 4

Finale velocity is more than
2 x sound velocity



Do we have a theory for such a problem?

VOLUME 87. NUMBER 10 PHYSICAL REVIEW LETTERS 3 SEPTEMBER 2001

Superfluidity versus Bloch Oscillations in Confined Atomic Gases

H.P. Biichler.! V.B. Geshkenbein.!* and G. Blatter!

YTheoretische Physik, ETH-Honggerberg, CH-8093 Ziirich, Switzerland
2Landau Institute for Theoretical Physics, 117940 Moscow, Russia
(Received 22 December 2000; published 20 August 2001)

PHYSICAL REVIEW A 70. 013608 (2004)

Motion of a heavy impurity through a Bose-Einstein condensate

G. E. Astrakharchik™ and L. P. Pitaevskii'*
lDrpm?ﬁmemo di Fisica, Universita di Trento and Istituto Nazionale per la Fisica della Materia, I-38050 Povo, Trento, Italy
*Institute of Spectroscopy, 142190 Troitsk, Moscow Region, Russia
3Knpfr:a Institute for Phvsical Problems, 119334 Moscow, Russia
(Received 29 March 2004: published 20 July 2004: corrected 26 August 2004)

week ending

PRL 103, 085302 (2009) PHYSICAL REVIEW LETTERS 21 AUGUST 2009

Drag Force on an Impurity below the Superfluid Critical Velocity
in a Quasi-One-Dimensional Bose-Einstein Condensate

Andrew G. Sykes,' Matthew J. Davis,' and David C. Roberts”
'"The University of Queensland, School of Mathematics and Physics, ARC Centre of Excellence for Quantum-Atom Optics,
Brisbane 4072, Australia

*Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 3 April 2009: revised manuscript received 15 July 2009: published 18 August 2009)



The above cited papers are about the impurity of
Infinite mass moving with constant velocity




What do we know about the finite mass impurity
under the external force?

week ending

PRL 102, 070402 (2009) PHYSICAL REVIEW LETTERS 20 FEBRUARY 2009

Bloch Oscillations in a One-Dimensional Spinor Gas

D. M. Gangardt"* and A. Kamenev?

'School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
2School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
(Received 21 November 2008: revised manuscript received 19 January 2009: published 18 February 2009)

A force applied to a spin-flipped particle in a one-dimensional spinor gas may lead to Bloch oscillations
of the particle’s position and velocity. The existence of Bloch oscillations crucially depends on the viscous
friction force exerted by the rest of the gas on the spin excitation. We evaluate the [riction in terms of the
quantum fluid parameters. In particular, we show that the friction is absent for integrable cases, such as an
SU(2) symmetric gas of bosons or fermions. For small deviations from the exact integrability the friction
is very weak, opening the possibility to observe Bloch oscillations.

The above paper further develops the ideas of some previous works



This paper is about effective hydrodynamic theory
Suggested equation of motion for the impurity: th — F — kV

2 crucial statements:

1: viscosity coefficient £ ~ T

2: velocity 1/ — 82((]) E(q) Is the edge of the excitation spectrum
q

F; F<F,
F—+F>—F; F>F,

=> Vdrift = K_l{ FC — Khn/M.{

In the strong forcing regime, F > F ., the drift motion
1s superimposed with the Bloch oscillations with the period

AT = 2mahn/\F? — F?



How hydrodynamic theory is solved for strong repulsion

Bosons with spin-independent
. . H = Qv o(x
Z o T2

Interaction:
1<
mao —
Dimensionless coupling:| v = —— Y = 1(?/’“\
th 0.6 - / ™
%’ \\
. . . . N/ ,/I \
Dispersion of spinless boson gas: s 0.4 - ) \
w (k) =vk k=0 S w_(k)|
02 r \
Dispersion of bosons with spin: —— \
" \
k‘z 0 I 1 1 1 1 1
w_(k) = kEk— 0 0 0.5 1 1.5 2
2m. kr = mp K/kp

= 4, - 3
Stl’Oﬂg | £(q) _ 4m ‘31112 (u q) m, =m v v — 00
repulsion: ., ;




How hydrodynamic theory is solved for strong
repulsion |l

. : : 2 m eEp qF 7l
I!:::H_lP}ﬁnJ(QJq). Fo=———=K : 8 =— ¥ — 00
T My gF Ty 2qF

It is said that the viscosity coefficient is independent of velocity, therefore

dq
F — F.sin(28q)

— di

V(1)

5 /\\/

-0.5

-1.0



Summary

Mobile impurity in the quantum gas has non-Luttinger dynamics in real
space due to quadratic dispersion

This non-Luttinger behavior can be obtained from looking at the behavior
of the structure functions near the edge of the excitations spectrum

Many details of the edge behavior of the spectral functions are yet difficult
to get in the numerics&experiment

The hope is that the real-space dynamics of impurity have some
pronounced features (e.g. logarithmic diffusion) which are "easy" to
observe in the numerics&experiment.

Cold gases are good for working with real-time dynamics of impurity

There is only one published experiment on the 1D impurity motion (driven
by constant external force), but several other experiments are on the way.



Some details on the edget elﬁponents not shown in the
a



Excitations near threshold energy

Consider spectral function  S(g,w) =" |(v, q|n2f]|gs)|25(w — Ey(q))
174

"’tg — Z¢It¢k—q
k

Problem: classify excitations with arbitrary g and F,(q) — w_(q)

Hint: look at free fermions:

Multiple particle-hole pair spectrum




Excitations near threshold energy (continued)

E\
\ kr—q ./ k Excitation with momentum ¢q
i R =
—kF ki and energy w_(q)
single deep hole
E A oL .
/ Excitations with momentum ¢
\ & =
- and energy close to w_ (q)
—]ﬁp kF

single deep hole and many particle-hole
pairs close to Fermi points

Interacting (integrable) systems: like free fermion case!

'k

Conjecture



Effective theory near the edge of the spectrum

Should be a minimal theory of the 1D polaron problem:
free plasmons interacting with a deep hole

Free plasmons = particle-hole pairs near Fermi points = Luttinger Liquid:

dx
M= [gn 2 val@pa)® [Pa(®), 0o (1)] = imadoysan(z —y)
a=I,

Plasmons linearly coupled H; :—/ Z Vo B (0zpa)d (x)d(x)
to the deep hole: a=R,L deep hole

Z ezakpaf:wa +€’L(I€F q):lf:dT( )

S(q,w) =~ C(q)H(w w0 ) (w - w )@

A(g) = -1 + (5_|_+[32) (B4 depend onq !!!




Dynamical structure factor forG  (z,t) = (t |s(z,t)s—(0,0)| f)
S(q,w) = /daz e_iqa’;/dteithL(:v,t)

S(g,w) = [(v,qlsy | M*6(w — Eu(q))
/vﬁ

Exited states are made by one magnon and arbitrary number of plasmons
(particle-hole pairs or density fluctuations)

=> Similar to a polaron problem

Effective model: magnon carries momentum q, its dispersion has a
minimum around ¢ . Plasmons have a linear dispersion.

Effective Hamiltonian:  H.¢r = Hp 1, + H;

/ Plasmons linearly coupled

Free plasmons = Luttinger Liquid to the magnon



Effective theory & behavior in the momentum space

Free plasmons = Luttinger Liquid: g;; = /Z—x > va(Bzpa)?
d a=R,L
[pa(@); oo (y)] = imady,san(z — y) magnon
Plasmons linearly coupled dr J
to the magnon Hy=— [ o Y. vafa(0zpa)5*(z)
n a=R,L
+ — Figz~+t z — =z
s~ (z) = "5 (2) s*(z) = 5°(z) + po/2

S(q7 w) =~ C(Q)H(w — w_)(w — w_)A(Q)

1
> Al =-1+_5(FF+p2)  Bidependong!!

"\

Momentum is arbitrary !!!




Threshold singularities for interacting fermions

if g <K 2k = Luttinger Liquid theory works here:

Non-Luttinger /

v
wo <w < wy wy <w <K Ep

Hefr = Hpp + H;

1 ¥
TV R . 7
i Fﬁ_.\
ol % ?
ke K ¢ ¢q 2k k

° q
Polaron exists w4 = w— + q2/m Polaron washed out



Threshold singularities for interacting fermions

S(q7 w) =~ C(Q)H(w — w_)(w — w_)A(Q)

S(q,w)

ﬂ/ Free plasmons, Hesf = Hp g,

Free plasmons interact with mobile impurity: polaron problem

Heff = Hpp + H;




