

2239-12

Workshop on Integrability and its Breaking in Strongly Correlated and Disordered Systems

23 - 27 May 2011

Quantum dynamics in a bosonic quantum gas

Corinna Kollath University of Geneva Switzerland

Dynamics in ultracold atoms

Corinna Kollath

FONDS NATIONAL SUISSE Schweizerischer Nationalfonds Fondo Nazionale svizzero Swiss National Science Foundation

CNIS

Outline

e.g. by single trapped ion or electron beam

Theoretical description: Bose-Hubbard model

kinetic energy interaction energy $H = -J\sum_{ij} (b_i^+ b_j^- + h.c.) + U/2\sum_{i} n_i (n_j^- - 1)$

- different mixtures possible
- good control (U/t can be tuned over several orders of magnitude)
- clean systems (no disorder, no lattice phonons)
- different geometries
- good decoupling from environment (no thermal bath)

Superfluid to Mott-insulator

Coexistence of states in a trap

$$\mu_j = -V(j - j_0 - \frac{1}{2})^2$$

State diagram with density profiles

C. Kollath et al. PRA 2002

Local detection and manipulation

Local flourescence imaging

Bakr et al. 2009 Sherson et al. Nature 2010

Müller et al. 2010

Single trapped ion

Zipkes et al. Nature 2009 Schmid et al. arXiv 2010

Electron beam imaging

Local dissipative coupling

local atom losses

e.g. by single trapped ion or electron beam

weak dissipation:

- possibility of density (correlation) detection
- signature of underlying quantum state
- fast melting of Mott insulator

strong dissipation:

- Zeno like effect
- disjoint subsystems
- but entanglement generation by dissipation

P. Barmettler

Theoretical model for local atom losses

local dissipation described by Markovian master equation:

P. Barmettler and C. Kollath , arXiv (2010)

Short time - probe of local features

atom loss related to local density

$$\dot{N}(t) = -\Gamma n_0(t)$$

at short times

$$N(t) = n_{init} (1 - e^{-\Gamma t}), \quad n_0(t) = n_{init} e^{-\Gamma t}$$

no effect of underlying quantum state

Weak coupling: many body evolution

evolution of density profiles

superfluid

Tonks-Giradeau gas (same for Mott-insulator)

• bright density waves

• fast melting of Mott insulating

Weak dissipation as density measurement

total atom losses

- surprisingly no effect of underlying quantum state
- -> probe of local density
- -> enhanced signal

strong coupling $\Gamma >> J$

suppression of atom losses

J

 $\dot{N}(t) \sim J^2 / \Gamma$

distinct behaviour for superfluid and Mott insulator

Density profiles: decoupled subsystems

strong coupling $\Gamma >> J$

decoupled subsystems

Von-Neuman Entropy: strong entanglement

strong coupling $\Gamma >> J$

von Neuman entanglement: $S_A = -Tr_A \rho_A \log \rho_A$

block A

block B

distinct behaviour for superfluid and Mott insulator
 strong increase of entropy S for Mott-insulator

Von-Neuman Entropy: simplified picture

strong coupling $\Gamma >> J$

von Neuman entanglement: counts number of states in reduced density matrix

superfluid

hole generation
fluctuations do already exist
weak change in entropy

Mott insulator

generation of entangled hole pair
new states generated
strong change in entropy

Von-Neuman Entropy: strong entanglement

von Neuman entanglement: $S_A = -Tr_A \rho_A \log \rho_A$

strong coupling $\Gamma >> J$

3 S₀(t) △---△ U/J=4, n=1 ---- U/J=8, n=0.5 → U/J=0.5, n=1 → U/J=1, n=0.5 5 10 25 15 20 0 Jt/ħ

block A

block B

distinct behaviour for superfluid and Mott insulator
 strong increase of S for Mott-insulator

- > weak dissipation: constant loss rate -> density measurement possible
- ➤ strong dissipation: Zeno-like suppression of losses
 - >superfluid: suppressed losses in time, bright shock wave formation
 - >strong interacting: strong entanglement creation by hole pairs

Questions for slow parameter changes

1D superfluid is critical phase

Experimental results

->fast relaxation

W.S. Bakr et al. Science **329**, 547 (2010)

Interaction change across phase transition

Energy absorption in uniform system

<u>Perturbation theory: short-т limit</u>

see also M.Eckstein and M. Kollar, New J. Phys. (2010)

Non-trivial scaling regime

> Exponent varies with δU

➤not predicted by adiabatic perturbation theory

see also E. Canovi et al, J. Stat. Mech. (2009) P03038 anisotropic spin-1 XY chain

Influence of phase tranisition

different ramp function with fixed velocity
 U/J->2U/J

≻Maximum at phase transition

D. Poletti and C. Kollath arXiv:1105.0686

Trapped gas: presence of two time regimes

Evolution of local observables at the center of the trap

U_i = 2J → U_f = 4J

 $U_i = 4J \rightarrow U_f = 6J$

Mott-barriers block transport

drops quickly

Slow quench

homogeneous system:

- Intermediate ramp time: non-trivial power law
- slow ramps relatively close to ground state
- maximal absorption across phase transition

trapped system

- two time-scales: local versus global dynamics
- local dynamics can be observed
- 'Mott-regions' can block transport
 - -> very slow following (important for experimentalists)

Jean-Sebastien Bernier (Paris)

Peter Barmettler

Dario Poletti

PhD opening