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What is integrability?

For a recent discussion see J.-S. Caux, J. Mossel, J. Stat. Mech. (2011)
exact solutions and allow any advanced student access to 
this vast and fertile field … My favorite part of the book, 
chapters 8 through 10, deals with Calogero–Sutherland 
models describing particles that interact via long-range 
exchange interactions. These models, not as heavily studied 
as the Heisenberg or Hubbard model, are fascinating in their 
own right and require significant generalizations of the 
standard methods. The book provides a welcome introduction 

Physics Today

“This book is self-contained and unified in presentation. It 
may be used as an advanced textbook by graduate students. 
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Integrability ≡ Non-diffractive scattering

Scattering of two particles p1, p2 −→ p′1, p
′
2 satisfies

p1 + p2 = p′1 + p′2
p2

1

2m1
+

p2
2

2m2
=

p′21
2m1

+
p′22

2m2

For equal masses two solutions are

p′1 = p1, p′2 = p2 (retain) or p′1 = p2, p′2 = p1 (swap)
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Integrability ≡ Non-diffractive scattering

Scattering of three particles (equal masses)

p1 + p2 + p3 = p′1 + p′2 + p′3
p2

1 + p2
2 + p2

3 = p′21 + p′22 + p′23

Solution not unique!
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Three body scattering
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Three body scattering

Austen Lamacraft (University of Virginia) Two problems May 27th, 2011 4 / 31



Diffractive vs. Non-diffractive scattering
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Diffractive vs. Non-diffractive scattering
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Outline

1 Breaking integrability in a simple model
Integrability and transport
Consequences for mobility of an impurity in a 1D Fermi gas

2 Noise correlations in an expanding 1D Bose gas
The Hanbury Brown Twiss effect
Tracy–Widom form of the N-particle propagator
Effect of interactions on the Hanbury Brown and Twiss effect

Austen Lamacraft (University of Virginia) Two problems May 27th, 2011 6 / 31



Outline

1 Breaking integrability in a simple model
Integrability and transport
Consequences for mobility of an impurity in a 1D Fermi gas

2 Noise correlations in an expanding 1D Bose gas
The Hanbury Brown Twiss effect
Tracy–Widom form of the N-particle propagator
Effect of interactions on the Hanbury Brown and Twiss effect

Austen Lamacraft (University of Virginia) Two problems May 27th, 2011 7 / 31



Integrability and transport

Within Boltzmann picture
f (p, x , t) is not altered by
2-body collisions

3-body collisions can lead to
relaxation (thermalization) if
non-diffractive
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Formalizing the relationship...

Integrability conjecture (Castella, Zotos, and Prelovšek, 1995)

A finite Drude weight at T 6= 0 is a generic property of integrable systems

Subtleties e.g. for Heisenberg model (Sirker, Pereira, and Affleck, 2009)
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Breaking integrability: a simple model

‘Impurity’ of mass M in gas of fermions of mass m

Interaction Hint = V
∑

i δ(xi − X )

For M = m problem integrable by Bethe ansatz (Yang–Gaudin, 1967)

Solved by McGuire (1965) by ‘baby’ (nested) Bethe ansatz

Finite Drude weight at T > 0 (Castella, Zotos, and Prelovšek, 1995)
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Equal masses
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Unequal masses

Figure: caption
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Kinematics at low temperatures

Impurity + 1 particle processes frozen out for kBT < 2MvF

E (p)

p

p2

2M

vFp

2MvF

Low temperature kinetics determined by two-particle processes

(Castro-Neto and Fisher, 1996)
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Perturbative calculation – 3-body scattering

T (2) = i

(
V

L

)2 1

ξk1+q1 − ξk1 + εK−q1 − εK
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Perturbative calculation – 3-body scattering

T (2) = i

(
V

L

)2 [
1

ξk1+q1 − ξk1 + εK−q1 − εK
− 1

ξk2+q2 − ξk1 + εK−k2−q2+k1 − εK

+
1

ξk2+q2 − ξk2 + εK−q2 − εK
− 1

ξk1+q1 − ξk2 + εK−k1−q1+k2 − εK

]
.
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Implications for impurity mobility

Momentum relaxation rate of the impurity

τ−1
mom =

2π

~MT

∑

k1,k2,q1,q2

(q1 + q2)2|T (2)|2δ(Ei − Ef )

× nk1nk2 (1− nk1+q1) (1− nk2+q2)

vanishes as T 4, leading to a low temperature mobility

µ = τmom/M ∝ T−4

Matrix element vanishes for M = m −→ ballistic motion

Calculation to leading order in M −m for any V using exact solution.

Austen Lamacraft (University of Virginia) Two problems May 27th, 2011 15 / 31



The view from LuttingerLand

Bloch Oscillations in a One-Dimensional Spinor Gas

D.M. Gangardt1,* and A. Kamenev2

1School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
2School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 21 November 2008; revised manuscript received 19 January 2009; published 18 February 2009)

A force applied to a spin-flipped particle in a one-dimensional spinor gas may lead to Bloch oscillations

of the particle’s position and velocity. The existence of Bloch oscillations crucially depends on the viscous

friction force exerted by the rest of the gas on the spin excitation. We evaluate the friction in terms of the

quantum fluid parameters. In particular, we show that the friction is absent for integrable cases, such as an

SUð2Þ symmetric gas of bosons or fermions. For small deviations from the exact integrability the friction

is very weak, opening the possibility to observe Bloch oscillations.

DOI: 10.1103/PhysRevLett.102.070402 PACS numbers: 05.30.Jp, 03.75.Kk, 03.75.Mn

The dynamics of ultracold atomic gases with internal
(spinor) degrees of freedom has been a focus of a number
of recent experiments [1]. The observed collective phe-
nomena have revived interest in earlier theoretical works
[2] on spin waves in helium and opened the possibility to
study the nonequilibrium dynamics of quantum liquids.

Because of the unprecedented degree of experimental
control it is possible to excite a few atoms into a different
hyperfine internal state [3]. This leads to effective spin
excitations which may be regarded as impurities moving
through the quantum liquid formed by the majority spins.
A similar setup was investigated in the context of He3 and
He4 mixtures [4,5]. It was realized that an external particle
is ’’dressed’’ to form a collective excitation whose energy-
momentum relation at small momenta P is quadratic
"ðPÞ # !d þ P2=2M%. The correlations manifest them-
selves in the quasiparticle effective mass M% being differ-
ent from the bare massM, as well as in the friction exerted
on the quasiparticle by the rest of the liquid.

The collective nature of the excitations is especially
apparent in one-dimensional (1D) systems where the
strong effects of interactions beyond mean field were re-
cently observed in experiments with cold atoms [6]. In
addition to the strong mass renormalization [7], power
law behavior of response functions [8–10], the dispersion
relation of the excitations "ðPÞ was shown [9,11] to be
strongly modified by the interactions: parabolic at small P,
it is actually a periodic function of the momentum with the
period 2"@n; see Fig. 1. Here n is a 1D density of the gas
and periodicity stems from the fact that total momentum
Ptot ¼ 2"@n can be transferred to the gas as a whole at no
energy cost in the thermodynamic limit. The periodicity of
the dispersion relation drastically affects the dynamics of
spin excitations under an influence of the external gravita-
tional force F, which becomes uncompensated if the hy-
perfine state of impurity atoms is insensitive to the
magnetic field of the trap [12]. Indeed, momentum of
impurity evolves according to _P ¼ F and its velocity V ¼
@"ðPÞ=@P is a periodic function of momentum and thus
exhibits Bloch oscillations. Bloch oscillations are usually

associated with an accelerated quantum particle in the
presence of a static periodic potential; see, e.g., Ref. [13]
for a recent experimental realization. However, the exis-
tence of Bloch oscillations in 1D spinor condensates does
not rely on a presence of an external periodic potential. It is
the 1D quantum liquid itself that provides a quasiperiodic
potential with the lattice spacing n'1 and thus 2"@n re-
ciprocal vector.
Contrary to a static periodic potential, a 1D quantum

liquid exhibits quantum and thermal fluctuations. Because
of the latter, the spin excitations with periodic dispersion
relation are also subject to a dissipation. A possibility to
observe Bloch oscillations depends crucially on the
strength of such a dissipation, i.e., the friction force exerted
on the spin-flipped particle by the quantum liquid. Indeed,
in a presence of friction the equations of motion for the
spin excitation take the form

_P ¼ F' #V; V ¼ _X ¼ @"=@P; (1)

where # ¼ #ðVÞ is the coefficient of viscous friction [14].
Consider, e.g., the strong coupling limit where "ðPÞ #
!d þ ð2@2n2=M%Þsin2ðP=2@nÞ [9] and # # const.
Integrating Eqs. (1), one finds for the drift velocity

FIG. 1 (color online). Dispersion relation of a spin excitation
in 1D Bose liquid. Inset: two-phonon processes leading to a dis-
sipation. The arrows, with the slope given by the sound velocity
c, represent absorption and emission of long wavelength pho-
nons.
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We turn now to the derivation of Eq. (3). If the tempera-
ture is less than the chemical potential T ! ! the density
excitations of the majority spin gas may be described [23]
by the effective 1D hydrodynamic Hamiltonian

Hph ¼
Z

dx
!
1

2m
ðnþ "Þð@x#Þ2 þ

mc2

2n
"2 þ #

3!
"3

"
; (8)

hereafter, @ ¼ 1. Here "ðxÞ is the operator of density
fluctuations on top of the uniform density n and its canoni-
cally conjugate phase operator #ðxÞ is related to the super-
fluid velocity vs ¼ @x#=m. The quadratic (Luttinger
liquid) part of this Hamiltonian describes phonons with
the linear dispersion relation !ðqÞ ¼ cjqj. To have a con-
sistent description of the interactions between phonons and
the spin excitations, one needs to take into account non-
linear interactions of phonons between themselves [5].
They are described by the terms &"ð@x#Þ2 and &"3.
The coefficients in front of them are dictated by Galilean
invariance for the former, and by expansion of!ðnþ "ðxÞÞ
up to the second order in " for the latter.

The spin excitation may be thought of as a quantum
particle described by the canonically conjugated coordi-
nate X and momentum P. Its interactions with the density
fluctuations are encoded in the chemical potential !dðnþ
"ðXÞÞ ' ðmc2=nÞð1( $lÞ"ðXÞ þ ð#d=2Þ"2ðXÞ; cf. Eq. (4)
. The interactions of this particle with the superfluid ve-
locity vsðXÞ may be found [5] by noticing that in the
reference frame where vs ¼ 0 the energy of the particle
with momentum P is given by the dispersion relation "ðPÞ.
In the laboratory frame momentum of such particle is Pþ
Mvs, while its energy is "vs

ðPþMvsÞ ¼ "ðPÞ þ Pvs þ
Mv2

s=2. Changing to a momentum in the laboratory frame,
and keeping terms up to the second power in vs, one finds
"vs

ðPÞ ¼ "ðPÞ þ ðP(MVÞvs þ ðM2"00ðPÞ (MÞv2
s=2,

where the particle velocity is V ¼ "0ðPÞ. At a sufficiently
small velocity V ¼ P=M) and "00ð0Þ ¼ 1=M) one thus
finds for the Hamiltonian of the spin excitations

Hd ¼ ðPþ $MvsÞ2
2M) ( $Mv2

s

2
þmc2

n
ð1( $lÞ"þ #d

2
"2;

(9)

where $M ¼ M) (M. In the absence of interactions
$M ¼ M) (M ¼ 0 and Hamiltonian (9) is independent
of the fluid velocity. The terms containing " ¼ "ðXÞ and
vs ¼ @x#ðXÞ=m can be regarded as effective interaction
potential dependent on the particle coordinate X. This
introduces a preferential frame for the moving particle.

It is convenient to perform canonical transformation of
the particle momentum Pþ $Mvs ! P along with the
fluid ‘‘coordinate’’ "ðxÞ ( ð$M=mÞ"dðxÞ ! "ðxÞ, where
"dðxÞ ¼ $ðx( XÞ is the density of the particle. The
changes induced by this transformation to the fluid
Hamiltonian, Eq. (8), are absorbed in the modified impu-
rity Hamiltonian

Hd ¼
P2

2M) þ
mc2

n

#
1( $l þ

$M

m

$
"þ #

2

#
#d

#
þ $M

m

$
"2:

(10)

The second term here describes processes in which one
phonon is absorbed or emitted, while the third one is
responsible for the two-phonon processes. Because of the
quadratic dispersion relation of the spin excitation and
linear dispersion of phonons, the one-phonon processes
do not lead to dissipation, which is just another statement
of Landau criterion.
We thus focus on the two-phonon amplitude. The latter

originates from the last term in Eq. (10) as well as the fol-
lowing second order processes: (i) second order in "ðXÞ ¼R
dx"ðxÞ"dðxÞ interaction vertex, Figs. 2(a) and 2(b);

(ii) first order in ""d and first order in "3, Fig. 2(c) or
"ð@x#Þ2 phonon nonlinearity vertices, Fig. 2(d). It is the
destructive interference of these second order processes
which is responsible for the partial or even complete
suppression of the dissipation. Evaluating the correspond-
ing diagrams according to the standard rules, one derives
an effective Hamiltonian of the spin excitation [24]

Heff
d ¼ P2

2M) (
1

2
!"½"ðXÞ+2 (

1

2
!#½@x#ðXÞ+2; (11)

where the effective two-phonon amplitudes are given by

!" ¼ m2c2

n2M)

#
1( $l þ

$M

m

$
2
( #

#
#d

#
( 1þ $l

$
; (12)

!# ¼ 1

m

#
1( $l þ

$M

m

$
: (13)

The momentum relaxation rate may be evaluated in the
second order in the two-phonon amplitudes !";# , averaged
over the Luttinger (quadratic) part of the phonon
Hamiltonian (8). This does not assume smallness of the
amplitudes !";# , but rather gives the leading low-
temperature, T ! !, contribution. The semiclassical
equation of motion for the spin excitation acquires a form

FIG. 2. Second-order diagrams contributing to two-phonon
amplitudes. Spin excitation is represented by a full line, while
phonons by wavy lines. Diagrams (a),(b) and (c) contribute to
!", Eq. (12), while diagram (d) represents !# , Eq. (13).
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‘Traditional’ uses of integrability

H = −1

2

N∑

i=1

∂2

∂x2
i

+ c
∑

i<j

δ(xi − xj).

Lieb–Liniger gas (1963)
Two conceptual steps...

1 The ‘Bethe ansatz’

ΨN(x) =
∑

P

aP exp


i

N∑

j=1

kP(j)xj




x1 ≤ x2 ≤ · · · ≤ xN
2 Impose boundary conditions

kjL = 2πnj − 2 arctan

(
kj − ki

c

)

Thermodynamic limit, form factors...
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The setup

Noise correlations in the expansion of an interacting 1D Bose gas from a regular array

Austen Lamacraft
Department of Physics, University of Virginia, Charlottesville, Virginia 22904-4714 USA∗

(Dated: May 20, 2011)

Time of flight imaging of ultracold gases allows noise correlations to be

extracted

We consider the one dimensional expansion of a system of interacting bosons, starting from a
regular array. Without interactions the familiar Hanbury Brown and Twiss effect for bosons gives
rise to a series of peaks in the density-density correlations of the expanded system. Infinitely
repulsive particles likewise give a series of dips, a signature of the underlying description in terms of
free fermions. In the intermediate case of finite interaction the noise correlations consist of a set of
Fano resonance lineshapes, with an asymmetry parameter determined by the scattering phase shift
of a pair of particles, and a width depending on the initial momentum spread of the particles.

The Hanbury Brown and Twiss (HBT) effect [2] is a
fundamental signature of quantum statistics appearing in
quantum optics, atomic and mesoscopic physics, and nu-
clear collisions [3–7]. It is most dramatically manifested
as an interference effect in the intensity correlations due
to two or more incoherent sources, with a sign depend-
ing on the statistics of particles: positive correlations for
bosons; negative for fermions.

In most known instances of the HBT effect interac-
tions between particles do not play a significant role, ei-
ther because these effects are weak or due to the spatial
separation of the sources. In this Letter we consider the
one-dimensional expansion of a system of particles, where
strong interaction effects are unavoidable. Indeed, in 1D
the trajectories giving rise to the HBT effect must cross.

The situation that we will consider is illustrated in
Fig. 1. Particles are initially confined to a regular 1D
lattice of spacing ∆, with one particle per site. At time
t = 0 the lattice potential is removed, though the po-
tential restricting the particles’ motion to one dimension
remains. We are concerned with the density correlations
present after some time t, when the system has expanded
to many times its original size (analogous to the ‘far field’
limit in optics). Thus we have in mind a 1D version of the
experiment of Ref. [8], in which noise correlations were
measured in the expansion of a 3D atomic Mott insulat-
ing state from an optical lattice. A recent experiment
demonstrated the preparation of such a 1D state in a
slightly different context [9].

To introduce some ideas and notation we briefly de-
scribe the familiar HBT effect in this setting. We as-
sume Gaussian initial wavefunctions corresponding to
harmonic oscillator length � =

�
�/mω, ϕα(y) =

1
(π�2)1/4 exp

�
− (y−α∆)2

2�2

�
. The overlap e−∆2/4�2 between

neighboring sites is assumed to be negligible. After a
period t of free evolution these wavefunctions have the
form

ϕα(x; t � �2) →
�

�

i
√
πt

exp

��
i

2t
− �2

2t2

�
(x − α∆)

2

�
.

(1)

Time

∆

�

FIG. 1. 1D expansion of atoms from an optical lattice. Noise
correlations will be present in an absorption image of the ex-
panded cloud.

(Where we have set � = m = 1) If we con-
sider a pair of identical particles on sites α and α +
1, the two-particle wavefunction is Ψ2(x1, x2; t) =
1√
2

[ϕα(x1; t)ϕα+1(x2; t) ± ϕα(x2; t)ϕα+1(x1; t)], with ±
for bosons and fermions respectively. The corresponding
probability density is then

|Ψ2(x1, x2; t)|2 → �2

πt2
e−�2(ξ2

1+ξ2
2) [1 ± cos ([ξ1 − ξ2] ∆)] ,

(2)

where the variables ξ1,2 = x1,2/t correspond to the ve-
locities of the two particles. The oscillatory second term
describes the HBT effect, with a sign dependent on the
statistics of the particles. For an array of N particles
the density-density correlation function develops peaks
due to the contributions of higher harmonics arising from
pairs of particles separated by multiples of ∆

C(x1, x2; t) ≡
�

dx3 · · · dxN |ΨN (x1, x2, . . . , xN ; t)|2.

→ �2

πt2
e−�2(ξ2

1+ξ2
2)

�
1 ± 2π

N

∞�

n=−∞
δ(∆ [ξ1 − ξ2] − 2πn)

�

(3)
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Ready availability of noise correlations in ultracold physics

Probing many-body states of ultracold atoms via noise correlations

Ehud Altman, Eugene Demler, and Mikhail D. Lukin
Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA

(Received 10 June 2003; published 6 July 2004)

We propose to utilize density-density correlations in the image of an expanding gas cloud to probe complex
many-body states of trapped ultracold atoms. In particular, we show how this technique can be used to detect
superfluidity of fermionic gases and to study spin correlations of multicomponent atoms in optical lattices. The
feasibility of the method is investigated by analysis of the relevant signal to noise ratio including experimental
imperfections.

DOI: 10.1103/PhysRevA.70.013603 PACS number(s): 03.75.Ss, 03.75.Mn, 42.50.Lc

Much of the excitement in the field of Bose-Einstein con-
densation (BEC) is due to the clear demonstration it provides
of the wave character of matter. The condensed state of
bosons involves macroscopic occupation of a delocalized
single particle state. Consequently, it is characterized by
sharp density peaks in the freely expanding gas cloud after it
is released from the trap [1]. Patterns that appear when two
or more superfluid clouds interfere [2], are a direct probe of
the single particle coherence, amplified by macroscopic oc-
cupation.
Recent experiments open intriguing directions for study-

ing many-body phenomena beyond single particle coherence.
For example, observation of the superfluid to Mott-insulator
transition [3], as well as experiments involving ultracold fer-
mions near a Feshbach resonance [4], address strongly cor-
related states of matter. The most intriguing aspect of such
systems is the existence of nontrivial correlations and com-
plex order that defy a description in terms of (single particle)
matter waves. Accordingly, they cannot be characterized
simply by the density profile of an expanding cloud. For
example, the localized atoms in Mott states of the optical
lattice display a vanishing interference pattern [3], which can
hardly reveal detailed properties of the quantum state. Like-
wise, superfluidity of paired fermions is not evident as a
coherence peak in the density profile [5], and detecting the
order parameter presents a considerable challenge. Observa-
tion of some theoretically proposed “exotic” many-atom
states [6,8,9] may prove even more elusive.
In this letter, we show that the quantum nature of certain

strongly correlated states can be revealed by spatial noise
correlations in the image of the expanding gas. This is simi-
lar in spirit to measurements of nonclassical correlations of
light in optical systems [11] and temporal current noise in
mesoscopic conductors [10]. In analogy to quantum optics,
this technique allows us to study matter waves that lack
single particle coherence. Specifically we show: (i) Fermi-
onic atoms released from the trap would display a clear sig-
nature of superfluidty in their density correlations. Further-
more, detailed properties of the fermionic superfluidity can
be studied, such as pairing symmetry, and BCS to BEC
crossover [12]; (ii) Atoms released from a Mott-insulating
state of the optical lattice display sharp (Bragg) peaks in the
density-density correlation function as a consequence of
quantum statistics; (iii) These peaks can be used to probe
spin correlations of multicomponent bosons on optical lat-

tices. In particular, spin ordered Mott states proposed for
two-component bosons [7,8] can be detected. Finally, we
verify the experimental feasibility of the proposed measure-
ments.
Before proceeding, we note that earlier proposals to detect

fermionic superfluidity relied on dynamical response of the
cloud [13], inelastic scattering of light to induce and measure
excitations [14,16], or to microscopically image the pair
wave function in the trap [15]. In contrast, the present tech-
nique provides a direct probe of the pair coherence as well as
information on the pairing symmetry. We point out a recent
experiment that analyzed real-space density correlations in
interfering copies of a condensate, split by a Bragg pulse
[17].
We proceed by formulating a detection scheme for atoms

released from a single macroscopic trap. Suppose, for sim-
plicity, that the system is initially in some pure state !!". In
a typical experimental setup, the trapping potential is turned
off suddenly, and the atoms evolve independently under the
influence of the free propagator U0#t$. This is valid provided
that the free-atom collision cross section is not too large.
Such conditions can be achieved for example by switching
the magnetic field to values far from the Feshbach resonance
when turning off the trap [4].
In such time of flight experiments, the column integrated

density of the expanding cloud is measured by light absorp-
tion imaging [18]. The images are commonly analyzed by
comparing to theoretical predictions for the density expecta-
tion value, given by

%n̂"#r$"t = %!!U0
†#t$#"

†#r$#"#r$U0#t$!!" , #1$

where #" is the field operator for bosons or fermions and "
denotes an internal atomic quantum number (spin). At finite
temperature, the expectation value in (1) is replaced by a
thermal average. After a long time of flight, the density dis-
tribution becomes proportional to the momentum distribution
in the initial trapped state %n#r$"t&#m /ht$%n̂Q#r$". The wave
vector Q#r$=mr / #$t$ defines a correspondence between po-
sition in the cloud and momentum in the trap.
It is important to realize that in each experimental image,

a single realization of the density is observed, not the expec-
tation value. Equation (1) is still meaningful, because the
density is a self-averaging quantity. Each bin % in the image

PHYSICAL REVIEW A 70, 013603 (2004)
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Hanbury Brown and Twiss
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Hanbury Brown and Twiss

!

"!!

#$%!$%&'$()!*+!($%!,%-.)!-(!($%!/%0&,/*0-1!1-((&0%!2*2%3(-!($%/%+*/%!)0-1%!-)!N 4t5!+*/!
($&)!)&2,1%!$*2*'%3%*6)!0-)%7!8)!&39&0-(%9!&3!($%!(%:(;!($%!N 4!)0-1&3'!&)!2*9&+&%9!(*!N <7=>!
+*/!*6/!$-/2*3&0-11?!(/-,,%9!)?)(%2!@?!($%!-,,%-/-30%!*+!A*((!9*2-&3)!B&($!+&11&3'!+-0(*/!
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The two-particle wavefunction is

Ψ2(x1, x2; t) =
1√
2

[ϕi (x1; t)ϕj(x2; t)± ϕi (x2; t)ϕj(x1; t)]
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Hanbury Brown and Twiss

For separation ∆ between harmonic wells

ϕα(y) =
1

(π`2)1/4
exp

[
−(y − α∆)2

2`2

]

ϕα(x ; t � `2)→
√

`

i
√
πt

exp

[(
i

2t
− `2

2t2

)
(x − α∆)2

]
.

Probability density is then

|Ψ2(x1, x2; t)|2 → `2

πt2
e−`

2(ξ2
1+ξ2

2) [1± cos ([ξ1 − ξ2] ∆)]

ξ1,2 ≡ x1,2/t and e−∆2/4`2
neglected
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Hanbury Brown and Twiss

Array of N particles −→ higher harmonics arising from pairs of particles
separated by multiples of ∆

C(x1, x2; t) ≡
∫

dx3 · · · dxN |ΨN(x1, x2, . . . , xN ; t)|2.

→ `2

πt2
e−`

2(ξ2
1+ξ2

2)

[
1± 2π

N

∞∑

n=−∞
δ(∆ [ξ1 − ξ2]− 2πn)

]
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Expansion of Mott state (Fölling et al., 2005)

!
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Expansion of Mott state (Fölling et al., 2005)
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1D case: interactions must be important!
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Trajectories must cross

For infinite repulsion have mapping to free fermions

Crossover from bosonic to fermionic HBT effect
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Correlations in the crossover
Correlations in the crossover

ξ1∆ ξ2∆

ξ∆

N
�

C(x ,−x ;t)
C(0,0;t) − 1

�

N
�

C(x1,x2;t)
C(0,0;t) − 1

�
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Correlations in the crossover

2

where the variables ξ1,2 = x1,2/t correspond to the ve-
locities of the two particles. The oscillatory second term
describes the HBT effect, with a sign dependent on the
statistics of the particles. For an array of N particles
the density-density correlation function develops peaks
due to the contributions of higher harmonics arising from
pairs of particles separated by multiples of ∆

C(x1, x2; t) ≡
�

dx3 · · · dxN |ΨN (x1, x2, . . . , xN ; t)|2.

→ �2

πt2
e−�2(ξ2

1+ξ2
2)

�
1 ± 2π

N

∞�

n=−∞
δ(∆ [ξ1 − ξ2] − 2πn)

�

(3)

In a trajectory picture the HBT effect arises as a cross-
term between trajectories that do and do not exchange
pairs of particles (see Fig. 3, bottom)

We turn now to the central subject of this paper: the
HBT effect in the presence of interactions between the
particles. We assume that the evolution of the system
for t > 0 is governed by the N -particle Hamiltonian

H = −1

2

N�

i=1

∂2

∂x2
i

+ c
�

i<j

δ(xi − xj). (4)

The c → 0 and c → ∞ limits can be described in terms of
free bosons and free fermions, respectively. The density-
density correlations reflect this, corresponding to the plus
sign in Eq. (3) in the former case and the minus sign in
the latter. Our main result, valid when e−2c∆ � 1, is
that in the crossover regime the density-density correla-
tions consist not of a series of symmetric peaks or dips
but rather of Fano lineshapes (see Fig. 2)

[qnΓn/2 + (ε− ηn)]
2

Γ2
n/4 + (ε− ηn)

2 (5)

where ε = ∆(ξ1 − ξ2)−2πn represents the deviation from
the nth peak. The asymmetry parameter qn is expressed
in terms of the two particle scattering matrix

S(k) = −c − ik

c + ik
, (6)

by the relation

arg S(2πn/∆) = 2qn/(q2
n − 1). (7)

This illustrates the evolution from qn = ∞ for free bosons
(resonance lineshape) to qn → 0 as c → ∞ (antireso-
nance). The asymmetry of the lineshape is the first qual-
itative feature of the crossover regime. The second is the
finite width Γn, for which we give the explicit form below,
and which vanishes in the two limits.

The surprising simplicity of our result is a consequence
of the integrability of the Hamiltonian Eq. (4) [16]. The
N -particle scattering it describes is nondiffractive, con-
sisting of pairwise scattering that either preserves or ex-
changes the momenta of the scattering particles. A re-
markable consequence is that the time dependence of the

ξ1∆ ξ2∆

ξ∆

N
�

C(x,−x;t)
C(0,0;t)

− 1
�

N
�

C(x1,x2;t)
C(0,0;t)

− 1
�

FIG. 2. (Top) Normalized correlation function

N
�

C(x1,x2;t)
C(0,0;t)

− 1
�

for c∆ = 2, �/∆ = 0.2. (Bottom) A

slice with x1 = −x2 for the same parameters, showing the
evolution of the Fano asymmetry between successive peaks.

N -particle propagator describing the amplitude for par-
ticles at y1, . . . , yN to arrive at x1, . . . xN after time t can
be written explicitly for c > 0 as [17]

GN (x1, x2, . . . , xN |y1, y2, . . . , yN ; t) =
�

σ∈SN

�
· · ·
�

Aσ

N�

j=1

eikσ(j)(xj−yσ(j))e−
it
2

�
j k2

j
dk1

2π
· · · dkN

2π
(8)

where SN denotes the symmetric group of degree N , and

Aσ =
��

S(kσ(α) − kσ(β)) : xα < xβ but yσ(α) > yσ(β)

�
.

(9)

To verify Eq. (8) one should first observe that it sat-

c∆ = 2, `/∆ = 0.2. Slice with x1 = −x2
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Correlations in the crossover

Series of Fano lineshapes

[qnΓn/2 + (ε− ηn)]2

Γ2
n/4 + (ε− ηn)2

ε = ∆ (ξ1 − ξ2)− 2πn is deviation from the nth peak.

The asymmetry parameter qn is

arg S(2πn/∆) =
2qn

q2
n − 1

.

expressed in terms of two particle scattering matrix

S(k) = −c − ik

c + ik
,

Evolution from qn =∞ for free bosons (resonance lineshape) to
qn → 0 as c →∞ (antiresonance).
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Tracy–Widom propagator (2008)

GN(x|y; t) =
∑

σ∈SN

∫
· · ·
∫

Aσ

N∏

j=1

e ikσ(j)(xj−yσ(j))e−
it
2

∑
j k

2
j

dk1

2π
· · · dkN

2π

Aσ =
∏{

S(kσ(α) − kσ(β)) : xα < xβ but yσ(α) > yσ(β)

}
.

Convolve with initial (product) state

ΨN(x; t) =
1√
N!

∫
GN(x, y; t)

∏

j

ϕj(yj)dy

Still have to

1 Do the integrals

2 Sum over permutations
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Going to the ‘far field’

Stationary phase approximation at long times

GN(x|y; t)→
(

1

2πit

)N/2 ∑

σ∈SN
A′σ

N∏

j=1

e i(
t
2
ξ2
j −ξjyσ(j))

ξj = xj/t and A′σ denotes

A′σ =
∏{

S(ξα − ξβ) : xα < xβ but yσ(α) > yσ(β)

}
.
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Density correlations

Require the ‘forward and back’ propagator

GN(x|y; t)G∗N(x|ỹ; t)→
(

1

2πt

)N ∑

σ1,σ2∈SN
A′σ1

A′∗σ2

∏

j

e−iξj(yσ1(j)−ỹσ2(j)).

A′σ1
A′∗σ2

=
∏
{S(ξα − ξβ) : σ1(α) > σ1(β) but σ2(α) < σ2(β)}

Form of the product does not depend upon the ordering of the {xj}.
yσ1(j)

=xj

yσ2(j)

Forward

Back
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The Golden Rule

How to calculate the integrals

C(x1, x2; t) ≡
∫

dx3 · · · dxN |ΨN(x1, x2, . . . , xN ; t)|2

Use the Golden Rule!
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The Golden Rule
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The Golden Rule

‘Never impose on others what you would not choose for yourself.’
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The Golden Rule

Golden Rule (from analyticity of S matrix)

For those xj we integrate over:
A particle moving to the left (right) must be overtaken by another particle
moving to the left (right)

yσ1(1) yσ1(2)

ỹσ2(2) ỹσ2(1)

ξ1 ξ2

yσ1(α)

ỹσ2(α)
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Usual HBT trajectories

yσ1(1) yσ1(2)

ỹσ2(2) ỹσ2(1)

ξ1 ξ2

yσ1(α)

ỹσ2(α)

Integrate over {xα : α 6= 1, 2}, convolve with Gaussians and sum series

C(x1, x2 : t) → `2

πt2
e−`

2(ξ2
1+ξ2

2)

[
1 +

2

N
Re

(
S(ξ2 − ξ1)e i∆(ξ1−ξ2)

1− e i∆(ξ1−ξ2)ζ(ξ1, ξ2)

)]

Fano with width Γn = 2(1− Re ζ) > 0
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What about ‘non HBT’ trajectories?

Small in e−2c∆, where c∆ = γ of equivalent LL gas

In the same way, show that the power of e−c∆ is at least twice the
total number of moves to the right (or to the left).
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Conclusions

1 Weak breaking of integrability can lead to anomalously large transport
coefficients, calculable in a simple model

2 Integrability is useful simply at the level of the scattering problem in
certain natural situations in ultracold physics

Example of HBT effect in interacting 1D Bose gas
Crossover from bosonic to fermionic HBT with increasing interaction
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