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Motivation

I φ=φ(  )tMetallic and insulating regimes

isolated 1D system: ∂tρ(t) = −i[H(t), ρ(t)]

initially microcanonical ensemble with β � 1

flux Φ(t) → electric field F ∝ ∂tΦ(t)

Integrable vs. non–integrable systems for final F

for F = 0: integrability→ conserved quantities→ relaxation

in LR difference visible since response functions calculated at F = 0

how the integrability–related properties of the LR change with F

Linear Response (LR) theory: ILR(t) =
∫ t
0 dτσ(t− τ)F (τ)

what are the boundaries of LR regime? the Joule heating ∝ F 2 ?

how to generalize LR for stronger fields and/or longer driving ?



1D t–V model
H = Hk +HI Hk = −th

∑
j

{
eiφ(t) c†j+1cj + h.c.

}

F (t) = −
dφ(t)

dt
J = −

1

L

∂H

∂φ
=

i

L

∑
j

{
eiφ(t) c†j+1cj − h.c.

}
.

E(t) = Tr[ρ(t)H[φ(t)]] ρ̇(t) = −i[H(t), ρ(t)]

d

dt
E(t) = L F (t) I(t)

d

dt
Ek(t) = i〈[H(t), Hk(t)]〉+ L F (t) I(t)

d

dt
I(t) = i〈[H(t), J(t)]〉 − F (t)

Ek(t)

L

HI = 0→ the Bloch oscillations (F=const), I(t) = I0 cos(Ft).



t–V model
HI = V

∑
j

n̂jn̂j+1 +W
∑

j

n̂jn̂j+2

L = 10, V = 0.8,W = 0, with L/2 particles
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T = 5 with V = 1.4, W = 1 or V = 1, W = 0

the initial energy Ē0 from full diagonalization of small L ∼ 14

Ē0 rescaled for L ∼ 30 and used in MCLM:
[H(0)− Ē0]

2|ψ(0)〉 = ε|ψ(0)〉

i∂t|ψ(t)〉 = H[φ(t)]|ψ(t)〉, Park, Light, J. Chem. Phys. (1986)



Reverse problem

standard: Assumed: |ψ(0)〉, F (t); Calculated: |ψ(t)〉, I(t)

reverse: Assumed: |ψ(0)〉, I(t); Calculated: |ψ(t)〉, F (t)

how: d

dt
I(t) = i〈[H(t), J(t)]〉 − F (t)

Ek(t)

L

L = 18, V = 1.4,W = 1 with the ground state |ψ(0)〉

t

F(t)

I(t)
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Beyond LR - nonintegrable metal
Expectations: the Joule heating (∝ F 2) → increase of Ek

LR:
∫
dωσ(ω) ∝ −Ek

beyond LR: d
dtI(t) = i〈[H(t), J(t)]〉 − F (t)Ek(t)
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Beyond LR - nonintegrable metal

How to predict strongly nonlinear response without explicit solution
of the von Neumann or the time–dependent Schrödinger equations?
Conjecture:

I(t) � IER(t) =
Ek(t)

Ek(0)
ILR(t), ILR(t) =

∫ t

0
dt′σ(t−t′)F (t′)
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d
dtEk(t)

= i〈[H(t), Hk(t)]〉

+L F (t) I(t)



Beyond LR - nonintegrable metal

How to predict strongly nonlinear response without explicit solution
of the von Neumann or the time–dependent Schrödinger equations?
Conjecture:

I(t) � IER(t) =
Ek(t)

Ek(0)
ILR(t), ILR(t) =

∫ t

0
dt′σ(t−t′)F (t′)

Ėk(t) = γĖ(t) = γLFIER(t)

In the long–time regime:

IER(t) ∝ −Ek(t)F , then−Ek(t) ∝ exp(−αF 2t) with α > 0

γ =
Ek(t)− Ek(0)

E(t)− E(0)
�

∂Ek(0)

∂T

(
∂E(0)

∂T

)−1

.



Numerical check -nonintegrable metal
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Integrable case

ω
ωB

F
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Interpretation: charge stiffness at any T → damped Bloch oscillations



Integrable case

nonint.
fermions

Ek/L
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Short time and large field

nonint.
fermions

Ek/L

I
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〈A(t)〉 = Tr{ρ(t)A[φ(t)]}

φ(t) : external parameter

∂tρ(t) = −i[H(t), ρ(t)]

but eigenvalues ofH(t) bounded by Emax

for t � E−1
max, ρ(t) � ρ(0)

I(t) � 1
L

∑
k 2 sin[k − φ(t)]〈c†kck〉t=0

Ek(t) �
∑

k 2 cos[k − φ(t)]〈c†kck〉t=0[
Ek(t)

L

]2
+ I2(t) � const

for non-interacting particles valid for arbitrary t and F (t)

I(t) bounded by initial Ek



Absence of relaxation in integrable case

Non–thermal stateF=0.1π

I(t)
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Summary on driving of metals:

Spinless fermions at half–filling, large (initial) temperature

different responses of integrable and nonintegrable 1D metals

nonintegrable: the Joule heating as a dominating nonlinear
mechanism for large (initial) T

nonintegrable: real–time current without formal solution of
time–dependent problem

integrable: the damped Bloch oscillations with (logarithmically)
modified frequency

Reverse problem:

Assume: |ψ(0)〉, I(t)

Calculate: |ψ(t)〉, F (t), as long as Ek < 0

Details in: M.M. and P. Prelovšek, Phys. Rev. Lett. 105, 186405 (2010)



Driving insulators, V>2

P.Prelovšek et al, PRB 2004Challenges

Heating cannot be incorporated
through Ek

Involved finite–size scaling

Literally dc response expected
for open quantum systems

Coupling to leads may break
integrability

Driving may cause
inhomogeneous distribution
of carriers and destroy
Mott insulating state



Limits of LR in NI insulator

Real–time current non–integrable (NI) case : V = 3,W = 1, L = 26
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Subtracting heating - NI insulator

.
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High–temperature expansion

ε(t) = [E∞ − E(t)]/L

E∞ = L(V +W ) L/2−1
2(L−1)

ε
β = 1

2 + V 2+W 2

16

I(t) > 0→ βeff (t) is monotonic



Does E(t) determine I(t) in NI case?
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Does E(t) determine I(t) in NI case?
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Integrable case and non–zero F

Integrable (I) case: V = 3,W = 0, L = 28
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Integrable case and non–zero F

I case: V = 3,W = 0, L = 28
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dc response from E(t)

d

dt
E = L F I

if I(E,F )/F = γ(E) then
d

dt
E ∼ F 2



dc response from E(t)



LR for various V + smallW

Does σ(0) vanish for integrable case?
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Finite–size effects
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Finite–size effects
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For ω > ωFS � 1.25 finite–size effects not visible.

Sum rule::
∫ ωFS

0 dωσ(ω) +
∫ ∞
ωFS

dωσ(ω) = const



Finite–size effects



Summary on driving of insulators:

Setup under consideration:

driving does not destroy half–filling even locally

isolated system: microcanonical initial state + von Neuman equation

Results:

clear difference with respect to band insulators at T > 0

NI: the Joule heating central source of nonlinearity

I : nonlinearity different and distinguishable from the Joule heating

LR: σ(0)|W→0 → 0

Interpretation:

In like manner asW , finite F as well breaks integrability

’Ideal insulator’ with LR regime determined by mechanisms which
break integrability



Particle in a dissipative medium

F

F

H = −th
∑
〈lj〉,σ

eiφlj(t) c̃†l,σc̃j,σ + h.c.

+J
∑
〈l,j〉

SlSj,

hole in Mott insulator

nonequilibrium physics
of Mott insulators

particle in a dissipative medium

the Joule heating: finite–size effect

scaled current I(t) = L〈Î(t)〉.



t-J ladder

Ė(t) = F (t)I(t), Īt =
1

t

∫ t

0
dτI(τ) =

ΔE(t)

tF
, Idc = Ī∞

2πtF/
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J = 0.6, |ψ(0)〉 -ground state



Interpretation of finite size–effects
Standard approach for open bc:

H = −
j

[c†j +1 cj + h .c. ] + F
j

jc †j cj

cj =
m

J j −m (
2
F
) cm H =

m

F m c †mcm

Jm (x ) - Bessel function of the 1st kind; localization length: l = 4
F

J      (2/F)j−m

F=0.8
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Interpretation of finite size–effects
Standard approach for open bc:

H = −
∑

j

[c†j+1cj + h.c.] + F
∑

j

jc†jcj

cj =
∑
m

Jj−m(
2

F
) cm H =

∑
m

F m c†mcm

Jm(x) - Bessel function of the 1st kind; localization length: l = 4
F

Time–dependent flux with F = const, single particle:

Ė(t) = LFI(t) → ΔE(t) = E(t)− E(0) = FL

∫ t

0
dτI(τ)

I(t) =
1

L
v(t) → r(t) = L

∫ t

0
dτI(τ) = ΔE(t)/F <

4

F



t-J ladder: dissipative regime
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2D t-J model

EΔ

2πtF/

d)
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limited Hilbert space:
J. Bonča, et al PRB (2007);

|φ0〉 = ck=(π/2,π/2)|Neel〉{
|φnh

l 〉
}
=

[Hk + H̃J ]
nh |φ0〉

nh = 1, ..., Nh

Nh ≤ 14

L (ladder)→Nh (2D)

AR,DR,BR - regimes of F



2D t-J model



2D t-J model



Summary on driving a hole in t-J model

Similarities between hole dynamics on the ladder and in 2D lattice:

Distinct field–regimes: adiabatic, dissipative and the Bloch–oscillation
regime

Similar carrier mobilities on the ladder and in 2D t–J lattice

In DR: either positive or negative differential resistivity with crossover
field that scales with J .

2D system only:

Te crossover is accompanied by changing of the spatial structure of
the spin polaron.

M. M., L. Vidmar, J. Bonca, P. Prelovsek, PRL 106, 196401 (2011)



t-J ladder - supplementary




