

2239-13

Workshop on Integrability and its Breaking in Strongly Correlated and Disordered Systems

23 - 27 May 2011

Nonlinear response of driven interacting systems

Marcin Mierzejewski University of Silesia Katowice Poland

Nonlinear current response of interacting fermions in metallic and insulating regimes

Marcin Mierzejewski

University of Silesia, Katowice, Poland

Peter Prelovšek, Janez Bonča, Lev Vidmar

Jožef Stefan Institute, Ljubljana

Motivation

Metallic and insulating regimes

- isolated 1D system: $\partial_t \rho(t) = -i[H(t), \rho(t)]$
- $\, {}^{m
 ho} \,$ initially microcanonical ensemble with $eta \ll 1$
- flux $\Phi(t) \rightarrow$ electric field $F \propto \partial_t \Phi(t)$

 $\phi = \phi(t)$

Integrable vs. non-integrable systems for final ${\cal F}$

- for F = 0: integrability \rightarrow conserved quantities \rightarrow relaxation
- ${}_{ullet}$ in LR difference visible since response functions calculated at F=0
- $\, {
 m extsf{ extsf} extsf{ extsf} extsf{ extsf} extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf{ extsf} extsf{ extsf} extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf{ extsf} extsf{ extsf{ extsf} extsf{ extsf{ extsf} extsf} extsf{ extsf{ extsf} extsf} extsf} extsf} extsf{ extsf} extsf$

Linear Response (LR) theory: $I_{LR}(t) = \int_0^t d\tau \sigma(t-\tau) F(\tau)$

- $\,$ what are the boundaries of LR regime? the Joule heating $\propto F^2$?
- how to generalize LR for stronger fields and/or longer driving ?

1D t–V model

$$H = H_k + H_I \qquad H_k = -t_h \sum_j \left\{ e^{i\phi(t)} c^{\dagger}_{j+1} c_j + h.c. \right\}$$
$$F(t) = -\frac{d\phi(t)}{dt} \qquad J = -\frac{1}{L} \frac{\partial H}{\partial \phi} = \frac{i}{L} \sum_j \left\{ e^{i\phi(t)} c^{\dagger}_{j+1} c_j - h.c. \right\}.$$

$$E(t) = \operatorname{Tr}[\rho(t)H[\phi(t)]] \qquad \dot{\rho}(t) = -i[H(t),\rho(t)]$$
$$\frac{d}{dt}E(t) = L F(t) I(t)$$
$$\frac{d}{dt}E_k(t) = i\langle [H(t), H_k(t)] \rangle + L F(t) I(t)$$
$$\frac{d}{dt}I(t) = i\langle [H(t), J(t)] \rangle - F(t)\frac{E_k(t)}{L}$$

 $H_I = 0 \rightarrow$ the Bloch oscillations (*F*=const), $I(t) = I_0 \cos(Ft)$.

t–*V* model

● T = 5 with V = 1.4, W = 1 or V = 1, W = 0

- ${m
 ho}$ the initial energy $ar{E}_0$ from full diagonalization of small $L\sim 14$

• $i\partial_t |\psi(t)\rangle = H[\phi(t)]|\psi(t)\rangle$, Park, Light, J. Chem. Phys. (1986)

Reverse problem

standard: Assumed: $|\psi(0)
angle$, F(t); Calculated: $|\psi(t)
angle$, I(t)

• reverse: Assumed: $|\psi(0)
angle$, I(t); Calculated: $|\psi(t)
angle$, F(t)

• how:
$$\frac{d}{dt}I(t) = i\langle [H(t), J(t)] \rangle - F(t)\frac{E_k(t)}{L}$$

L=18, V=1.4, W=1 with the ground state $|\psi(0)
angle$

Beyond LR - nonintegrable metal

Expectations: the Joule heating $(\propto F^2) \rightarrow$ increase of E_k

 \blacktriangleright LR: $\int d\omega \sigma(\omega) \propto -E_k$

● beyond LR: $\frac{d}{dt}I(t) = i\langle [H(t), J(t)] \rangle - F(t)\frac{E_k(t)}{L}$

Beyond LR - nonintegrable metal

How to predict strongly nonlinear response without explicit solution of the von Neumann or the time-dependent Schrödinger equations? Conjecture:

Beyond LR - nonintegrable metal

How to predict strongly nonlinear response without explicit solution of the von Neumann or the time-dependent Schrödinger equations? Conjecture:

•
$$I(t) \simeq I_{\text{ER}}(t) = \frac{E_k(t)}{E_k(0)} I_{\text{LR}}(t), \qquad I_{\text{LR}}(t) = \int_0^t dt' \sigma(t - t') F(t')$$

•
$$\dot{E}_k(t) = \gamma \dot{E}(t) = \gamma LFI_{\text{ER}}(t)$$

In the long-time regime:

$$\begin{split} I_{\rm ER}(t) \propto -E_k(t) F \text{, then } -E_k(t) \propto \exp(-\alpha F^2 t) \text{ with } \alpha > 0 \\ \gamma &= \frac{E_k(t) - E_k(0)}{E(t) - E(0)} \simeq \frac{\partial E_k(0)}{\partial T} \left(\frac{\partial E(0)}{\partial T}\right)^{-1}. \end{split}$$

Numerical check -nonintegrable metal

Integrable case

Integrable case

Short time and large field

- for non-interacting particles valid for arbitrary t and F(t)
- \checkmark I(t) bounded by initial E_k

Absence of relaxation in integrable case

Summary on driving of metals:

Spinless fermions at half-filling, large (initial) temperature

- different responses of integrable and nonintegrable 1D metals
- nonintegrable: the Joule heating as a dominating nonlinear mechanism for large (initial) T
- nonintegrable: real-time current without formal solution of time-dependent problem
- Integrable: the damped Bloch oscillations with (logarithmically) modified frequency

Reverse problem:

- \checkmark Assume: $|\psi(0)
 angle$, I(t)
- Calculate: $|\psi(t)\rangle$, F(t), as long as $E_k < 0$

Details in: M.M. and P. Prelovšek, Phys. Rev. Lett. 105, 186405 (2010)

Driving insulators, V>2

Challenges

- Heating cannot be incorporated through E_k
- Involved finite—size scaling
- Literally dc response expected for open quantum systems
- Coupling to leads may break integrability
- Driving may cause
 inhomogeneous distribution
 of carriers and destroy
 Mott insulating state

Limits of LR in NI insulator

Real-time current non-integrable (NI) case : V = 3, W = 1, L = 26

Subtracting heating - NI insulator

Does E(t) **determine** I(t) **in NI case?**

Does E(t) **determine** I(t) **in NI case?**

Integrable case and non-zero *F*

Integrable case and non-zero *F*

dc response from E(t)

dc response from E(t)

LR for various V +**small** W

Finite-size effects

Finite–size effects

For $\omega > \omega_{FS} \simeq 1.25$ finite-size effects not visible.

Sum rule:: $\int_0^{\omega_{FS}} d\omega \sigma(\omega) + \int_{\omega_{FS}}^{\infty} d\omega \sigma(\omega) = \text{const}$

Finite–size effects

Summary on driving of insulators:

Setup under consideration:

- driving does not destroy half—filling even locally
- isolated system: microcanonical initial state + von Neuman equation

Results:

- \checkmark clear difference with respect to band insulators at T>0
- NI: the Joule heating central source of nonlinearity
- I : nonlinearity different and distinguishable from the Joule heating
- $IR: \sigma(0)|_{W \to 0} \to 0$

Interpretation:

- In like manner as W, finite F as well breaks integrability
- Ideal insulator' with LR regime determined by mechanisms which break integrability

Particle in a dissipative medium

$$\begin{split} H &= -t_h \sum_{\langle lj \rangle, \sigma} e^{i\phi_{lj}(t)} \tilde{c}_{l,\sigma}^{\dagger} \tilde{c}_{j,\sigma} + \text{h.c.} \\ &+ J \sum_{\langle l,j \rangle} \mathbf{S_l} \mathbf{S_j}, \end{split}$$

- hole in Mott insulator
- nonequilibrium physics of Mott insulators
- particle in a dissipative medium
- the Joule heating: finite—size effect

• scaled current
$$I(t) = L\langle \hat{I}(t) \rangle$$
.

t-J ladder

Interpretation of finite size-effects

Standard approach for open bc:

$$\begin{split} H &= -\sum_{j} [c_{j+1}^{\dagger} c_{j} + h.c.] + F \sum_{j} j c_{j}^{\dagger} c_{j} \\ c_{j} &= \sum_{m} J_{j-m} (\frac{2}{F}) c_{m} \qquad H = \sum_{m} F m c_{m}^{\dagger} c_{m} \end{split}$$

 $J_m(x)$ - Bessel function of the 1st kind; localization length: $I = \frac{4}{F}$

Interpretation of finite size-effects

Standard approach for open bc:

$$H = -\sum_{j} [c_{j+1}^{\dagger}c_{j} + h.c.] + F \sum_{j} jc_{j}^{\dagger}c_{j}$$
$$c_{j} = \sum_{m} J_{j-m}(\frac{2}{F}) c_{m} \qquad H = \sum_{m} F m c_{m}^{\dagger}c_{m}$$

 $J_m(x)$ - Bessel function of the 1st kind; localization length: $l = \frac{4}{F}$ Time-dependent flux with F = const, single particle:

$$\dot{E}(t) = LFI(t) \rightarrow \Delta E(t) = E(t) - E(0) = FL \int_0^t \mathrm{d}\tau I(\tau)$$

$$I(t) = \frac{1}{L}v(t) \rightarrow r(t) = L \int_0^t \mathrm{d}\tau I(\tau) = \Delta E(t)/F < \frac{4}{F}$$

t-J ladder: dissipative regime

2D t-J model

2D t-J model

2D t-J model

Summary on driving a hole in t-J model

Similarities between hole dynamics on the ladder and in 2D lattice:

- Distinct field—regimes: adiabatic, dissipative and the Bloch—oscillation regime
- Similar carrier mobilities on the ladder and in 2D t-J lattice
- In DR: either positive or negative differential resistivity with crossover field that scales with J.

2D system only:

Te crossover is accompanied by changing of the spatial structure of the spin polaron.

M. M., L. Vidmar, J. Bonca, P. Prelovsek, PRL 106, 196401 (2011)

t-J ladder - supplementary

