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Scaling of stress differences to elevations (in isostasy), and simple problems 
illustrating force per unit length

 



Processes responsible for elevating and 
sustaining mountain belts�

1.  Isostasy: Airy and Pratt reminder 
2.  Potential energy per unit area (= force 

per unit length that adjacent regions 
apply to one another) 

3.  Prelude to the thin viscous sheet 
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Isostatic compensation 

For Airy isostasy, the density difference between crust and 
mantle dictates elevation differences. 
For Pratt isostasy, lateral differences density (associated 
mostly with lateral temperature differences in the mantle) 
affect surface elevations. 



Isostasy: 
at the  

Depth of 
Compensation, 
the Pressure 
is the same 

beneath 
columns of 

mass 



To show differences, we must exaggerate 
pressure differences.  (Be careful.) 



Compensation occurs deeper than for Airy isostasy.  
Consequently, potential energy differences and forces per unit length can be 

greater for Pratt than Airy compensation of the same elevation. 



Equation of Equilibrium 

The gradient in the stress tensor plus the body 
force is zero (no acceleration). 

(For now, compressive stresses are positive; z increases downward.) 

∇⋅σ ij − ρg ˆ z = 0
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Simple Case: 2 dimensions (x,z) 
no y-dependence 

The equations simplify. 
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Simple Case: 2 dimensions (x,z) 
no y-dependence 

Moreover, for two dimensions, we may 
ignore y-components of stress. 
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Simple Case: 2 dimensions (x,z) 
boundary conditions 

1.  No shear or normal stress on the top. 
2.  No shear stress on the bottom (no 

traction from flow in the asthenosphere). 

∂σ xx

∂x
+

∂σ xz

∂z
= 0

∂σ xz

∂x
+

∂σ zz

∂z
= ρg



For 2-D: the horizontal component of the 
force balance. 

Integrate this over depth; second term vanishes. 
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A simple implication of 
As L, thickness of the lithosphere, is ~ constant, 

the average horizontal compressive 
stress is (virtually) constant: 

Thus (insofar as the assumptions made so far 
are reasonable) variations in tectonic style 
depend not on the horizontal compressive 
stress, but instead on the variations in the 
vertical compressive stress, and hence 
on elevation and how isostatic 
equilibrium is maintained. 

Lσ xx = Constant

σ xx ≈ Constant



The average horizontal stress and the 
horizontal force per unit length are constant 
Lσ xx = Constant

L 



Simple Case: 2 dimensions (x,z) 
boundary conditions 

1.  No shear or normal stress on the top. 
2.  No shear stress on the bottom (no 

traction from flow in the asthenosphere). 
3.  Still simpler assumption: negligible 

shear stresses on horizontal or vertical 
planes. 



Vertical component of force balance 

1.  First term vanishes (by assumption) 

2.  Integrate remaining terms. 

3.  Vertical normal stress = lithostatic pressure 
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Thrust and normal faulting 
        is larger beneath high regions than 

beneath low regions. 
Beneath high regions,        can be greater 

than      , which favors normal faulting 
there.  

Beneath lower regions, where         is the 
smaller, for a constant value of        , we 
may find:                .  Hence thrust faulting 
is likely, but neither normal faulting in 
high areas, nor thrust faulting in low 
areas is required.  

σ zz

σ zz
σ xx

σ zz
σ xx

σ xx > σ zz



Thrust and Normal faulting 

Lσ xx = Constant



Cartoon cross section of the Andes 
Vertically exaggerated cross 

section across the Andes of Peru 



An example 
of a high 

range 
undergoing 
extension 

Normal faulting in 
the Cordillera 
Blanca, Peru 

[Dalmayrac and Molnar 1981] 



Gravitational Potential Energy 
(per unit area) 

Potential energy: 

Potential energy per unit area in the earth: 
  U =

� 
F ⋅ d

� 
u ∫

PE = σ zzdz
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Earth's Surface

∫

= ρ ′ z ( )gd ′ z 
z

Earth's Surface

∫( )dz
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Earth's Surface

∫



Difference in potential energy (per unit 
area) equals a force per unit length  



More potential energy is stored beneath higher than 
lower terrain.  The difference in PE, however, does not 

determine whether normal or thrust faulting occurs. 

Lσ xx = Constant



The vertical compressive stress increases linearly with 
depth, proportional to the product of density and gravity. 



Some GPE 
arithmetic 

Difference in GPE 
change between 
doubling the crustal 
thickness and 
doubling the width 
of a high region.  

[Molnar and Lyon-Caen 1988] 



Again, difference in potential energy (per 
unit area) equals force per unit length 



GPE gain 
associated 

with 
removal of 

mantle 
lithosphere. 

 This is not 
small! 

[Molnar and Stock 2009] 



Some possible misunderstandings 
1.  “Transmission of stress” is a non concept 
2.  “Regional stress field” 

Horizontal normal stresses are subject to the 
equation of equilibrium, but regional 
variations need not be large. 

Deformation results from deviatoric stress. 

Lσ xx = Constant



Stress and Deviatoric Stress 
(a source of confusion) 

     is the stress tensor (positive if compressive) 
P is pressure 
    is the Kronecker delta:  
     is the deviatoric stress tensor. 

Stress does work. 
Deviatoric stress causes deformation. 

σ ij = Pδij + τ ij
σ ij

δij

τ ij

δij =1,i = j;δij = 0,i ≠ j



Some possible misunderstandings 
1.  “Transmission of stress” is a non concept. 
2.  “Regional stress field” is a misleading 

concept because: 
3.  Deformation results from deviatoric stress, 

and 
4.  The deviatoric stress field depends on 

lateral variations in crustal thickness or in 
the thermal structure of the upper mantle 
(the body force in the equation of 
equilibrium). 

Lσ xx = Constant



Thin Viscous Sheet 



Basic assumptions 
1.  No shear or normal stresses on the top 

surface. (No wind) 
2.  No shear stress on the bottom surface. 

(Mantle dynamics apply no basal traction.) 
3.  Applicable to deformation averaged over 

distances comparable to the thickness of 
the lithosphere. 

4.  Vertically average properties, stresses, 
strains, and velocities describe well 
regional fields. 



Equation of Equilibrium (again) 

(Now tensile stress is positive; z increases upward.) 

The gradient in the stress tensor plus the 
body force is zero (no acceleration). 

∇ ⋅ σ ij − ρgˆ z = 0
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Pressure and deviatoric stress 

Thus, 

Hence, 

and, of course: 

P = − σxx +σyy +σzz( ) 3

σ xx = τ xx − τ zz +σ zz σ yy = τ yy − τ zz +σ zz

τ ij = σ ij + Pδij

σ xy = τ xy σ xz = τ xz σ yz = τ yz

P = τ xx −σ xx = τ yy −σ yy = τ zz −σ zz



The horizontal components 
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Integrate the two horizontal 
component equations over depth 

        ; 

and the same for the others. 
Define gravitational potential energy per 
unit area as 

then 

∂τ xx

∂x−L

0

∫ dz = L
∂τ xx

∂x

∂τ xz

∂z
dz

−L

0

∫ = τ xz(z = 0) − τ xz(z = −L) = 0

Γ = σ zz z( )
−L

0

∫ dz

∂σ zz

∂x
dz

−L

0

∫ =
∂Γ
∂x



Thin viscous sheet equations 

These state that horizontal gradients in (vertically averaged) 
stress (left side) equal horizontal gradients in potential energy 
per unit area,   , (right side).  

(Potential energy per unit area scales approximately with mean 
elevation.) 
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Comparison of gradients in “stress” with  
gradients in  

potential  
energy 

per  
unit 

area. 

[England and 
Molnar 1997] 



An example where 
assumptions are violated 

  Consider lithosphere underthrust beneath a 
mountain belt and flexed down (effectively 
by elastic stresses).   
  Strength of the lithosphere supports the 
mountain range, because shear stresses on 
vertical planes are not negligible.   



Summary 
1.  Isostasy: both thick crust or hot upper mantle can 

support mountain ranges. 
2.  Crustal thickening can build mountain ranges: 

a.  Widespread thrust faulting and crustal shortening 
b.  Underthrusting of thick lithosphere (flexure) 
c.  Channel flow in the crust 

3.  Forces (per unit length) do work against strength of rock 
(friction and viscosity) and against gravity (potential 
energy).  (Both must be considered) 

4.  Horizontal gradients in stress balanced horizontal 
gradients in potential energy (mean elevations).  

5.  Removal of mantle lithosphere can alter the thermal 
structure and (via Pratt isostasy) alter mean elevations. 



Some possible misunderstandings 
1.  Transmission of stress: 

 Transmission of stress is a non concept! 
Gradients in stress and body forces balance 

each other.  Stress must be “transmitted.” 
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Some possible misunderstandings 
1.  Transmission of stress is a non concept 
2.  Regional stress field 



Basic assumptions 
1.  No shear or normal stresses on the top 

surface. (No wind) 
2.  No shear stress on the bottom surface. 

(Mantle dynamics play no role) 
3.  Applicable to deformation averaged over 

distances comparable to the thickness of 
the lithosphere. 

4.  Vertically average properties, stresses, 
strains, and velocities describe well 
regional fields. 



Thin viscous sheet equations 

These state that horizontal gradients in (vertically 
averaged) stress (left side) equal horizontal gradients 
in potential energy per unit area,  , (right side).  

(Potential energy per unit area,   , scales 
approximately with mean elevation.) 
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