



2240-27

## Advanced School on Scaling Laws in Geophysics: Mechanical and Thermal Processes in Geodynamics

23 May - 3 June, 2011

**Convection - Part II** 

Claude JAUPART

Institut de Physique du Globe de Paris
France



 $Ra = 10^8$ 

$$T = \overline{T}(z,t) + \theta(x,y,z,t).$$

$$\rho C_p \left[ \frac{\partial \overline{T}}{\partial t} + \frac{\partial \overline{w\theta}}{\partial z} \right] = \lambda \frac{\partial^2 \overline{T}}{\partial z^2} \, .$$

$$\rho C_p \frac{\partial \overline{T}}{\partial t} = -\frac{\partial}{\partial z} \left[ -\lambda \frac{\partial \overline{T}}{\partial z} + \rho C_p \overline{w\theta} \right]$$

$$\rho C_p \frac{\partial \overline{T}}{\partial t} = -\frac{\partial \overline{q}}{\partial z}$$

$$\overline{q} = -\lambda \frac{\partial \overline{T}}{\partial z} + \rho C_p \overline{w \theta}.$$



$$\overline{q} = -\lambda \frac{\partial \overline{T}}{\partial z} + \rho C_p \overline{w\theta} = \text{constant} = Q,$$





 $Ra = 10^8$ 

#### Physical characteristics of geological convective systems

| System                   | h       | $\Delta T$ , K | μ, Pa s            | Pr               | Ra               |
|--------------------------|---------|----------------|--------------------|------------------|------------------|
| Upper mantle             | 660 km  | 1300 †         | $5 \times 10^{20}$ | 10 <sup>23</sup> | 10 <sup>6-</sup> |
| Whole mantle             | 3000 km | 3300 †         | $5 \times 10^{21}$ | $10^{24}$        | $10^{7}$         |
| Basaltic lava lake       | 50 m    | 50 ‡           | 10                 | $10^{3}$         | $10^{12}$        |
| Basaltic magma reservoir | 1 km    | 50 ‡           | 10                 | $10^{3}$         | $10^{16}$        |
| Dacitic magma reservoir  | 1 km    | 50 ‡           | $10^{6}$           | $10^{8}$         | $10^{11}$        |

Values have been rounded off for clarity.

<sup>†</sup> True temperature difference deduced from the mantle geotherm of Figure 2.4.

<sup>‡</sup> temperature difference across the actively convecting part of the system.

The "4/3" law for the convective heat flux at high Rayleigh number

$$Nu = C_N(Pr)f_N(Ra)$$
,





$$Q = k \frac{\Delta T}{2\delta},$$

## The "4/3" law for the convective heat flux at high Rayleigh number

$$Nu = C_N(Pr)f_N(Ra)$$
,

$$Q = {}_{k} \frac{\Delta T}{2\delta},$$

$$Nu = \frac{h}{2\delta}.$$





$$Q = \text{Nu}k \frac{\Delta T}{h} = C_N(\text{Pr})k \frac{\Delta T}{h} f_N\left(\frac{\rho_o g \alpha \Delta T h^3}{\kappa \mu}\right),$$

$$f_N(\mathrm{Ra}) \propto \mathrm{Ra}^{1/3}$$

$$Nu = C_N Ra^{1/3}.$$

$$Q = C_Q k \left(\frac{g\alpha}{\kappa \nu}\right)^{1/3} \Delta T_\delta^{4/3},$$
$$C_Q = 2^{4/3} C_N$$

## Rigid boundaries, Pr = 2750, L/h > 1 (Goldstein et al., 1990)







Free upper boundary (cooling from top only),  $Pr \approx 5$  (water) L/h = 1 {Katsaros et al., 1977)



### . Data on the convective heat flux in Rayleigh-Benard convection

| Pr   | Ra                                  |       | Aspect ratio | $C_N$ + | $C_Q$ ++ | Reference                    |
|------|-------------------------------------|-------|--------------|---------|----------|------------------------------|
| 4–6  | $5 \times 10^{10} - 10^{11}$        | Rigid | 0.98         | 0.060   | 0.15     | (Funfschilling et al., 2005) |
| 4–6  | $10^{10}$                           | Rigid | 2            | 0.062   | 0.16     | (Funfschilling et al., 2005) |
| 4–6  | $3 \times 10^{8} - 4 \times 10^{9}$ | Free  | 1            | §       | 0.16†    | (Katsaros et al., 1977)      |
| 2750 | $10^{8} - 10^{13}$                  | Rigid | > 1          | 0.0659  | 0.17     | (Goldstein et al., 1990)     |
| ∞    | $10^{6} - 10^{9} \ddagger$          | Free  | 1.5          | 0.150¶  | 0.378¶   | (Hansen et al., 1992)        |

<sup>&</sup>lt;sup>+</sup> Constant in the Nu versus Ra relationship (5.81).

<sup>++</sup> Constant in the local heat flux scaling law (5.82).

<sup>§</sup> Only the boundary layer scaling can be determined in this transient cooling experiment.

<sup>†</sup> Value re-calculated for a 1/3 scaling exponent (instead of 0.33).

<sup>¶</sup> Value re-calculated for a 1/3 scaling exponent at  $Ra = 10^9$ .

<sup>‡</sup> Numerical calculations in 2D.



 $Ra = 10^8$ 

$$0 = -\nabla P_h + \rho_o \left[ 1 - \alpha \left( \overline{T} - T_o \right) \right] \mathbf{g},$$

$$\rho_o \mathbf{v} \cdot \frac{\partial \mathbf{v}}{\partial t} + \rho_o \mathbf{v} \cdot (\mathbf{v} \nabla \mathbf{v}) = -\mathbf{v} \cdot \nabla P - \mathbf{v} \cdot (\nabla \cdot \boldsymbol{\tau}) + \alpha \rho_o w \theta g,$$

$$e_c = v^2/2$$

$$\rho_o \frac{\partial e_c}{\partial t} + \nabla \cdot (\rho e_c \mathbf{v}) = -\nabla \cdot (\mathbf{v}p) + p\nabla \cdot \mathbf{v}$$
$$- [\mathbf{v} \cdot (\nabla \cdot \boldsymbol{\tau}) - \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{v})] - \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{v}) + \alpha \rho_o w \theta g,$$

## Irreversible kinetic dissipation

$$\psi = \mathbf{v} \cdot (\nabla \cdot \boldsymbol{\tau}) - \nabla \cdot (\boldsymbol{\tau} \cdot \mathbf{v}).$$

$$\int_{V} \rho_{o} \frac{\partial e_{c}}{\partial t} dV + \int_{S} \rho_{o} e_{c} \mathbf{v} \cdot dS = -\int_{S} p \mathbf{v} \cdot dS + \int_{V} p \nabla \cdot \mathbf{v} dV$$
$$-\int_{V} \psi dV - \int_{S} (\boldsymbol{\tau} \cdot \mathbf{v}) \cdot dS + \int_{V} \alpha \rho_{o} w \theta g dV.$$

$$\begin{split} &+ \int_{V} \rho \alpha g \, w \theta \, dV - \int_{V} \psi \, dV = 0. \\ &+ \int_{0}^{h} \rho \alpha g \, \overline{w \theta} \, dz \, - \int_{0}^{h} \overline{\psi} \, dz = 0. \end{split}$$

$$\int_{0}^{h} \rho C_{p} \overline{w\theta} dz = \int_{0}^{h} \left( Q + k \frac{d\overline{T}}{dz} \right) dz$$
$$= Qh + k \left[ T(h) - T(0) \right] = Qh - k \Delta T.$$

$$\epsilon = \int_0^h \overline{\psi} \, dz = \mu \frac{v^2}{h^3} \left( \text{Nu} - 1 \right) \text{RaPr}^{-2}.$$

# Free boundaries, large Prandtl number



$$\int_0^h \psi \, dz \sim \mu \frac{U^2}{h^2} h \sim \mu \frac{v^2}{h^3} \mathrm{Re}^2.$$

$$\mu \frac{v^2}{h^3} (\text{Nu} - 1) \, \text{RaPr}^{-2} \sim \mu \frac{v^2}{h^3} \text{Re}^2,$$

Remember that  $Nu \sim h/\delta$ .

Add balance between horizontal advection and vertical diffusion (remember scalings for laminar plumes)

$$\delta \sim \sqrt{\kappa h/U}$$

 $Re^{1/2}Pr^{1/2} \sim Nu$ .

 $Nu \sim Ra^{1/3}$ ,  $Re \sim Ra^{2/3}Pr^{-1}$ ,

$$\delta \sim h \mathrm{Ra}^{-1/3}$$
,  $U \sim \frac{\kappa}{h} \mathrm{Ra}^{2/3}$ .

$$\delta \sim \sqrt{\kappa h/U}$$

This is the average boundary layer thickness. The local thickness at distance *x* from upwelling is

$$\delta \sim \sqrt{\kappa \, x/U}$$





Heat flux  $\sim$  (distance)<sup>-1/2</sup>

 $Nu \sim Ra^{1/3}$ ,  $Re \sim Ra^{2/3}Pr^{-1}$ ,

$$\delta \sim h \mathrm{Ra}^{-1/3}$$
,  $U \sim \frac{\kappa}{h} \mathrm{Ra}^{2/3}$ .



(Galsa & Lenkey, Phys. Fluids 2007)

# With rigid boundaries



# The regimes of Rayleigh-Bénard convection in rigid enclosures

(Grossmann & Lohse, J. Fluid Mech. 2000, Phys. Fluids. 2001)

| Regime                                                     | Dominant<br>dissipation § | Nu                                         | Re                                         |
|------------------------------------------------------------|---------------------------|--------------------------------------------|--------------------------------------------|
| I $I_{\infty} (Pr \gg 1)$ III $III_{\infty} (Pr \gg 1)$ IV | $(u,B) - (\theta,B)$      | 0.31 Ra <sup>1/4</sup> Pr <sup>-1/12</sup> | 0.073 Ra <sup>1/3</sup> Pr <sup>-5/6</sup> |
|                                                            | $(u,B) - (\theta,B)$      | 0.35 Ra <sup>1/5</sup>                     | 0.054 Ra <sup>3/5</sup> Pr <sup>-1</sup>   |
|                                                            | $(u,B) - (\theta,I)$      | 0.018 Ra <sup>3/7</sup> Pr <sup>-1/7</sup> | 0.023 Ra <sup>4/7</sup> Pr <sup>-6/7</sup> |
|                                                            | $(u,B) - (\theta,I)$      | 0.027 Ra <sup>1/3</sup>                    | 0.015 Ra <sup>2/3</sup> Pr <sup>-1</sup>   |
|                                                            | $(u,I) - (\theta,I)$      | 0.060 Ra <sup>1/3</sup>                    | 0.088 Ra <sup>4/9</sup> Pr <sup>-2/3</sup> |

§Dominant contributions to kinetic and thermal dissipation (see text). u and  $\theta$  stand for the kinetic and thermal dissipation, respectively, and symbols I and B indicate interior and boundary-layer contributions, respectively.



#### Physical characteristics of geological convective systems

| System                   | h       | $\Delta T$ , K | μ, Pa s            | Pr               | Ra               |
|--------------------------|---------|----------------|--------------------|------------------|------------------|
| Upper mantle             | 660 km  | 1300 †         | $5 \times 10^{20}$ | 10 <sup>23</sup> | 10 <sup>6-</sup> |
| Whole mantle             | 3000 km | 3300 †         | $5 \times 10^{21}$ | $10^{24}$        | $10^{7}$         |
| Basaltic lava lake       | 50 m    | 50 ‡           | 10                 | $10^{3}$         | $10^{12}$        |
| Basaltic magma reservoir | 1 km    | 50 ‡           | 10                 | $10^{3}$         | $10^{16}$        |
| Dacitic magma reservoir  | 1 km    | 50 ‡           | $10^{6}$           | $10^{8}$         | $10^{11}$        |

Values have been rounded off for clarity.

<sup>†</sup> True temperature difference deduced from the mantle geotherm of Figure 2.4.

<sup>‡</sup> temperature difference across the actively convecting part of the system.



# The regimes of Rayleigh-Bénard convection in rigid enclosures

(Grossmann & Lohse, J. Fluid Mech. 2000, Phys. Fluids, 2001)

| Regime                                                     | Dominant<br>dissipation §                                                                                            | Nu                                                                                                                                                          | Re                                                                                                                                                                                                                             |
|------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I $I_{\infty} (Pr \gg 1)$ III $III_{\infty} (Pr \gg 1)$ IV | $(u,B) - (\theta,B)$<br>$(u,B) - (\theta,B)$<br>$(u,B) - (\theta,I)$<br>$(u,B) - (\theta,I)$<br>$(u,I) - (\theta,I)$ | $0.31 \text{ Ra}^{1/4}\text{Pr}^{-1/12}$ $0.35 \text{ Ra}^{1/5}$ $0.018 \text{ Ra}^{3/7}\text{Pr}^{-1/7}$ $0.027 \text{ Ra}^{1/3}$ $0.060 \text{ Ra}^{1/3}$ | 0.073 Ra <sup>1/3</sup> Pr <sup>-5/6</sup><br>0.054 Ra <sup>3/5</sup> Pr <sup>-1</sup><br>0.023 Ra <sup>4/7</sup> Pr <sup>-6/7</sup><br>0.015 Ra <sup>2/3</sup> Pr <sup>-1</sup><br>0.088 Ra <sup>4/9</sup> Pr <sup>-2/3</sup> |

§Dominant contributions to kinetic and thermal dissipation (see text). u and  $\theta$  stand for the kinetic and thermal dissipation, respectively, and symbols I and B indicate interior and boundary-layer contributions, respectively.