Light in a Twist

Prof Miles Padgett

School of Physics and Astronomy
Optics Group

Outline

- The orbital angular momentum (OAM) of Light
- Topology of speckle lines
- Quantum entanglement and EPR
- OAM and EPR/Bell
- Measuring OAM

That light has a momentum (History)

- The momentum of light
- Momentum/energy $=\hbar \mathrm{k}_{0} / \hbar \omega$
- Spin AM/energy $=\hbar / \hbar \omega$
(True both for photons and classical fields)
- The push of light
- Force $=$ P/c (e.g. 3 mW -> 10pN)
- The twist of light (circularly polarised)
- Toque $=$ P/ $/$ (e.g. 3mW @633nm -> 1 pN. $\mu \mathrm{m}$)
- The twist of light (skew ray, @ f\#, acting at r)
- Toque $\approx \mathrm{Pr} /(2 \mathrm{c} . \mathrm{f}$)
- The twist of light (helical phase, @ f , acting at r)
- Toque $\approx P \ell / \omega\left(\ell_{\max } \approx \mathrm{k}_{0} \mathrm{r} / 2 \mathrm{f} \#\right)$

P, optical power, f\#, "f-number" of optics

- Linear momentum
- Maxwell
- Abraham/Minkowski (1909/08)
- Spin AM momentum
- Maxwell
- Poynting/Beth (1909/36)
- Orbital AM (not spin) momentum
- Maxwell
- Various ≈ 1930 s
- Orbital AM (helical phase) momentum in a beam Allen et al. (1992)

Getting started on Orbital Angular Momentum of Light

- 1992, Les Allen et al.

PHYSICAL REVIEW A

Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman Huygens Laboratory, Leiden University, P.O. Box 9504, 2300 RA Leiden, The Netherlands (Received 6 January 1992)

- 1994, Les and Miles have dinner......

Orbital Angular Momentum from helical phase fronts

$$
p_{\theta} \neq 0
$$

Angular-momentum of light

- In the "classical world" all effects can be explained by the electro-magnetic field
- Angular momentum zdirection requires linear momentum in ϕ-direction
- i.e. $\mathrm{L}_{\mathrm{z}}=\mathrm{r} p_{\phi}$
- Linear momentum in ϕ direction needs component of E or B in z-direction
- Angular momentum requires field component in direction of propagation

Calculate AM from EM field

$$
\begin{gathered}
\begin{array}{c}
\text { Depends upon } \\
\text { phase structure of beam }
\end{array} \\
\begin{array}{c}
\text { Depends upon } \\
\text { polarisation state \& } \\
\text { intensity gradient of } \\
\text { beam }
\end{array} \\
\left.\begin{array}{c}
\phi-\text { component } \\
\text { gives OAM }
\end{array} E^{*} \times B+E \times B^{*}\right) \left.=\mathrm{i} \omega \frac{\varepsilon_{0}}{2}\left(\mathrm{u}^{*} \nabla \mathrm{u}-\mathrm{u} \nabla \mathrm{u}^{*}\right)+\omega \mathrm{k} \varepsilon_{0} \right\rvert\, \mathrm{u}^{2} z+\omega \sigma \frac{\varepsilon_{0}}{2} \frac{\partial|\mathrm{u}|^{2}}{\partial \mathrm{r}} \Phi
\end{gathered}
$$

Spin AM (more complicated!)

- SAM requires both circular polarisation \& an intensity gradient!
- B α Curl E
- e.g. if $\frac{\mathrm{dE}_{y}}{\mathrm{dx}} \neq 0 \& \sigma \neq 0$
$-B_{z} \neq 0$
- Intensity gradient approach gives right answer to
- Transfer of SAM to particles

Orbital angular momentum

- OAM arises from helical phasefronts
$-E_{z} \& H_{z} \neq 0$
- $p_{\phi} \neq 0$
$-L_{z} \neq 0$
- OAM arises from "skew rays"
- Skew rays give the right answer to
- Transfer of OAM to particles
- Generation of OAM

B

- Frequency shift

Simmons and Guttmann (1970)

Optical vortices, Helical phasefronts , Angular momentum

- Description of light
- Intensity, $I \geq 0$
- Phase, $2 \pi \geq \phi \geq 0 \quad \ell=1$

$$
\phi=\omega t+k z+\ell \theta
$$

$\ell=0$, plane wave
$\ell=1$, helical wave
$\ell=2$, double helix
$\ell=3$, pasta fusilli
etc.
$\ell=$ vortex charge

Angular momentum in terms of photons

- Spin angular momentum
- Circular polarisation

$$
\sigma=+1
$$

- of per photon
- Orbital angular momentum
- Helical phasefronts
- $\ell \hbar$ per photon

$$
\ell=0
$$

$\ell=1$
$\ell=2$
$\ell=3$
etc
(1) University

A double-start helix ($\ell=2$)

Optical Spanners

Direct Observation of Transfer of Angular Momentum to Absorptive Particles from a Laser Beam with a Phase Singularity
H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop

Department of Physics, The University of Queensland, Brisbane, Queensland, Australia Q4072 (Received 28 November 1994; revised manuscript received 4 April 1995)

OPTICS LETTERS / Vol. 22, No. 1 / January 1, 1997

Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner

N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett
J. F. Allen Physics Research Laboratories, Department of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews, Fife KY16 9SS, Scotland

Volume 88, Number 5
PHYSICAL REVIEW LETTERS

Intrinsic and Extrinsic Nature of the Orbital Angular Momentum of a Light Beam
A. T. O'Neil, I. MacVicar, L. Allen, and M. J. Padgett

Department of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland
(Received 28 June 2001; published 16 January 2002)

Off-axis Spin and Orbital transfer

Particle spins on its own axis

OAM / SAM transfer to particle held in optical tweezers

SAM

Particle spins on its own axis

OAM
Particle orbits the beam axis

Making helical phasefronts

I December 1994

Optics Communications 112 (1994) 321-327

Helical-wavefront laser beams produced with a spiral phaseplate
M.W. Beijersbergen, R.P.C. Coerwinkel, M. Kristensen ', J.P. Woerdman

Huygens Laboratory. Universily of Leiden, P.O. Box 9504, 2300 RA Leiden, The Netherlands
Received 30 August 1994

- Pass plane-wave through a spiral-phase plate (thickness $\alpha \phi$)
- step height= $\ell \lambda /(n-1)$

Designing helical phase hologram

- Spiral Phase-plate

$$
s=\ell \lambda /(n-1)
$$

- Holographically

$$
\text { e.g. } \ell=1 \triangleright
$$

Making helical phasefronts with holograms

Screw dislocations in light wavefronts

V. YU. BAZHENOV, M. S. SOSKIN and M. V. VASNETSOV
Institute of Physics, Academy of Sciences of Ukraine, 252650 Kiev, Prospect Nauki 46, Ukraine

(Receited 14 June 1991; revision received 8 Janwary 1992)

JOURNAL OF MODERN OPTICS, 1992 , vol. 39 , No. $5,985-990$

Making a white-light vortex

- Fibre-coupled (₹spatially coherent) white-light source
- Hologram to create vortex
- Prism to correct chromatic dispersion

Dispersion in the vortex

- De-optimise dispersion correction

- Non-colinear spectral components
- Need to boost colour in dark core
- Chromascope (Berry)

University
of Glasgow

Acoustic Spanners

PRL 100, $024302(2008) \quad$ PHYSICAL REVIEW LETTERS $\quad 18$ IANUARY 2008

Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space
Karen Volke-Sepúlveda, 'Arturo O. Santillán, ${ }^{2 * *}$ and Ricardo R. Boullosa ${ }^{2}$
${ }^{1}$ Instinuto de Firica, Universidad Nacional Autoinoma de México, Apartado Postal 20-364, 01000 Mexico D.F. Mexico
${ }^{2}$ Centro de Ciencias Aplicadas y Desarrallo Tecnológico, Universidad Nacional Antónomut de México.
Apartado Postal 70-186, 04510 México D. F., México
(Rectived 14 July 2007 ; reviscd manuscript reccived 10 October 2007; published 16 January 2008)

New Journal of Physics
 The open-access journal for physics

An acoustic spanner and its associated rotational Doppler shift

K D Skeldon, C Wilson, M Edgar and M J Padgett ${ }^{1}$
Department of Physics and Astronomy, University of Glasgow,
Glasgow, UK
E-mail: m.padgett@ physics.gla.ac.uk
New Journal of Physics 10 (2008) 013018 (9pp)
Received 17 September 2007
Published 21 January 2008

Watt for watt, sound (in air) has 10^{6} times more push than light (in vacuum)

Free-space comms

NewScientist

Twisted light
It's fast, furious and perfect for talking to aliens
supported by \xlongequal{F} Scottish Enterprise
proof of concept fun
A new approach to Free-Space Optics
Concept: Uses the orbital angular momentum of light to define additional bits, reate parallel channels or transmit "hidden" information.

Status: Technology demonstrator operational within laboratory. Uses 9 thatus: Technology demonstrator operational (nominally 1 for tracking and beam alignment/confirmation, the ther 8 for information transfer) displayed as a 3×3 grid on a CCD camera.
The amaing truth
The amazing truth Respect for fish Monkeys and Machiavelli Betty, the engineer crow
mart sheep or woolly robots? The friendly hyena
Dogs that speak Human

Otential Advantages

New multiplexing opportunities ($\sim 4-16$ parallel channels)
Data transmission immune to eavesdropping (fundamental physics: data simply cannot be read from atmospheric scattering or side lobe emission解 bandwidth ($\times 4-16$ higher information)

Annular Doppler shift for circularly polarised light

- Additional rotation of polarisation (at Ω) shifts frequency

$$
\begin{aligned}
\Delta \omega & =\Omega \\
& =\sigma \Omega \quad(\sigma= \pm 1)
\end{aligned}
$$

- c.f. time speeds up if you rotate a clock!

- Such a beam contains both SAM and OAM
- Example 1

$$
\ell=3, \sigma=+1
$$

- Four fold rot. Symmetry
- Rotate beam at Ω

$$
\begin{aligned}
\Delta \omega & =(\ell+\sigma) \Omega \\
& =\mathrm{J} \Omega \\
& =4 \Omega
\end{aligned}
$$

Rot. Doppler for helically phased, circ. polarised light -2

- The SAM and OAM add or subtract
- Example 2

$$
\ell=-3, \sigma=+1
$$

- Two fold rot. Symmetry
- Rotate beam at Ω

$$
\begin{aligned}
\Delta \omega & =(\ell+\sigma) \Omega \\
& =\mathrm{J} \Omega \\
& =2 \Omega
\end{aligned}
$$

OAM in second harmonic generation

- Poynting vector "cork screws", azimuthal skew angle is

2 infra red
photons

$$
\ell=\ell_{0}
$$

of Glasgow

OAM conserved in SHG

- OAM conserved in the light beam
- c.f. SAM in which
 OAM is not conserved
- But, down

conversion is more complicated!

Further reading on OAM?

-08

nometr 4	Vol. 2
August 2008	

www.lprjournal.org PHOTONICS REVIEWS

Electromagnetism and beyond!

Proposal for Generating Brilliant X-Ray Beams Carrying Orbital Angular Momentum
Shigemi Sasaki and Ian McNulty

Utilization of Photon Orbital Angular Momentum in the Low-Frequency Radio Domain
B. Thide, ${ }^{\text {1,* }}$ H. Then, ${ }^{2}$ J. Sjoholm, ${ }^{3}$ K. Palmer, ${ }^{3}$ J. Bergman, ${ }^{1}$ T.D. Carozzi, ${ }^{4}$ Ya. N. Istomin, ${ }^{5}$ N.H. Ibragimov, ${ }^{\text {, and R. Khamitova }}{ }^{6}$

The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate
G.A. Turnbull, D.A. Robertson, G.M. Smith, L. Allen, M.J. Padgett

Transfer of Angular Momentum to Matter from Acoustical Vortices in Free Space
Karen Volke-Sepuilveda. Arturo O. Santillán, ${ }^{2 * *}$ and Ricardo R. Boullosa ${ }^{2}$

Generation of electron beams carrying orbital angular momentum

Masaya Uchida' \& Akira Tonomur
of Glasgow

What else for OAM

Vortex loops

Non-linear freq. conversion

White light vortices

Rotational Frequency Shifts

Optical spanners

Optical Vortices before Angular Momentum

Proc. R. Soc. Lond. A. 336, 165-190 (1974)
Printed in Great Britain

Dislocations in wave trains
By J. F. Nye and M. V. Berry
H. H. Wills Physics Laboratory, University of Bristol

And vortex lines in electron wavefunctions

Quantised Singularities in the Electromagnetic Field

P. A. M. Dirac

Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 133, No. 821. (Sep. 1, 1931), pp. 60-72.

Fractality and Topology of Light's darkness

Kevin O'Holleran
Florian Flossmann

Mark Dennis (Bristol)

University of Glasgow

Vortices are ubiquitous in nature

- Whenever three (or more) plane waves interfere optical vortices are formed
- Charge one vortices occur wherever there is diffraction or scattering

Map out the vortex position in different planes

- Either numerically or experimentally one can map the vortex positions in different planes

3-plane waves (= amplitude)

Vortex threads are straight and parallel

5-plane waves (= amplitude)

- Vortex threads form closed loops \& open lines

Modeling plane-wave interference 3D patterns

- Multiple plane-wave described in k space
- Use a discrete spatial spectrum, gives an interference pattern with
- lateral periodicity $2 \pi / \Delta \mathrm{k}$
- axial periodicity $2 \pi /\left(\Delta k^{2} / 2 k_{0}\right)$
- Can calculate interference pattern over a representative "Talbot cube"
- Tile cubes together to cover all space

of Glasgow

Within the "Talbot cube"

- Map out the vortex lines in 3D
- Vortex lines re-enter cube
- Can "tile" the cube to gain knowledge over all space

The tangled web of speckle

- Experiment

Experimental recording of 3D interferograms

Fourier to recover phase

- Use SLM to phase step the reference,
- Record intensity (12-bit) of EVERY pixel as a function of phase
- Over sample phase to give improved noise immunity
- FT of the pixel variation gives relative phase of random pattern with respect to reference

Vortex lines in Speckle

Fractality of Light's darkness

Fractality of Light's Darkness

Kevin O'Holleran, ${ }^{1, *}$ Mark R. Dennis, ${ }^{2}$ Florian Flossmann, ${ }^{1}$ and Miles J. Padgett ${ }^{1}$

Closed vortex loops have a defined size distribution

Topological Features

- Ratio of loops to lines (cot. length)
-1:27
- Do vortex loops form links and knots? - 24 0ops per coherence volume $\left(\lambda^{3} / \mathrm{NA}^{4}\right)$
- 1/10,000 are linked. of Glasgow

Loops have exponential chance of NOT being threaded

Loop size

Diffraction grating (hologram) to make Knots

Hologram to shape phase AND intensity of beam

of Glasgow
And the Knot

Tomographic reconstruction

Cross-sections through holographically created knot

The Nature of Science

Q insciences
org anisation

Robert King, Kevin O’Holleran, Barry Jack

Entanglement of OAM states

Entanglement of the orbital angular momentum states of photons
 $$
\text { NATURE|VOL 412|19 JULY } 2001 \mid
$$

Alois Mair', Allpasha Vazirl, Gregor Weihs \& Anton Zeilinger
PRL 95, 240501 (2005) PHYSICAL REVIEW LETTERS 9 week ending

Experimental Demonstration of Fractional Orbital Angular Momentum Entanglement of Two Photons
S.S. R. Oemrawsingh, ${ }^{*}$ X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. 't Hooft, ${ }^{\dagger}$ and J. P. Woerdman

PRL 95, 260501 (2005)

PHYSICAL REVIEW LETTERS
week ending
31 DECEMBER 2005

Generation of Hyperentangled Photon Pairs

Julio T. Barreiro, ${ }^{1}$ Nathan K. Langford, ${ }^{2}$ Nicholas A. Peters, ${ }^{1}$ and Paul G. Kwiat ${ }^{1}$

Quantum Entanglement and Down Conversion

What is EPR?

Particles are distributed in position, but each individual particle has precisely defined x_{1}

$x_{1}-x_{2}=0$

2

Particles are distributed in position, but each individual particle has precisely defined x_{2}

The particles "started" from the same position (i.e. conservation)

Measuring position of one particle gives instantaneous (non local) knowledge of the other particle
One concludes that particles carry position information from source to point of measurement.

What is EPR - continued

Particles are distributed in momentum, but each individual particle has precisely defined p_{1}

$\mathrm{p}_{1}+\mathrm{p}_{2}=0$

Particles are distributed in momentum, but each individual particle has precisely defined p_{2}

The particles "started" with the opposite momentum (i.e. conservation)

Measuring momentum of one particle gives instantaneous (non local) knowledge of momentum of the other particle

One concludes that particles carry the momentum information from source to point of measurement.

So what is the problem?

It seems we can measure momentum of 1 and know position from having measured the position of 2

2

It seems we can measure position of 1 and know momentum from having measured the momentum of 2

Quantum mechanics is either Incomplete, e.g. there are additional "hidden variables" (instructions)

OR non local e.g. that measuring the position (momentum) of one particle instantaneously defines the position (momentum) of the other AND creates uncertainty in the momentum (position) of both.

The problem with angle

- Angle is ambiguous
- $\theta=\theta+\mathrm{N} \times 360^{\circ}$
$-\Delta \theta=360^{\circ}-\Delta \theta$

of Glasgow
Conservation c.f. Entanglement (EPR)

Entanglement requires correlation measured in complimentary variables

Making OR measuring phasefronts with holograms

Make interactive by using SLM

Light source OR detector

Single-mode fibre

Entanglement of OAM states

Entanglement of the orbital angular momentum states of photons

Alois Mair', Allpasha Vaziri, Gregor Weihs \& Anton Zeilinger

NATURE|VOL 412|19 JULY 2001|
PRL95, 240501 (2005) PHYSICAL REVIEW LETTERS

Experimental Demonstration of Fractional Orbital Angular Momentum Entanglement of Two Photons
S.S.R. Oemrawsingh, ${ }^{*}$ X. Ma, D. Voigt, A. Aiello, E. R. Eliel, G. W. 't Hooft, ${ }^{\dagger}$ and J. P. Woerdman Huygens Laboratory, Leiden University, Post Office Box 9504, 2300 RA Leiden, The Netherlands (Received 29 April 2005; published 8 December 2005)

Generation of Hyperentangled Photon Pairs

Julio T. Barreiro, ${ }^{1}$ Nathan K. Langford, ${ }^{2}$ Nicholas A. Peters, ${ }^{1}$ and Paul G. Kwiat ${ }^{1}$

Entangled Twist

```
Jonathan Leach
Barry Jack
Sonja Franke Arnold (Glasgow)
```


Steve Barnett (Strathclyde) Monika Ritsch-Marte (Innsbruck)

Bob Boyd (Rochester)
Anand Jha (Rochester)

Gerald Buller (Heriot Watt) Ryan Warburton (Heriot Watt)

Our experiment

Type -1 BBO

UV pump 150 mW @355nm

Single mode single-photon detectors

Angular Correlations

(a) Angle measurements

Measure Correlations in Angle

Measure Correlations in Angular Momentum

Angles ARE Entangled

Angular EPR
(a)

(b)

$$
\left[\Delta\left(\ell_{\mathrm{s}} \mid \ell_{\mathrm{i}}\right) \hbar\right]^{2}\left[\Delta\left(\phi_{\mathrm{s}} \phi_{\mathrm{i}}\right)\right]^{2}=0.00475 \hbar^{2} \ll 0.25 \hbar^{2}
$$

From EPR to Bell....

EPR establishes

- Quantum mechanics is either Incomplete, e.g. there are additional "hidden variables" (instructions)
- OR non local e.g. that measuring the position (momentum) of one particle instantaneously defines the position (momentum) of the other AND creates uncertainty in the momentum (position) of both.

A Bell violation rules out hidden variables, leaving...

- Quantum mechanics is a non-local theory

Quantum Entanglement with polarisation

Non-linear crystal

Poincaré-sphere equivalent for light beams containing orbital angular momentum
M. J. Padgett and J. Courtial

Poincaré sphere equivalent for OAM

Complementary States

Any Polarisation, described by

Any mode (on the sphere), described by

\&

Measuring angle and angular momentum

0
π

65 University
of Glasgow

EPR Orbital Angular Momentum and Angular Distribution

Meas. 2

	-			
	1	0	0.5	0.5
$\begin{aligned} & \dot{0} \\ & \stackrel{\sim}{0} \\ & \underset{\Sigma}{\infty} \end{aligned}$	0	1	0.5	0.5
	0.5	0.5	1	0
	0.5	0.5	0	1

Conditional Probability for EPR

$$
\begin{aligned}
\sqrt{P_{\min }(+2,-2)} & >\frac{\sqrt{P_{\min }(\otimes, \oplus)}+\sqrt{P_{\max }(\otimes, \oplus)}}{\sqrt{2}} \\
\sqrt{P_{\min }(\otimes, \oplus)} & >\frac{\sqrt{P_{\min }(+2,-2)}+\sqrt{P_{\max }(+2,-2)}}{\sqrt{2}} \\
0.961 & >0.888
\end{aligned}
$$

High contrast in BOTH
Angular momentum AND
Angular position

Quantum Enhancement

Bell (Freedman inequality) c.f. Aspect et al. 1981

Poincaré-sphere equivalent for light beams containing orbital angular momentum
M. J. Padgett and J. Courtial

Poincaré sphere equivalent for OAM

Bell for OAM states

Higher order Poincaré sphere equivalent for OAM

Bell (CHSH) for OAM

- Bell violation for the angular variable
- Violation for $\ell=2,3,4$, etc
- We get a violation for $\ell<24$

Entangled state	S	Violation by σ
$\|\psi\rangle_{2}$	2.69 ± 0.02	35
$\|\psi\rangle_{3}$	2.55 ± 0.04	14
$\|\psi\rangle_{4}$	2.33 ± 0.07	5

Angles have NO "Hidden variables"

 of Glasgow

Entangled, tangles

Hologram to make OR measure beam

Non-local measurement of
separated topological features

Correlations to show Quantum Entanglement

a.

Two-state formation of links allows "Bell-test"

Volume over which $S>2$

(b)

(c)

Measuring the orbital angular momentum of single photons

- Martin Lavery, Johannes Courtial and Miles J. Padgett,
- University of Glasgow, Scotland
- Gregorius Berkhout and Marco Beijersbergen
- Leiden University, Netherlands

Angular momentum in terms of photons

- Spin angular momentum
- Circular polarisation

$$
\sigma=+1
$$

- of per photon
- Orbital angular momentum
- Helical phasefronts
- $\ell \hbar$ per photon

$$
\ell=0
$$

$\ell=1$

$\ell=2$

$\ell=3 \quad$ etc

Measuring Polarisation (spin AM)

- Polarising beam splitter give the "perfect" separation of orthogonal (linear) states
- Use quarter waveplate to separate circular states
- Works for classical beams AND single photons

Measuring OAM - 1

- Observe rotation of trapped particle in optical tweezers

Volume 75, Number 5

- But would be a challenge for a single photon!
- Various clever schemes now shown for OAM measurement in tweezers, ideal for mW beams from a Laser Beam with a Phase Singularity
H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop

Optical angular-momentum transfer to trapped absorbing particles
M. E. J. Friese, ${ }^{1}$ J. Enger, ${ }^{2}$ H. Rubinsztein-Dunlop, ${ }^{1}$ and N. R. Heckenberg

of Glasgow

Measuring OAM - 2

- Interference of helical beam with a plane wave gives ℓ spiral fringes
- Requires many photons in the same mode

An experiment to observe the intensity and phase structure

 of Laguerre-Gaussian laser modesM. Padgett, J. Artt, and N. Simpson

North Haugh, St. Andrews, Fife, KY16 9SS, United Kinglom
L. Allen

Department of Physics, University of Essex, Colchester, Essex CO4 3SQ, United Kingdom
Am. J. Phys., Vol. 64, No. 1, January 1996

physical review a VOLUME 56, NUMBER 5

NOVEMBER 1997

Topological charge and angular momentum of light beams carrying optical vortices
M. S. Soskin, V. N. Gorshkov, and M. V. Vasnetsov
Institute of Physics, National Academy of Sciences of the Ukraine, Kiev 252650, Ukraine

Measuring OAM - 3

- e.g. Diffraction pattern from a triangular aperture
- Gives sign and magnitude of ℓ
- Requires many photons in the same mode

Unveiling a Truncated Optical Lattice Associated with a Triangular Aperture Using Light's Orbital Angular Momentum

$$
\text { J.M. Hickmann, }{ }^{*} \text { E. J. S. Fonseca, W. C. Soares, and S. Chávez-Cerda }{ }^{+}
$$

$$
m=1
$$

$m=2$ $m=3$
THEORY

EXPERIMENT

Single-slit diffraction of an optical beam with phase singularity
Devinder Pal Ghai ${ }^{\text {a,b.* }}$, P. Senthilkumaran ${ }^{\text {a }}$, R.S. Sirohi ${ }^{\text {c }}$
Optics and Lasers in Engineering 47 (2009) 123-126

April 1, 2006 / Vol. 31, No. 7 / OPTICS LETTTERS

Double-slit interference with Laguerre-Gaussian beams

PRL 101, 100801 (2008) PHYSICAL REVIEW LETTERS $\quad 5$ SEPTEMBER 2008 meend
Method for Probing the Orbital Angular Momentum of Optical Vortices in Electromagnetic Waves from Astronomical Objects

Making OAM

Laser beams with screw dislocations in their wavefronts

V. Yu. Bazhenov, M. V. Vasnetsov, and M. S. Soskin

Institute of Physics, Academy of Sciences of the Ukrainian SSR
(Submitted 28 August 1990)
Pis'ma Zh. Eksp. Teor. Fiz. 52, No. 8, 1037-1039 (25 October 1990)

Generation of optical phase singularities by computer-generated holograms
N. R. Heckenberg, R. McDuff, C. P. Smith, and A. G. White 1992 / Vol. 17, No. 3 / OPTICS LETTERS

Measuring OAM - 4

- Use diffractive optic to couple helical beam to single mode fibre(s)
- works for single photons
- "test" for one ℓ at a time
- or multiple orders to test for multiple ℓ

Entanglement of the orbital angular momentum states of photons

Alols Malr', Allpasha Vazirl, Gregor Welhs \& Anton Zellinger
NATURE VOL 412|19 nULY 2001

Jounal of the European Optical Society - Rapid Publications 2,07014 (2007)
Probing canonical geometrical objects by digital spiral imaging

Measuring OAM - 5

- Use diffractive optic to separate N-OAM states
- works for single photons
- But efficiency onlyz $1 / \mathrm{N}$

Free-space information transfer using light beams carrying orbital angular momentum

Graham Gibson, Johannes Courtial, Miles J. Padgett

Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element
S.N. Khonina ${ }^{2}$, V.V. Kotlyar ${ }^{\text {a }}$, R.V. Skidanov ${ }^{\text {a }}$, V.A. Soifer ${ }^{\text {a }}$, P. Laakkonen ${ }^{\text {b }}$, J. Turunen ${ }^{\text {b. }}$

Optics Communications 175 (2000) 301-308

Measuring OAM - 6

- Rotating a beam with OAM shifts the frequency
- Gives sign and magnitude of ℓ
- In principle could work for single photons, but....

- Try spinning a beam.... It's hard!

Volume 88, Number $1 \quad$ PhySiCAL REVIEW Letters 7 January 2002
Management of the Angular Momentum of Light: Preparation of Photons in Multidimensional Vector States of Angular Momentum

Measuring OAM - 7

Measuring the Orbital Angular Momentum of a Single Photon

- Use (image rotating) Mach Zehnder interferometer
- works for single photons
- Efficiency $\approx 100 \%$
- But 2^{n} states, require 2^{n}-1 interferometers (and 2^{n} students!)

Our wish list

- Works for single photons
- Separates (sorts) many states with $\approx 100 \%$ efficiency
- Easy to align and operate

It MUST be possible

- OAM states are "orthogonal"
- The Dove prism interferometer shows it's possible

It works for plane waves

- A "plane-wave" is focused by a lens
- A phase ramp of 2π displaces the spot

It works for plane waves

- A "plane-wave" is focused by a lens
- A phase ramp of 2π displaces the spot

It works for plane waves

- A "plane-wave" is focused by a lens
- A phase ramp of 2π displaces the spot

It works for plane waves

- A "plane-wave" is focused by a lens
- A phase ramp of 2π displaces the spot

So we need to convert helical phase to linear phase

- Image transformation
- ϕ-> x and r-> y
- i.e. $L_{z}->p_{x}$

We NEED image distortion....

- Pin-Cushion and Barrel distortion make straight lines look curved...
- But must also make curved lines look straight

Azimuthal to linear mapping

- Image transformation
- ϕ-> x and r-> y
- Requires reformatter \& phase corrector

Reformatter
 of Glasgow

The Experimental implementation

0
120π

Input mode Transformed mode Predicted output Measured output

The results -1

Input mode Transformed mode Predicted output Measured output

The results -1

Input mode Transformed mode Predicted output Measured output

The results - 1

The results - 1

Input mode Transformed mode Predicted output Measured output

The results -2

of Glasgow

The results - 3

- A misaligned LG beam is no longer a pure OAM state
- Mode sorter \approx correctly measures the resulting
superposition

(d) $\Delta x=0.5 w_{0} \Delta \alpha=0.5 \frac{\lambda}{w_{0}}$

(b) $\Delta x=0.5 w_{0} \quad \Delta \alpha=0 \frac{\lambda}{w_{0}}$

(e) $\Delta x=0.5 w_{0} \Delta \alpha=-0.5 \frac{\lambda}{w_{0}}$

(c) $\Delta x=0 w_{0} \quad \Delta \alpha=0.5 \frac{\lambda}{w_{0}}$

$\ell=1$ input mode

The results -4

- It works for superpositions of modes

Input mode Transformed mode Predicted output Measured output

The results -4

- It works for superpositions of modes

Input mode Transformed mode Predicted output Measured output

The results -4

- It works for superpositions of modes

Input mode Transformed mode Predicted output Measured output

Where next -1

- The principle works
- But the SLMs are ineffic
- Use bespoke optical ele
- Prof. David J Robertson
- Prof. Gordon Love

$$
\mid=-15
$$

View at the camera whist we change the OAM

www.physics.gla.ac.uk/Optics

ATOM
OPTICS

QUANTUM OPTICS \& GHOST IMAGING

ANGULAR MOMENTUM OF

LIGHT \& OPTICAL VORTICES

OPTICS FOR
ENVIRONMENTAL GAS MONITORING

METATOYS

LASER MODES: FRACTALS \& BOSE-EINSTEIN
CONDENSATES

OR ask me for a copy on a FREE memory stick!

www.physics.gla.ac.uk/Optics

University
of Glasgow

Interested in joining us for a PhD?
\square Fully funded University Scholarships
\square Fully funded Studentships from the Scottish Universities Physics Alliance

- My Group: www.physics.gla.ac.uk/Optics/PhD/
\square Glasgow Physics \& Astronomy: www.physics.gla.ac.uk
\square SUPA: www.supa.ac.uk/prize/prize.php
\square Or email: physci.gla.ac.uk for advice and specific contact information

Questions

- Electron vortex beams can be made using e.g. spiral phase plates. What does the B-field do at the end of the singularity? (i.e. where's the monopole!)
- How many plane waves does it take to make a link of vortex loops?
- Why are the SAM and OAM both quantised in units of \hbar ?
- How can one make (easily) the OAM equivalent of optical activity?

