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Outline 

 

I. Experiments on the mechanical effects 
induced by the light OAM in nematic liquid 
crystals 

 

II. A discussion on the different mechanical 
effects induced by the light SAM and OAM 
fluxes in liquid crystal     
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Part I 

Experiments on the mechanical effects 
induced by the light OAM in nematic liquid 
crystals 

 

Workshop on singular optics 
Trieste, May 30 – June 3 



enrico.santamato@na.infn.it 

Liquid Crystals 

  Liquid crystals have 

internal orientational 
degrees of freedom 

 

  External fields (electric, 
magnetic and optical) 
may induce the LC 
reorientation 

 

 The reorientation is 
described by the molecular 
director n 

 

 

Light 



Liquid crystal reorientation 

 An electrostatic field produces a torque 

 

 

 

 An optical field produces a torque 

 

 

 

 The torque is zero when E is either parallel or 
perpendicular to n 
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The Experimental Geometry 

 Homeotropic anchoring at the walls 

 Normal incidence of the laser beam 

E 
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Liquid crystal are reoriented by the light 
polarization (SAM) 

(b) Circular polarization (b) Linear polarization 

Threshold Rotation 

(a) S. D. Durbin et al., Phys. Rev. 
Lett., 47, 1411 (1981) 

(b) E. Santamato et al., Phys. 
Rev. Lett., 57, 19 (1986) 



Self-phase modulation 
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Reorientation mechanism: light Angular 
Momentum transfer 
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SAM transfer birefringence 



What happens with unpolarized light? 

 LC are sensitive to second-order correlations 
of zero-average polarization fluctuations  

 [L. Marrucci er al., PRE, 57, 3033 (1998)] 

 

 But LC are much more sensitive to the beam 
shape  

 [L. Marrucci er al., Opt. Commun., 171, 131 (1999)] 
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   What’s the 
source of this 
torque? 



Director azimuthal angle vs incident laser 
intensity 
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A simple model for the effect 
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 

 A torque is generated 

on the upper cylindrical 
lens 

 

  The two lenses tens to 
align 



Reorientation mechanism: light Angular 
Momentum transfer 
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OAM transfer inhomogeneity SAM transfer 



The origin of the OAM torque 
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Thin sheet of light 
along x 
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The transfer of angular momentum of light to LC 

 LC are sensitive to the photon spin because 
they are birefringent and change the light 
polarization 

 LC are sensitive to the photon orbital angular 
momentum because they are inhomogeneous 
and change the ray direction 

What happens if the light SAM 
and OAM compete? 
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Linear polarization ( = 0°) E 

  Standard OFT 



Linear polarization ( = 45°) 
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E 
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Linear polarization ( = 90°) E 

 Above a critical power threshold nonlinear 
oscillations start up 

 At low incident power, the reorientation is in the 
polarization plane 

B.Piccirillo et 
al., PRL, 86, 
2285 (2001) 
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Linear polarization ( = 90°) 
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B.Piccirillo et 
al., PRL, 86, 
2285 (2001) 



Switchin on-off the polarization 
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E 

Low power High power 
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Circular polarization,  low power 

Ring diameter 
 

The ring diameter in the far 
field oscillates in time. 

Azimuthal angle 
 

The azimuthal angle 
increases linearly in time 
(precession). 
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A. Vella, A. Setaro, B. Piccirillo, and E. Santamato, Phys. Rev. E, 67, 051704 (2003)  

Circular polarization,  high power 



Conclusions 

 It was experimentally shown that liquid 
crystals are sensitive to the light SAM and 
OAM 

 

 When SAM and OAM are competing in a LC 
complex nonlinear dynamics is excited 
 Steady states 

 Rotating states 

 Oscillating states 

 Intermittency states 
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Part II 

A discussion on the mechanical effects 
induced by the light SAM and OAM fluxes 
in liquid crystal     
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The problem 

 The main problem is connecting the forces and 
torques acting in the bulk of the LC sample 
with the fluxes of linear and angular 
momentum coming from outside. 

 In particular, we are interested in the angular 
momentum coming from an incident light 
beam. 



Difference between SAM and OAM in liquid crystals  
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SAM   s 

OAM   l 
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Hydrodynamics of liquid crystals 
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The elastic free energy 
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The electromagnetic free energy 
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Electromagnetic force and torque in the medium 

 The presence of the optical field do not change 
the viscous forces and torques, because no 
source of entropy is associated with light. 
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The splitting of SAM and OAM 

 The stress tensor is not unique 

 We may add a divergence free tensor to 

 and change    and    so to leave the hydro-
dynamics equations invariant 

 For example, we may choose     so to have  

̂
L̂ Ŝ

̂

0ˆ S

The splitting  

is mathematically ambiguous. 

SLJ ˆˆˆ The splitting  

may be dictated by physics? 

SLJ ˆˆˆ 
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The choice Ŝ = 0  (spinless gauge) 

 Dynamical constraints not always satisfied 

 True if the inertia I is neglected (overdamped motion of n) 

 True in the limit of isotropic fluids     
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D.Forster et al., Phys. Rev. Lett., 26, 
1016, (1971)  [Harvard group]. 

= Maxwell’s e.m. tensor ˆ em



Stress tensors and SAM fluxes 
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The limit of the isotropic medium (vacuum) 

 

 One elastic constant (k1 = k2 = k3) 

 No internal torque ( = 0) 

 Symmetric elastic stress tensor 

 

 No optical birefringence (D = 0E) 

 Symmetric electromagnetic stress tensor 
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Properties of the three groups of stress 
tensors 

 Block I (Harvard group) 
 Elastic and e.m. stress tensors are symmetric 

 Unrecognizable SAM flux 

 The total elastic torque is identically zero (no LC inertia) 

 The e.m. flux densities                 are not divergence free in the 
isotropic limit 

 Block II (Ericksen) 
 Elastic and e.m. stress tensors are not symmetric even in the isotropic 

limit 

 SAM and OAM can be formally recognized  

 The e.m. flux densities                 are not divergence free in the 
isotropic limit 

 Block III 
 Elastic and e.m. stress tensors become symmetric in the isotropic limit 

 SAM and OAM can be formally recognized 

 The e.m. flux densities                 are divergence free in the isotropic 
limit 
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Example: the rotating dipole radiation 

 Block III 

 

 

 

 

 Block II 
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Conclusions 

 
 The equation governing the electro-optic 

hydrodynamic of LC has been entirely worked out 
 Explicit expression of energy, SAM and OAM flux 

densities have been calculated in different gauges 
 It was proved that one gauge exist where 

a) The e.m. stress tensor becomes symmetric in the zero 
birefringence limit 

b) The e.m. SAM and OAM flux density become independently 
conserved quantities (divergence free) in the zero 
birefringence limit 

c) The LC stress tensor becomes symmetric in the zero elastic 
anisotropy limit 

d) The LC SAM and OAM flux density become independently 
conserved quantities (divergence free) in the zero in the zero 
elastic anisotropy limit 

e) The SAM and OAM LC degrees of freedom become decoupled 
and couple separately each other and are coupled, 
respectively, with the SAM and OAM fluxes of the e.m. field 
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Thanks for your 
attention 


