

Università degli Studi di Napoli "Federico II" Dipartimento di Scienze Fisiche Complesso di Monte S. Angelo via Cintia, 80126 Napoli

Lorenzo Marrucci Bruno Piccirillo Enrico Santamato Ebrahim Karimi Sergei Slussarenko

- Experiments on the mechanical effects induced by the light OAM in nematic liquid crystals
- II. A discussion on the different mechanical effects induced by the light SAM and OAM fluxes in liquid crystal

Part I

Experiments on the mechanical effects induced by the light OAM in nematic liquid crystals

Liquid Crystals

 Liquid crystals have internal orientational degrees of freedom

 External fields (electric, magnetic and **optical**) may induce the LC reorientation

 The reorientation is described by the molecular director *n*

Liquid crystal reorientation

An electrostatic field produces a torque

$$\vec{\boldsymbol{\tau}}_E = \frac{\varepsilon_a}{4\pi} (\hat{\boldsymbol{n}} \cdot \vec{\boldsymbol{E}}) (\hat{\boldsymbol{n}} \times \vec{\boldsymbol{E}})$$

An optical field produces a torque

$$\vec{\boldsymbol{\tau}}_o = \frac{\varepsilon_a}{8\pi} \operatorname{Re}\left[(\hat{\mathbf{n}} \cdot \vec{\mathbf{E}}^*)(\hat{\mathbf{n}} \times \vec{\mathbf{E}})\right] = \frac{I}{\omega} \Delta s_3$$

The torque is zero when *E* is either parallel or perpendicular to *n*

The Experimental Geometry

Homeotropic anchoring at the walls

Normal incidence of the laser beam

Liquid crystal are reoriented by the light polarization (SAM)

Self-phase modulation

Reorientation mechanism: light Angular Momentum transfer

R. A. Beth, Phys. Rev. 50, 115 (1936) L. Allen et al., Phys. Rev. A45, 8185 (1992)

What happens with unpolarized light?

 LC are sensitive to second-order correlations of zero-average polarization fluctuations
 [L. Marrucci er al., PRE, 57, 3033 (1998)]

Director azimuthal angle vs incident laser intensity

A simple model for the effect

 A torque is generated on the upper cylindrical lens

 The two lenses tens to align

Reorientation mechanism: light Angular Momentum transfer

R. A. Beth, Phys. Rev. 50, 115 (1936) L. Allen et al., Phys. Rev. A45, 8185 (1992)

The origin of the OAM torque

- LC are sensitive to the photon spin because they are birefringent and change the light polarization
- LC are sensitive to the photon orbital angular momentum because they are inhomogeneous and change the ray direction

What happens if the light SAM and OAM compete?

Linear polarization ($\alpha = 0^{\circ}$)

Standard OFT

Linear polarization (α = 45°)

- At low incident power, the reorientation is in the polarization plane
- Above a critical power threshold <u>nonlinear</u> <u>oscillations</u> start up

B.Piccirillo et al., PRL, **86**, 2285 (2001)

Linear polarization ($\alpha = 90^{\circ}$)

Switchin on-off the polarization

Circular polarization, low power

Azimuthal angle

The azimuthal angle increases linearly in time (precession).

Ring diameter

The ring diameter in the far field oscillates in time.

Circular polarization, high power

A. Vella, A. Setaro, B. Piccirillo, and E. Santamato, Phys. Rev. E, 67, 051704 (2003)

Conclusions

- It was experimentally shown that liquid crystals are sensitive to the light SAM and OAM
- When SAM and OAM are competing in a LC complex nonlinear dynamics is excited
 - Steady states
 - Rotating states
 - Oscillating states
 - Intermittency states

Part II

A discussion on the mechanical effects induced by the light SAM and OAM fluxes in liquid crystal

- The main problem is connecting the forces and torques acting in the bulk of the LC sample with the **fluxes** of linear and angular momentum coming from outside.
- In particular, we are interested in the angular momentum coming from an incident light beam.

Difference between SAM and OAM in liquid crystals

Hydrodynamics of liquid crystals

Definitions

$$(\operatorname{div} \hat{T})_{\alpha} = \partial_{\rho} T_{\rho\alpha}$$
$$L_{\rho\alpha} = \varepsilon_{\alpha\beta\gamma} x_{\beta} \sigma_{\rho\gamma}$$
$$\omega_{\alpha} = \varepsilon_{\alpha\beta\gamma} \sigma_{\beta\gamma} = \text{skewsymmetric part of } \hat{\sigma}$$

The elastic free energy

The electromagnetic free energy

$$F^{em} = \frac{1}{16\pi} (\mathbf{B}^* \cdot \mathbf{H} - \mathbf{D}^* \cdot \mathbf{E})$$
Field equations
$$\mathbf{B} = \mathbf{H} = -\frac{ic}{\omega} \operatorname{rot} \mathbf{E}$$
rot \mathbf{E} rot $\mathbf{E} = k_0^2 \hat{\mathbf{E}} \mathbf{E}$

- Monochromatic field at frequency ω
- Average over the optical period
- Nonmagnetic optical medium

Electromagnetic force and torque in the medium

$$f_{\alpha}^{em} = -\partial_{\rho}\sigma_{\rho\alpha}^{em} = -\frac{1}{16\pi}E_{\gamma}E_{\rho}^{*}\partial_{\alpha}\varepsilon_{\gamma\rho}$$

$$\mathbf{\tau}^{em} = -\mathbf{n} \times \frac{\partial F^{em}}{\partial \mathbf{n}} = \frac{1}{16\pi}(\mathbf{D}^{*} \times \mathbf{E} + c.c.)$$

on the fluid
on the director **n**

The presence of the optical field do not change the viscous forces and torques, because no source of entropy is associated with light.

The splitting of SAM and OAM

- The stress tensor is not unique
- We may add a divergence free tensor to $\hat{\sigma}$ and change \hat{L} and \hat{S} so to leave the hydrodynamics equations invariant
- For example, we may choose $\hat{\sigma}$ so to have $\hat{S} = 0$

The splitting
$$\hat{J} = \hat{L} + \hat{S}$$

may be dictated by physics?

The choice $\hat{S} = 0$ (spinless gauge)

- Dynamical constraints not always satisfied
- True if the inertia I is neglected (overdamped motion of n)
- True in the limit of isotropic fluids

Stress tensors and SAM fluxes

B. PICCIRILLO AND E. SANTAMATO

PHYSICAL REVIEW E 69, 056613 (2004)

TABLE I. Stress tensor and intrinsic angular momentum flux in different gauges. The flux of the orbital angular momentum is given by $L_{\alpha\beta} = \epsilon_{\beta\mu\nu} x_{\mu} \sigma_{\alpha\nu}$. The several contributions, for each block, are labeled as S for splay, T for twist, and B for bend, corresponding to the fundamental elastic distortion in nematic liquid crystals. The label E represents the elastic contribution as a whole and em is for the electromagnetic contribution. Finally, we posed A=n rot n; $B=n \times \text{rot } n$.

		$\sigma_{lphaeta}$	w	S _{af}
I	S	$n_{\alpha}h_{\beta}^{\beta} - \delta_{\alpha\beta}(F^{\beta} + n \cdot h^{\beta})$	$n \times h^{Z}$	0
	Т	$-n_{\mu}h_{\alpha}^{\dagger}-\delta_{\alpha\beta}F^{T}$	$n \times h^T$	0
	в	$-n_{\beta}h_{\alpha}^{B}-k_{3}B_{\alpha}B_{\beta}$	$n \times h^B$	0
		$-(n_{\alpha}\partial F^{B} / \partial n_{\beta} + n_{\beta}\partial F^{B} / \partial n_{\alpha}) + \delta_{\alpha\beta}F^{B}$		
	em	$1/16\pi[(D_{\alpha}^{*}E_{\beta}+B_{\alpha}^{*}H_{\beta}+c.c.)]$	$1/16\pi (D^* \times E + B^* \times H + c.c.)$	0
		$-\delta_{\alpha\beta}(D^* \cdot E + B^* \cdot H)]$		
п	S	$-\hbar_1\partial_p n_p\partial_B n_\alpha + \delta_{\alpha B}F^S$	k_1 rot n div n	$k_1 \partial_\rho n_\rho \epsilon_{\alpha\beta\gamma} n_\gamma$
	Т	$-k_2 A \epsilon_{\alpha\gamma\rho} n_{\rho} \partial_{\beta} n_{\gamma} + \delta_{\alpha\beta} F^T$	$-k_2A(B+n \operatorname{div} n)$	$k_2 A(n_\alpha n_\beta - \delta_{\alpha\beta})$
	в	$-k_3(n_\gamma B_\alpha - n_\alpha B_\gamma)\partial_\beta n_\gamma + \partial_{\alpha\beta}F^B$	$-k_3\{[(n \times B) \cdot \nabla]n - (n \times B) \operatorname{div} n\}\}$	$h_3 n_\alpha \epsilon_{\beta \gamma \rho} B_\gamma n_\rho$
	em	$i/16\pi k_0 \epsilon_{\alpha\gamma\rho} (H_{\rho}^* \partial_{\beta} E_{\gamma} - c.c.) + \delta_{\alpha\beta} F^{em}$	$i/16\pi k_0 [H^* \operatorname{div} E - (H^* \cdot \nabla) E - \operatorname{c.c.}]]$	$i/16\pi k_0 (-H_{\beta}^* E_{\alpha} + \delta_{\alpha\beta} H^* \cdot E - c.c.)$
III	Е	$-K(\partial_a n_a \partial_{\beta} n_a - \frac{1}{2} \delta_{a\beta} \partial_a n_b \partial_a n_b)$	$\delta k_1 \omega^S + \delta k_2 \omega^T + \delta k_3 \omega^B$	$K \epsilon_{\beta \gamma \rho} n_{\gamma} \partial_{\alpha} n_{\rho}$
		$+\delta k_1 \sigma^{S}_{\alpha\beta} + \delta k_2 \sigma^{T}_{\alpha\beta} + \delta k_3 \sigma^{B}_{\alpha\beta}$		$+\delta k_1 S^{\delta}_{\alpha\beta} + \delta k_2 S^{T}_{\alpha\beta} + \delta k_3 S^{B}_{\alpha\beta}$
	em	$-1/16\pi k_0^2 \{\eta_o(\partial_\alpha E_\gamma \partial_\beta E_\gamma^* - \partial_\rho E_\rho \partial_\beta E_\alpha^* + c.c.)$	$-\eta_o/16\pi k_0^2$ rot E^* div $E+c.c.$	$\eta_o / 16\pi k_0^2 (\epsilon_{\beta\gamma\rho} E_{\gamma}^* \partial_\alpha E_{\rho}$
		$-\delta_{\alpha\beta}[\eta_{0}(\partial_{\gamma}E_{\rho}\partial_{\gamma}E_{\rho}^{*}-\partial_{\rho}E_{\rho}\partial_{\gamma}E_{\gamma}^{*})-k_{0}^{2}D^{*}\cdot E]]$	-	$-\epsilon_{\alpha\beta\gamma}E_{\gamma}^{*}\partial_{\rho}E_{\rho})+c.c.$

The limit of the isotropic medium (vacuum)

- One elastic constant $(k_1 = k_2 = k_3)$
- No internal torque ($\omega = 0$)
- Symmetric elastic stress tensor
- No optical birefringence $(\mathbf{D} = \varepsilon_0 \mathbf{E})$
- Symmetric electromagnetic stress tensor

Properties of the three groups of stress tensors

- Block I (Harvard group)
- Elastic and e.m. stress tensors are symmetric
- Unrecognizable SAM flux
- The total elastic torque is identically zero (no LC inertia)
- ***** The e.m. flux densities L^{em} and S^{em} are not divergence free in the isotropic limit
- Block II (Ericksen)
- Elastic and e.m. stress tensors are not symmetric even in the isotropic limit
 - SAM and OAM can be formally recognized
- The e.m. flux densities L^{em} and S^{em} are not divergence free in the isotropic limit
- Block III
 - Elastic and e.m. stress tensors become symmetric in the isotropic limit
 - SAM and OAM can be formally recognized
 - The e.m. flux densities L^{em} and S^{em} are divergence free in the isotropic limit

Example: the rotating dipole radiation

Block III

$$\mathbf{S} = \oint_{\partial V} \hat{S}^{em} \mathbf{u} d\sigma = \mathbf{L} = \oint_{\partial V} \hat{L}^{em} \mathbf{u} d\sigma = \frac{ik_0^3}{6} (\mathbf{p} \times \mathbf{p}^*)$$

J.H.Crichton and P. Martson, J. Diff. Eqs., **4**, 37 (2000)

Block II

$$L_{z} = ik_{0}^{3} \left[\frac{1}{4e^{2}} - \frac{1}{8e^{3}} (1 - e^{2}) \ln \frac{1 + e}{1 - e} \right] (\mathbf{p} \times \mathbf{p}^{*})_{z}$$

$$S_{z} = \frac{ik_{0}^{3}}{3} (\mathbf{p} \times \mathbf{p}^{*}) - L_{z}$$

$$e = surface \ ellipticity$$

S. M. Barnett, J. Opt. B: Quantum Semiclassiical Opt. 4, S7 (2002)

Conclusions

- The equation governing the electro-optic hydrodynamic of LC has been entirely worked out
- Explicit expression of energy, SAM and OAM flux densities have been calculated in different gauges
- It was proved that one gauge exist where
 - a) The e.m. stress tensor becomes symmetric in the zero birefringence limit
 - b) The e.m. SAM and OAM flux density become independently conserved quantities (divergence free) in the zero birefringence limit
 - c) The LC stress tensor becomes symmetric in the zero elastic anisotropy limit
 - d) The LC SAM and OAM flux density become independently conserved quantities (divergence free) in the zero in the zero elastic anisotropy limit
 - e) The SAM and OAM LC degrees of freedom become decoupled and couple separately each other and are coupled, respectively, with the SAM and OAM fluxes of the e.m. field

Thanks for your attention