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Introduction: spin and orbital angular 
momentum of light 



Spin and orbital angular momentum of light (SAM & OAM) 

That	
  is,	
  different	
  ways	
  for	
  a	
  light	
  “ray”	
  to	
  “rotate	
  upon	
  itself”	
  while	
  it	
  propagates	
  

An	
  equivalent	
  expression	
  (from	
  Noether	
  theorem):	
  

  
       

   

       

       
    

       

        

       
     
      

              
                

              
          

          

             

      

                   
           

              
             

                  
                 
    

       

 

          
  

  
       

   

       

       
    

       

        

       
     
      

              
                

              
          

          

             

      

                   
           

              
             

                  
                 
    

       

 

          
  

  
       

   

       

       
    

       

        

       
     
      

              
                

              
          

          

             

      

                   
           

              
             

                  
                 
    

       

 

          
  

  
       

   

       

       
    

       

        

       
     
      

              
                

              
          

          

             

      

                   
           

              
             

                  
                 
    

       

 

          
  

Standard	
  expression	
  of	
  field	
  angular	
  momentum:	
  

[S.	
  J.	
  van	
  Enk	
  &	
  G.	
  Nienhuis,	
  J.	
  Mod.	
  Opt.	
  41,	
  963	
  (1994)]	
  

Equivalent	
  up	
  to	
  a	
  
surface	
  term	
  

Only	
  radia1ve	
  terms	
  
(transverse	
  fields)	
  SAM	
  

OAM	
  



Spin and orbital angular momentum of light (SAM & OAM) 

Some	
  old-­‐standing	
  problems	
  with	
  SAM	
  and	
  OAM	
  defini:ons:	
  

[S.	
  J.	
  van	
  Enk	
  &	
  G.	
  Nienhuis,	
  J.	
  Mod.	
  Opt.	
  41,	
  963	
  (1994);	
  T.	
  A.	
  Nieminen	
  et	
  al.,	
  J.	
  Opt.	
  A:	
  Pure	
  Appl.	
  Opt	
  10,	
  115005	
  (2008)]	
  

q  Other	
  defini1ons	
  are	
  also	
  possible	
  (par1cularly	
  for	
  the	
  SAM	
  and	
  OAM	
  density	
  and/
or	
  fluxes):	
  Is	
  there	
  a	
  “most	
  correct”	
  one?	
  What	
  criteria	
  should	
  we	
  use?	
  

q  Gauge	
  invariance	
  (but	
  problem	
  solved	
  if	
  we	
  restrict	
  to	
  radia1ve	
  transverse	
  fields)	
  

q  Actual	
  physical	
  meaning	
  of	
  SAM	
  and	
  OAM	
  terms	
  (Independent	
  measurability?	
  Are	
  
they	
  true	
  angular	
  momenta,	
  i.e.	
  generators	
  of	
  rota1ons	
  with	
  proper	
  commuta1on	
  
rules?	
  Etc.)	
  

q  Coupling	
  with	
  maaer:	
  local	
  density	
  or	
  flux	
  coupling?	
  SAM	
  and	
  OAM	
  coupling	
  with	
  
different	
  degrees	
  of	
  freedom	
  of	
  maaer?	
  

However,	
  most	
  problems	
  go	
  away	
  in	
  the	
  paraxial	
  limit	
  (for	
  the	
  “z”	
  component)	
  

z	
  



Spin and orbital angular momentum of light (SAM & OAM) 

SAM	
  and	
  OAM	
  in	
  the	
  paraxial	
  limit	
  (monochroma:c	
  wave):	
  

SAM:	
  fully	
  intrinsic,	
  related	
  
with	
  circular	
  polariza1ons	
  

S = !0
2i!

dr E* !E" # !0ẑ
2"

dr S3"

OAM:	
  further	
  splits	
  into	
  

External	
  OAM,	
  related	
  with	
  
beam	
  axis	
  posi1on	
  and	
  total	
  
momentum	
  

Internal	
  OAM,	
  related	
  with	
  helical	
  wavefront	
  

Lext = rcm !P

Lint =
!0
2i!

dr Eh
*r !"Eh

h=x,y,z
#$ % !0ẑ

2i!
dr Eh

* &
&!

Eh
h=x,y,z
#$

Depends	
  on	
  the	
  choice	
  of	
  
origin	
  of	
  coordinate	
  system	
  



m = +1 m = −1 

m = +2 m = −2 

( )
0( , ) ( , ) i kz timt r z e e ωϕ −=E r EHelical	
  modes:	
  

(using	
  cylindrical	
  
coordinates	
  r, φ, z) 

Spin and orbital angular momentum of light (SAM & OAM) 

helical	
  phase	
  factor:	
  
	
  
	
  
	
  
	
  

ime ϕ

m = 0,±1,±2,±3…

Angular	
  momentum	
  (OAM):	
  

Lz = mħ    per photon 

[L.	
  Allen,	
  M.W.	
  Beijersbergen,	
  R.	
  J.	
  C.	
  Spreeuw,	
  and	
  J.	
  P.	
  Woerdman,	
  Phys.	
  Rev.	
  A	
  45,	
  8185	
  (1992)]	
  



SAM and OAM interaction with matter 

SAM	
  and	
  OAM	
  are	
  separately	
  conserved	
  during	
  propaga1on	
  in	
  vacuum	
  and	
  in	
  
isotropic	
  homogeneous	
  transparent	
  media.	
  What	
  about	
  other	
  media?	
  

anisotropic	
  (birefringent)	
  
medium	
  (e.g.,	
  wave-­‐

plates)	
  

acts	
  on	
  the	
  
polariza1on	
  

(SAM)	
  Effect	
  of	
  medium	
  
anisotropy:	
  

acts	
  on	
  the	
  
wavefront	
  
(OAM)	
  

inhomogenous	
  
medium	
  (e.g.,	
  
phase	
  plates)	
  Effect	
  of	
  medium	
  

inhomogeneity:	
  

[M.W.	
  Beijersbergen	
  et	
  al.,	
  Opt.	
  Commun.	
  112,	
  321	
  (1994);	
  M.	
  Berry,	
  in	
  Singular	
  Op1cs,	
  SPIE	
  3487	
  (1998)]	
  



SAM and OAM interaction with matter 

“Fork-­‐like”	
  
hologram	
   Diffr.	
  order	
  0:	
  

no	
  change	
  

Diffr.	
  order	
  1:	
  OAM	
  
m	
  =	
  1	
  

Diffr.	
  order	
  -­‐1:	
  
OAM	
  m	
  =	
  -­‐1	
  

Holograms	
  can	
  be	
  considered	
  as	
  a	
  special	
  case	
  of	
  (strongly)	
  inhomogeneous	
  media:	
  

[V.	
  Y.	
  Bazhenov,	
  M.	
  V.	
  Vasnetsov,	
  M.	
  S.	
  Soskin,	
  Sov.	
  Phys.—JETP	
  Le3.	
  52,	
  429	
  (1990)]	
  



Orbital	
  angular	
  
momentum	
  of	
  light	
  
makes	
  the	
  par:cle	
  
rotate	
  around	
  the	
  beam	
  
axis	
  (external	
  angular	
  
momentum)	
  

Spin	
  angular	
  momentum	
  
of	
  light	
  makes	
  an	
  
absorbing	
  par:cle	
  spin	
  
around	
  its	
  own	
  axis	
  
(internal	
  angular	
  
momentum)	
  

Circular-­‐polarized	
  and/or	
  
helical	
  beam	
  of	
  light	
  

SAM and OAM interaction with matter 

Absorbing	
  media	
  couple	
  both	
  with	
  SAM	
  and	
  OAM,	
  although	
  not	
  exactly	
  in	
  the	
  same	
  way:	
  

However,	
  absorp1on	
  allows	
  only	
  transfer	
  of	
  angular	
  
momentum	
  from	
  light	
  to	
  maaer,	
  not	
  vice	
  versa	
  

[H.	
  He	
  et	
  al.,	
  PRL	
  75,	
  826	
  (1995);	
  N.	
  B.	
  Simpson	
  et	
  al.,	
  Opt.	
  Lea.	
  22,	
  52–54	
  (1997);	
  A.	
  T.	
  O’Neil	
  et	
  al.,	
  PRL	
  88,	
  053601	
  (2002)]	
  



Spin–orbital angular momentum 
conversion 



SAM – OAM conversion (optical spin-orbit effects) 

“SAM	
  –	
  OAM	
  conversion”	
  is	
  here	
  defined	
  as	
  an	
  op1cal	
  process	
  in	
  which	
  SAM	
  and	
  OAM	
  
both	
  vary	
  during	
  propaga1on	
  but	
  the	
  total	
  angular	
  momentum	
  is	
  conserved,	
  whatever	
  
the	
  input	
  state	
  of	
  light	
  

More	
  generally,	
  op1cal	
  spin-­‐orbit	
  coupling	
  effects	
  take	
  place	
  whenever	
  SAM	
  and	
  OAM	
  
affect	
  each	
  other	
  during	
  propaga1on.	
  SAM	
  –	
  OAM	
  conversion	
  is	
  a	
  special	
  case	
  of	
  spin-­‐
orbit	
  coupling	
  effect	
  

Ques:on:	
  
Under	
  what	
  condi:ons	
  does	
  SAM	
  –	
  OAM	
  

conversion	
  take	
  place?	
  

Before	
  aaemp1ng	
  an	
  answer,	
  let	
  us	
  review	
  the	
  main	
  findings	
  reported	
  so	
  far,	
  
following	
  a	
  chronological	
  order	
  (probably	
  an	
  incomplete	
  list)	
  

No1ce:	
  from	
  1992	
  (when	
  the	
  OAM	
  research	
  field	
  actually	
  started)	
  to	
  2002,	
  there	
  was	
  no	
  
predic1on	
  or	
  observa1on	
  of	
  SAM	
  –	
  OAM	
  conversion	
  (except	
  for	
  external	
  OAM	
  effects)	
  



2002: Space-variant sub-wavelength gratings 
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Space-variant Pancharatnam–Berry phase optical elements
with computer-generated subwavelength gratings
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Space-variant Pancharatnam–Berry phase optical elements based on computer-generated subwavelength grat-
ings are presented. By continuously controlling the local orientation and period of the grating we can achieve
any desired phase element. We present a theoretical analysis and experimentally demonstrate a Pancharat-
nam–Berry phase-based diffraction grating for laser radiation at a wavelength of 10.6 mm. © 2002 Optical
Society of America

OCIS codes: 260.5430, 350.1370, 050.2770, 050.1970.

The Pancharatnam–Berry phase is a geometric phase
associated with the polarization of light. When the
polarization of a beam traverses a closed loop on the
Poincaré sphere, the f inal state differs from the initial
state by a phase factor equal to half of the V area, en-
compassed by the loop on the sphere.1,2 In a typical
experiment, the polarization of a uniformly polarized
beam is altered by a series of space-invariant (trans-
versely homogeneous) wave plates and polarizers, and
the phase that evolves in the time domain is measured
by means of interference.3,4

Recently, we considered a Pancharatnam–Berry
phase in the space domain. Using space-variant
(transversely inhomogeneous) metal stripe subwave-
length gratings, we demonstrated conversion of
circular polarization into radial polarization5 and
showed that the conversion was accomplished by a
space-variant phase modif ication of geometric origin
that affected beam propagation.6 Previously, Bhan-
dari suggested the use of a discontinuous spatially
varying wave plate as a lens based on similar geomet-
ric phase effects.7 Recent studies have investigated
periodic polarization gratings.8 – 10 These authors
showed that the polarization of diffracted orders could
differ from polarization of the incident beam. We
intend to prove and to utilize a connection between
the properties of such polarization gratings and the
space-domain Pancharatnam–Berry phase.

In this Letter we consider optical phase elements
based on the space-domain Pancharatnam–Berry
phase. Unlike diffractive and refractive elements,
the phase is not introduced through optical path
differences but results from the geometric phase
that accompanies space-variant polarization manipu-
lation. The elements are polarization dependent,
thereby enabling multipurpose optical elements that
are suitable for applications such as optical switching,
optical interconnects, and beam splitting. We show
that such elements can be realized using continuous
computer-generated space-variant subwavelength
dielectric gratings. The continuity of the gratings en-
sures the continuity of the resulting field, thereby elim-
inating diffraction associated with discontinuity and
enabling the fabrication of elements with high diffrac-
tion efficiency. We experimentally demonstrate

Pancharatnam–Berry phase diffraction gratings for
CO2 laser radiation at a wavelength of 10.6 mm,
showing an ability to form complex polarization-
dependent continuous-phase elements.

Figure 1 illustrates the concept of Pancharatnam–
Berry phase optical elements (PBOEs) on the Poincaré
sphere. Circularly polarized light is incident on a
wave plate with constant retardation and a continuous
space-varying fast axis whose orientation is denoted
by u!x, y". We show that, since the wave plate is
space varying, the beam at different points traverses
different paths on the Poincaré sphere, resulting in a
space-variant phase-front modif ication that originates
from the Pancharatnam–Berry phase. Our goal is
to utilize this space-variant geometric phase to form
novel optical elements.

It is convenient to describe PBOEs by use of Jones
calculus. In this formalism, a wave plate with a
space-varying fast axis is described by the operator

T !x, y" ! R#u!x, y"$J!f"R21#u!x, y"$ ,

where J!f" is the operator for a wave plate with retar-
dation f, R is the operator for an optical rotator, and
u is the local orientation of the axis at each point !x, y".

Fig. 1. Illustration of the principle of PBOEs by use of the
Poincaré sphere.

0146-9592/02/131141-03$15.00/0 © 2002 Optical Society of America

Hasman’s	
  group	
  (aqer	
  an	
  idea	
  of	
  Rajendra	
  Bhandari)	
  demonstrates	
  wavefront	
  reshaping	
  by	
  
exploi1ng	
  the	
  Pancharatnam-­‐Berry	
  phase	
  arising	
  in	
  space-­‐variant	
  polariza1on	
  
manipula1ons.	
  Among	
  other	
  examples,	
  they	
  demonstrate	
  genera1on	
  of	
  helical	
  modes	
  
(hence	
  nonzero	
  OAM)	
  [Z.	
  Bomzon	
  et	
  al.,	
  OL	
  27,	
  1141	
  (2002);	
  G.	
  Biener	
  et	
  al.,	
  OL	
  27,	
  1875	
  (2002)]	
  

•  this	
  is	
  actually	
  the	
  first	
  reported	
  observa1on	
  of	
  SAM	
  –	
  OAM	
  conversion	
  involving	
  
internal	
  OAM	
  (for	
  mid-­‐infrared	
  light,	
  λ	
  ≈	
  10	
  μm)	
  

•  however,	
  the	
  authors	
  do	
  not	
  explicitly	
  discuss	
  the	
  angular	
  momentum	
  of	
  light	
  in	
  
the	
  process	
  

•  the	
  experiment	
  was	
  carried	
  out	
  only	
  for	
  a	
  fixed	
  input	
  polariza1on	
  and	
  could	
  not	
  
dis1nguish	
  the	
  output	
  OAM	
  sign	
  (not	
  a	
  full	
  test	
  of	
  SAM	
  –	
  OAM	
  conversion)	
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where hE ! j1/2 !tx 1 ty exp"if#$j2, hR ! j1/2 !tx 2
ty exp"if#$ %EinjL&j2, and hL ! j1/2 !tx 2 ty exp"if#$ 3
%EinjR&j2 are the polarization order coupling eff icien-
cies, %ajb& denotes an inner product, and jR& ! "1 0#T
and jL& ! "0 1#T represent the right-hand and the
left-hand circular polarization components, respec-
tively. From Eq. (2) one can see that the emerging
beam from a PBOE comprises three polarization
orders. The first maintains the original polarization
state and phase of the incident beam, the second is
right-hand circularly polarized and has a phase modi-
fication of 2u"r, v#, and the third has a polarization
direction and a phase modification opposite those of
the former polarization order. Note that the polar-
ization eff iciencies depend on the shape and material
of the groove as well as on the polarization state of the
incident beam. For the substantial case tx ! ty ! 1
and f ! p, an incident wave with jR& polarization
is subject to total polarization state conversion and
results in an emerging field:

jEout& ! exp!2i2u"r,v#$ jL& . (3)

An important property of Eq. (3) is that the phase
factor depends on the local orientation of the sub-
wavelength grating. This dependence is geometrical
in nature and originates solely from local changes in
the polarization state of the emerging beam. This
dependence can be illustrated by use of a Poincaré
sphere with three Stokes parameters, S1, S2, and
S3, representing a polarization state, as depicted in
Fig. 1(a). The incident right-hand polarized and the
transmitted left-hand polarized waves correspond to
the north and the south poles of the sphere, respec-
tively. Inasmuch as the subwavelength grating is
space varying, the beam at different points traverses
different paths on the Poincaré sphere. For instance,
the geodesic lines Â and B̂ represent different paths
for two waves transmitted through element domains
of local orientations u"r, 0# and u"r, v#. Geomet-
rical calculations show that the phase difference
wp ! 22u"r, v# between states, corresponding to
u"r, 0# and u"r, v# orientations, is equal to half of the
area V enclosed by geodesic lines Â and B̂.9,11 This
fact is in compliance with the well-known rule, pro-
posed by Pancharatnam, for comparing the phases of
two light beams with different polarizations7 and can
be considered an extension into the space domain of
the rule that we mentioned.

To design a continuous subwavelength struc-
ture with the desired phase modification, we de-
fine a space-variant subwavelength grating vector
Kg"r, v#, oriented perpendicular to the desired
subwavelength grooves. Figure 1(b) illustrates
this geometrical definition of the grating vec-
tor. To design a PBOE with a spiral geometrical
phase we need to ensure that the direction of
the grating grooves is given by u"r, v# ! lv'2,
where l is the topological charge. Therefore, from
Fig. 1(b), the grating vector is given by Kg"r, v# !
K0"r, v# (cos!"l'2 2 1#v$r̂ 1 sin!"l'2 2 1#v$v̂), where

K0 ! 2p'L"r, v# is the local spatial frequency of a
grating with a local period L"r, v#.

To ensure the continuity of the subwavelength
grooves we required that = 3 Kg ! 0, which resulted
in a differential equation that could be solved to
yield the local grating period. The solution to this
problem yielded K0"r# ! "2p'L0# "r0'r#l'2, where L0
is the local subwavelength period at r ! r0. Con-
sequently the grating function fg (def ined such
that Kg ! =fg) was then found by integration of
Kg"r, v# over an arbitrary path to yield fg"r, v# !
"2pr0'L0# "r0'r#l'221 cos!"l'2 2 1#v$'"l'2 2 1# for
l fi 2 and fg"r, v# ! "2pr0'L0# ln"r'r0# for l ! 2.
We then obtained a Lee-type binary grating to de-
scribe the grating function,11 fg, for l ! 1, 2, 3, 4.
The grating was fabricated for CO2 laser radiation
with a wavelength of 10.6 mm, with L0 ! 2 mm,
r0 ! 4.7 mm, and a maximum radius of 6 mm, re-
sulting in 2 mm # L"r# # 3.2 mm. We formed the
grating with a maximum local period of 3.2 mm in
order not to exceed the Wood anomaly of GaAs. The
magnified geometries of the gratings for four topologi-
cal charges are presented in Fig. 2. The elements
were fabricated upon 500-mm-thick GaAs wafers
by contact photolithography and electron-cyclotron
resonance etching with BCl3 to a nominal depth of
2.5 mm, resulting in measured values of retardation
of f ! p'2 and tx ! ty ! 0.9. These values are close
to the theoretical predictions achieved by rigorous
coupled-wave analysis. The inset in Fig. 2 shows

Fig. 1. (a) Illustration of the principle of PBOEs by use
of the Poincaré sphere; insets, local orientations of the
subwavelength grooves. (b) Geometrical definition of the
grating vector.

Fig. 2. Top, geometry of the subwavelength gratings for
four topological charges. Bottom, image of a typical grat-
ing profile taken with a scanning-electron microscope.

November 1, 2002 / Vol. 27, No. 21 / OPTICS LETTERS 1877

Fig. 3. (a) Interferogram measurements of the spiral
PBOEs. (b) The corresponding spiral phases for different
topological charges.

Fig. 4. Experimental far-f ield images and their calculated
and measured cross sections for the helical beams with l !
1 4.

a scanning-electron microscope image of one of the
dielectric structures.

Following the fabrication, the spiral PBOEs were
illuminated with a right-hand circularly polarized
beam, jR!, at 10.6-mm wavelength. To provide ex-
perimental evidence of the resultant spiral phase
modif ication of our PBOEs we used a self-interfero-
gram measurement, using PBOEs with retardation
f ! p"2. For such elements the transmitted beam
comprises two polarization orders: jR! polarization
state and jL! with a phase modification of 2ilv,
according to Eq. (2). The near-f ield intensity distri-
butions of the transmitted beams that were followed by
a linear polarizer were then measured. Figure 3(a)
shows the interferogram patterns for various spiral
PBOEs. The intensity dependence on the azimuthal
angle is of the form I ~ 1 1 cos#lv$, whereas the
number of the fringes is equal to l, the topological
charge of the beam. Figure 3(b) illustrates the phase
fronts that result from the interferometer analysis,
indicating spiral phases with different topological
charges.

Figure 4 shows the far-field images of transmitted
beams that have various topological charges as well
as the measured and theoretically calculated cross
sections. We achieved the experimental result by
focusing the beam through a 500-mm focal-length lens

followed by a circular polarizer. We used the circular
polarizer to transmit only the desired jL! state and
to eliminate the jR! polarization order that appeared
because of the insuff icient etched depth of the grating.
Dark spots can be observed at the center of the
far-field images, providing evidence of phase singu-
larity in the center of the helical beams. We found
excellent agreement between theory and experiment,
clearly indicating the spiral phases of the beams with
different topological charges.

To conclude, we have demonstrated the formation
of helical beams by using space-variant Pancharat-
nam–Berry phase optical elements based on com-
puter-generated subwavelength dielectric gratings.
The formation of the spiral phase by the PBOE is
subject to control of the local orientation of the grating.
This can be achieved with a high level of accuracy
by use of an advanced photolithographic process. In
contrast, in the formation of a SPE based on refractive
optics the phase is inf luenced by fabrication errors
caused by inaccuracy of the etched three-dimensional
profile. We are currently investigating a photolitho-
graphic process with which to achieve accurate control
of the retardation phase to yield only the desired
polarization order.

E. Hasman’s e-mail address is mehasman@tx.
technion.ac.il.
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Fig. 1. (a) On-axis propagation of a Gaussian beam; c is a unit vector that defines optical
axis z. (b) Shaping of the TE and TM eigen-modes; corresponding directions of the electric
field are indicated in (c) with arrows.

2. On-axis propagation

2.1. Radially and azimuthally polarized eigen-mode beams

Here we discuss the main processes at work when a uniformly polarized incident light beam
propagates along the optical axis of a uniaxial crystal [36,37,41]. Figure 1 illustrates the on-axis
beam propagation with Gaussian envelope through the crystal. We assume that the refractive in-
dices along the major crystallographic axes x,y,z are no,no,ne, respectively. Let us consider the
ray AB that intersects the origin of the reference frame {x,y,z} so that the plane z0z′ involving
the ray and the crystal optical axis c is tilted at the angle ϕ to the x0z plane, see Fig. 1(a). The
linear polarization component with the envelope Ex′ lies in the plane z0z′ while Ey′ component
is perpendicular to this plane [39], see Fig. 1(b). In the paraxial approximation, we can assume
that the projections of the Ex′ and Ey′ components onto the x0y plane are equal to each other:
Ex′ ≈ Ex, Ey′ ≈ Ey. Because of the cylindrical symmetry the Ex′ components of all rays form
the field of the azimuthally polarized TE mode beam or the ordinary beam, while the Ey′ com-
ponents form the radially polarized TM mode beam or the extraordinary beam, see Fig. 1(c).
Both beams propagate along the crystal optical axis having the same phase velocities char-
acterized by the wave number ko = k0no, where k0 stands for the wavenumber in free space.
However, the Gaussian envelopes have different wavenumbers ko and ke. The exact value of
the ke wavenumber in the beam envelope derived from the solution to the paraxial wave equa-
tion [40,41] is ke = (n2e/no)k0. Thus, the beam with the uniform polarization distribution at the
input plane z= 0 of the crystal can be decomposed as a superposition of the azimuthally (TE)
and the radially (TM) polarized beams. As they propagate through the crystal, the complex am-
plitudes of the TE and TM beam are transformed by different ways shaping a regular pattern
of the polarization distributions at the crystal output. Nevertheless, we can regard the TE and
TM beams as the modal beams with eigen-polarization since they do not change their structure
up to the scale transformation due to diffraction. It is important to note that the description of
the beam behavior depends on the polarization basis of the beam representation. If the linearly
polarized components are detected after the crystal, it makes sense to present the eigen-mode
beams in the linearly polarized basis {ex,ey}: |TE〉 ∼ exy− eyx and |TM〉 ∼ exx+ eyy. From
whence we find that the polarization components have the edge dislocations [29] along the x-
or y-axes. If the circularly polarized components are detected after the crystal, the field can be
conveniently rewritten in the circularly polarized basis {e+,e−}: |TE〉 ∼ r

(
e+e−iϕ − e−eiϕ

)

and |TM〉 ∼ r
(
e+e−iϕ + e−eiϕ

)
. The last expression means that the circularly polarized com-

ponents of the TE and TM modes carry the single-charge optical vortices with opposite signs
of the topological charges.
Let us consider the propagation of a circularly polarized beam through the crystal [37] de-
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Ciaaoni	
  et	
  al.	
  predict	
  theore1cally	
  that	
  a	
  gaussian	
  
beam	
  travelling	
  along	
  the	
  op1cal	
  axis	
  of	
  a	
  uniaxial	
  
birefringent	
  crystal	
  undergoes	
  SAM	
  –	
  OAM	
  
conversion	
  (although	
  they	
  do	
  not	
  use	
  this	
  expression)	
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  and	
  PRE	
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  (2003)]	
  

First	
  observed	
  by	
  Brasselet	
  et	
  al.	
  in	
  2009	
  
[Opt.	
  Lea.	
  34,	
  1021	
  (2009)]	
  

the opposite case, !a ,b"= !0,1", the solution is given
for Eqs. (1) and (2) with E+↔E− and u↔v. The gen-
eral solution is obtained by the linear superposition
with amplitudes #a#2+ #b#2=1.

To elucidate the coupling between the SAM and
OAM for Gaussian beams we note that uniaxial crys-
tals have usually weak birefringence, no−ne
$10−1–10−3, so that the anisotropy and its conse-
quence, the spin-orbit coupling, can be considered as
a perturbation. Introducing the average refractive in-
dex n= !no+ne" /2 and the small parameter != !no
−ne" /n"1 we obtain #o=#!1+! /2" and #e$#!1
−3! /2", where #=kn /2, and we keep only the terms
of the leading order in !. Applying such a procedure
to Eqs. (1) and (2) we derive the following represen-
tation of the general solution, !E+,E−"T$M̂!a ,b"TG,
where G=−!i#w2 /Z"exp!i#r2 /Z" with Z=z− iz0, z0
=#w2, and the transformation matrix

M̂ = % C Se−2i$

Se2i$ C & = C!̂0 + ST̂, !3"

T̂ = !̂x cos!2$" + !̂y sin!2$", !4"

where !̂0 is identity matrix and !̂x,y are Pauli spinor
matrices, C=cos % and S=−i sin % with %=!#r2z /Z2.
Solution in this form is valid everywhere in the crys-
tal if the anisotropy is small, !"1.

The matrix representation given by Eqs. (3) and (4)
allows one to explore the dynamics of polarization
conversion in clear details. Because matrix !̂0 does
not change initial polarization state, the first term
C!̂0 describes the loss of power of the input beam. In
contrast, the second term in Eq. (3), ST̂, shows the
power gain experienced by the circularly polarized
component that is orthogonal to the initial one and
the appearance of OAM compensating the loss of
SAM. More precisely, the matrix T̂ changes the hand-
edness of circular polarization and describes the ap-
pearance of a vortex with a double topological charge,
#l#=2, with the sign opposite to the SAM.

Experimentally accessible quantities to retrieve
the optical spin-to-orbital conversion are the
reduced powers of two components, P±/P0
= !2/&w2"''#E±#2dxdy, where P0 is the input power.
These quantities are plotted in Fig. 1(a) in the case
!a ,b"= !1,0" and two different beam waists. Theoret-
ical curves are obtained [9,10] by using Eqs. (1) and
(2), P±/P0= 1

2 (1± !1+z2 /L2"−1), with L=2#e#ow2 / !#o
−#e"$z0 /!. The angular momenta normalized to the
total angular momentum are shown in Fig. 1(b); they
are defined as follows: SAM±= ±P±/P0 and OAM±
= l±P±/P0 with l+=0 and l−=2.

In our experiments we used uniaxial calcite crystal
samples that are cut perpendicularly to the optical
axis into 10 mm'10 mm'z mm slabs for z
=1. . .14 mm with steps of 1 mm. Linearly polarized
light from a He–Ne laser operating at wavelength (
=633 nm (no=1.656 and ne=1.458) is converted into
circular polarization using a quarter-wave plate. The
beam is then focused by a lens !f=25 mm" onto the

sample whose optical axis coincides with the direc-
tion of propagation. The output beam is collimated by
a second lens !f=100 mm" and passes through a sec-
ond quarter-wave plate and a polarizing beamsplit-
ter, which allows us to separate its orthogonally po-
larized double-charge optical vortex and fundamental
Gaussian components.

The intensity distributions of the c+ !l=0" and c−

!l=2" circularly polarized components of a monochro-
matic beam are shown in Fig. 2 for various propaga-
tion distances z. Both circular components exhibit
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Fig. 1. (Color online) Transfer of normalized (a) powers
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c− (black, blue, minus) circularly polarized components.
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2004: Propagation in inhomogeneous media: spin Hall effect of light 

M.	
  Onoda	
  et	
  al.	
  predict	
  the	
  occurrence	
  of	
  a	
  “spin	
  Hall	
  effect	
  of	
  light”,	
  a	
  transverse	
  shiq	
  
of	
  circularly	
  polarized	
  op1cal	
  beams	
  crossing	
  gradients	
  of	
  dielectric	
  proper1es,	
  and	
  
explain	
  it	
  in	
  terms	
  of	
  Berry	
  phases	
  (similar	
  to	
  Imbert-­‐Fedorov	
  shiq	
  of	
  total	
  internal	
  
reflec1on)	
  [PRL	
  93,	
  083901	
  (2004)]	
  

A	
  similar	
  predic1on	
  is	
  made	
  also	
  by	
  Kostan1n	
  Yu	
  Bliokh	
  et	
  al.	
  [Phys.	
  Lea.	
  A	
  333,	
  181	
  (2004)].	
  
Later,	
  he	
  also	
  extends	
  this	
  theory	
  to	
  a	
  “OAM	
  Hall	
  effect”	
  [K.	
  Yu.	
  Bliokh,	
  PRL	
  97,	
  0403901	
  (2006)]	
  

First	
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  (2008)]	
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2005: Conical diffraction in biaxial birefringent crystals 

Michael	
  V.	
  Berry	
  et	
  al.	
  discuss	
  a	
  form	
  of	
  SAM-­‐
OAM	
  conversion	
  for	
  light	
  entering	
  biaxial	
  
birefringent	
  crystals	
  [J.	
  Opt.	
  A:	
  Pure	
  Appl.	
  Opt.	
  7,	
  685	
  
(2005)]	
  

the crystal. As expected the fringe pattern is a spiral, indicative of an optical field with Jorb =  
+ 1! per photon. The output and reference beams were then slightly misaligned to generate a 
wedge fringe pattern. Figure 2(ii-iii) shows the wedge fringe patterns for ! = 0° and 45° and 
Fig. 2(iv-v) shows a Mathematica simulation of the same interference patterns. As expected, 
the wedge fringe pattern Fig. 2(iii) for circular polarisation input ! = 45° shows the expected 

single fringe dislocation indicative of a beam with ! = 1 [2]. 

  
Fig. 2. (i) Collinear interference of Gaussian beam with output beam for circularly polarised 
input. Wedge fringe patterns for non-collinear interference of Gaussian beam with output beam 
for (ii) " = 0° and (iii) " = 45°.  (iv-v) Mathematica simulation of (ii) and (iii). 

The intensity distributions as the angle ! was changed from 0° to 45° were also measured. 
These are shown in Fig. 3(a), while Fig. 3(b) shows the same intensity distributions calculated 
using Mathematica using Eq. (3). Linear polarisation into the crystal ! = 0° generates a 1st 
order Hermite-Bessel (HB01) beam Fig. 3(a-i), with zero intensity on the same axis as the 
direction of the incident polarisation; there is no fork dislocation in the wedge fringe pattern-
Fig. 2(ii) indicates that there is no OAM present. As ! is increased from 0° to 45° the beam 
evolves from a Hermite-Bessel (HB01) distribution to the 1st order Bessel distribution Fig. 
3(a-vi). 

  
Fig. 3. Measured (a) and simulated (b) intensity distributions of the output beam as the 
polarisation of the input to the crystal is changed by setting the angle " of the linear 
polarisation relative to the fast axis of the phase plate P1to the following values:(i) 0°, (ii)8°, 
(iii) 16°, (iv) 24°, (v) 32°, (vi)40°and (vii) 45°.(b) Mathematica simulation of the intensity 
patterns in (a) using Eq. (3). 

Following Berry [22], the angular momentum per photon of a light beam is given by 
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2006: Propagation in inhomogeneous anisotropic media 

Marrucci	
  et	
  al.	
  predict	
  and	
  observe	
  SAM	
  –	
  OAM	
  conversion	
  in	
  liquid	
  crystal	
  cells	
  having	
  a	
  
singular	
  paaern	
  with	
  topological	
  charge:	
  the	
  “q-­‐plates”	
  [PRL	
  96,	
  163905	
  (2006);	
  APL	
  88,	
  221102	
  (2006)]	
  

J. Opt. 13 (2011) 064001 Review Article

Figure 1. Four examples of q-plate patterns. (a) (q,α0) = ( 1
2 , 0), (b) (q, α0) = (1, 0), (c) (q, α0) = (1, π

2 ) and (d) (q, α0) = (2, 0). The
segments indicate the optical axis orientation in the transverse plane.

Figure 2. Pictorial illustration of the optical action of a tuned q-plate
on an input circularly polarized plane-wave light, for the case q = 1.
The output is a helical mode with OAM given by m = ±2, with the
sign determined by the input polarization handedness.

with very high efficiency (ideally close to 100%), no deflection
of the propagation axis and with a polarization-controlled
handedness [37, 38]. q-plates can therefore provide a very
convenient approach to generating OAM beams, which can
compete with computer-generated holograms and spatial light
modulators. The polarization control of the OAM sign allows
high-speed switching with rates that in principle can reach
GHz values [25]. Even more interestingly, the polarization
control of the OAM sign allows the development of new
kinds of quantum manipulations of single photons, as has been
demonstrated in a series of experiments mainly performed by
Sciarrino and co-workers in Roma’s quantum optics group,
which will be reviewed below. In particular, as we will show,
the combined use of polarization and OAM for accessing a
high-dimensional quantum space attached to each photon is
progressively enabling the implementation of novel promising
quantum information protocols [39, 40].

Inhomogeneous birefringent media such as q-plates are
not the only systems in which STOC can take place. An
inhomogeneous dichroic medium, such as a space-variant
polarizer with a q-plate-like optical axis geometry, can give
rise to very similar phenomena (with the advantage of an
achromatic response and the disadvantage of significant optical
losses) [41]. An electro-optical device allowing a polarization-
controlled OAM manipulation quite similar to the q-plate
one, based on a pair of opposite spiral phase plates having
electrically controlled refractive index, has been theoretically
proposed recently [42]. A STOC phenomenon bearing many
similarities to that taking place in a q-plate with q = 1

may also occur in a homogeneous uniaxial birefringent crystal,
when an optical beam propagates along the optical axis of
the crystal. This was first proved theoretically by Ciattoni
et al [43, 44] and experimentally by Brasselet et al [45–47].
A similar phenomenon has been shown to occur in a biaxial
crystal by internal conical diffraction [48, 49]. In contrast
to the case of q-plates, however, this approach is limited to
generating OAM m = ±2, due to the rotational symmetry
of the medium. Moreover, the conversion efficiency in the
paraxial limit cannot be higher than 50%. Another interesting
situation in which a form of STOC takes place is when an
initially paraxial circularly polarized beam passes through a
short-focal-length lens. The resulting strongly-focused non-
paraxial beam exhibits an OAM content, as demonstrated
experimentally by particle manipulation experiments [50, 51].
In this case, however, the OAM per photon remains small and
its effects are clearly visible only close to the beam focus.
The possibility of an electro-optical modulation of this effect
has also been reported [52]. Another recent work showed that
optical beams having a radially varying SAM also acquire an
additional rather unexpected component of OAM-like angular
momentum, presumably arising as a consequence of departure
from the paraxial limit [53].

Moreover, the interaction of SAM and external OAM,
that is at the basis of the so-called optical spin Hall effect,
has also been recently conceived and experimentally demon-
strated [54, 55]. Related spin–orbit optical phenomena are the
polarization ‘geometrodynamics’ [56, 57] and the polarization-
based optical sensing of nano-particle displacements [58]. It
should be furthermore mentioned that several works in the field
of singular optics [59], that is strictly related with that of OAM,
have recently tackled issues concerning the interaction between
polarization and wavefront structures in the optical field (see,
e.g., [60–62]). Finally, an emerging field in which the spin–
orbit interaction of SAM and OAM may bear fruitful results
in the near future is that of optical polariton condensates in
semiconductor microcavities (see, e.g., [63, 64]).

In the rest of this paper, we discuss some of the main
developments that have arisen since the first introduction of the
q-plate and the observation of the STOC process. The paper is
organized as follows. In section 2 we survey the developments
in the technology for manufacturing and tuning the liquid
crystal q-plates and mention some nonlinear phenomena in
which a q-plate-like geometry takes place spontaneously.
Section 3 concerns the theory of optical propagation inside
a q-plate and the resulting optical modes at the q-plate
output. Section 4 is mainly about the optical setups for
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demonstrated only for the midinfrared wavelength of
10.6 !m, based on the subwavelength grating technology.5,10

We manufactured q=1 plates working at the visible
wavelength "=633 nm based on the patterned liquid crystal
!LC" technology !see, e.g., Refs. 11 and 12 and references
therein". Nematic LC planar cells were prepared with a thick-
ness !about 1 !m" and a material !E63 from Merck, Darm-
stadt, Germany" chosen so as to obtain a birefringence retar-
dation of approximately a half wave. Before cell assembly,
one of the inner surfaces of the two containing glasses of the
cell was pressed against a piece of fabric kept in continuous
rotation. This “circular rubbing” procedure leads to a surface
easy axis !i.e., the preferred orientation of LC molecules"
having the desired q=1 circular-symmetric geometry, as that
shown in Fig. 1!d". The other glass was left unrubbed, for
degenerate planar alignment. To ensure good LC alignment,
the cell was heated above the clearing point and then cooled
slowly, keeping the rubbed surface slightly colder than the
unrubbed one. In this way, nematic order nucleated on the
rubbed surface and then extended to the whole cell. Some
cells were prepared with a polyimide coating for planar
alignment, others with bare glass, with comparable results
!although they required different rubbing pressures and
lengths". A photograph of a LC q plate held between crossed
polarizers is shown in Fig. 2!a".

To test the optical effect of a q plate, a circularly polar-
ized He–Ne laser beam having a TEM00 transverse mode and
a beam-waist radius of about 1 mm was sent through it, tak-
ing care of aligning the beam axis on the q-plate center. The
intensity profile of the output beam, shown in Fig. 2!b", has
the “doughnut” shape expected for a helical mode. However,
a complete test must be based on measuring the beam wave
front shape, rather than its intensity profile. To this purpose,
we inserted the q plate in the signal arm of a Mach-Zender
interferometer based on the same He–Ne laser source. The
input circular-polarization handedness was selected by prop-
erly rotating a quarter-wave plate. The beam emerging from
the q plate was sent through another quarter-wave plate and a
linear polarizer was arranged for transmitting the polariza-
tion handedness opposite to the initial one, so as to eliminate
any residual unchanged circular polarization !this step would
be unnecessary for an exact half-wave retardation of the q

plate". The final interference pattern generated after superpo-
sition with the reference was formed directly on the sensing
area of a charge coupled device !CCD" camera. We used two
reference wave front geometries: !i" plane tilted, for which
an order of 2 helical wave front will give rise to a double
disclination defect in an otherwise regular straightline fringe
pattern, and !ii" spherical, for which the helical wave front
will give rise to a double spiral fringe pattern. Figures
2!c"–2!f" show the interference patterns we obtained for one
of our cells in these two geometries, respectively, for left-
circular #panels !c" and !e"$ and right-circular #panels !d" and
!f"$ input polarizations. These results confirm that the wave
front of the light emerging from our q plate is indeed helical
of order ±2, as expected, with the # sign determined by the
input polarization handedness.

This polarization-based control of the generated helical
wave front is a good example of the possible advantages of
the PBOE approach to wave front shaping. Indeed, all other
existing approaches to helical mode generation !i.e., cylindri-
cal lenses, spiral phase plates, and holographic methods"
have an essentially fixed output. Of course, by introducing a
suitable spatial light modulator, dynamical control becomes
possible, but only at relatively low switching rates. In our
approach, a simple electro-optical control of the input polar-
ization allows switching of the generated helical mode at
very high rate. By cascading several q plates in series with
suitable electro-optic devices in between, as shown in Fig. 3,
one can obtain fast switching among several different helical
orders. This could be very useful if helical modes are to be
used in multistate optical information encoding, as recently
proposed for classical communication13 and for quantum
communication and computation.14,15

FIG. 1. Examples of half-wave PBOE geometries. Dashes indicate local
optical axis direction. !a" PBOE behaving as a circular-polarizing beam
splitter or switch; !b" PBOE behaving as a polarization-dependent lens; !c"
q-plate PBOE with q=1/2 and $0=0, generating helical modes of order ±1;
and !d" q-plate PBOE with q=1 and $0=% /2, generating helical modes of
order ±2.

FIG. 2. Experimental images. !a" A LC q plate held between crossed polar-
izers, showing the expected pattern for q=1 geometry. !b" “Doughnut” in-
tensity profile of the beam emerging from the q plate. !c"–!f" Interference
patterns of helical modes generated by our q plate. !c" and !d" panels refer to
the plane-wave reference geometry, !e"–!f" panels to the spherical-wave ref-
erence one. Panels on the left, !c" and !e", are for a left-circular input po-
larization and those on the right, !d" and !f", for a right-circular one.

221102-2 Marrucci, Manzo, and Paparo Appl. Phys. Lett. 88, 221102 !2006"
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2006: Backscattering from disordered media 

polarization charge is 1, resulting in a rotation of 2!
of the electric field. If "=0, the distribution is radial,
whereas if "=!, the distribution is azimuthal. In
both cases, analyzing the intensity distribution
through vertical or horizontal polarizers leads to two-
fold patterns, rotated with respect to each other by
90°. If we now consider mL=−mR=−2, the polariza-
tion topological charge is 2, and the orthogonal linear
polarization patterns will have a fourfold structure,
rotated by 45° with respect to each other (see Fig. 1).

The patterns shown in Fig. 1 resemble the spatial
distributions of the intensity observed in backscatter-
ing from turbid media when linearly polarized light
is incident on it and the return is viewed through a
linear analyzer.1–3 As we shall see in the following,
phase vortices can indeed be associated with these
patterns.

To explore the origins of the phase vortices, let us
specify first some of the characteristics of the mul-
tiple scattering process we are examining. We will
consider media characterized by a homogeneous ran-
dom distribution of spherical elastic scatterers that
are large with respect to the wavelength and there-
fore scatter preferentially in the forward direction.
Scattering at a small angle is known to be, with very
high probability, helicity preserving. We also consider
a narrow incident beam that is axially symmetric
and does not contain OAM and that is incident nor-
mally at the origin of the reference frame. Finally,
the scattered light is collected within a narrow angle
centered about the exact backscattering direction;
i.e., we impose the constraint that light is collected
only if it emerges normal to the surface. This is ex-
actly the radar geometry used in observing the polar-
ization patterns discussed here. The backscattered
light has, in this case, a significant component that

traveled along planar, nearly semicircular paths.10–12

The backscattered light is dominated by adiabatic
transport along helicity-preserving paths, which al-
lows us to consider the evolution of the optical geo-
metrical phase.13 A consequence of the constraint
that light exits near the normal direction is that the
waves under consideration can be treated as
paraxial.

A geometrical phase is usually associated with a
closed trajectory in the configuration space, i.e., the k
space. This is not the case in backscattering, since
the incident and emergent k vectors are antiparallel.
However, the trajectory can be closed by a reference
path that is a great circle on the k sphere, going from
the back direction to the forward direction.5 As such,
any backscattered path acquires a phase propor-
tional to the solid angle enclosed by curves associated
with the reference and actual paths. Planar scatter-
ing paths are also associated with great circles, lead-
ing to a solid angle that is equal to the area defined
by great circles intersecting at the poles. In Fig. 2
this angle is designated #, and the acquired geo-
metrical phase factor is equal to exp!−i$#".13 The
solid angle increases linearly from 0 to 4! as % in-
creases linearly from 0 to 2! (this is the known result
for a solid angle spanned by two intersecting great
circles creating a geometrical shape known as a
lune), so it can be written as 2%. One can conclude
that the RC wave acquires a phase vortex with a to-
pological charge equal to +2, while the LC one ac-
quires a −2 topological charge.

As for scattering of linearly polarized waves, let us
first discuss the contributions of the planar trajecto-
ries. For a horizontally polarized incident wave, ex-
pressed as 1/#2!L̂+R̂", the contribution to the scat-
tered field at a point on the surface can be written as
A!r ,% ,s"exp!iks"$exp!−i2%"L̂+exp!i2%"R̂%, where s is
the path length that gives rise to a common dynami-
cal phase and A!r ,% ,s" is an amplitude factor. The
two circularly polarized modes propagate along the

Fig. 1. Polarization distribution obtained by superposing
a right circularly polarized phase vortex (with a topological
charge equal to −2) and a left circular phase vortex (with a
topological charge equal to 2). (a) Intensity image, where
the vectors indicate the electric field direction. (b) Intensity
distribution after a horizontal linear analyzer that is pro-
portional to cos2!2%", where % is the azimuth angle. (c) In-
tensity distribution after a vertical linear analyzer that is
proportional to sin2!2%".

Fig. 2. (Color online) Scattering paths illustrated (a) in
real space and (b) in k space. In k space the path describes
the locations of the tip of the k vectors after each scattering
event (they all lie on the surface of a sphere, since the scat-
tering considered is elastic). A planar nearly semicircular
path in real space will have a corresponding path in k space
that is a geodesic, starting at the forward pole and ending
at the backward pole. The geometric phase corresponding
to this path is the solid angle subtended between the actual
path and the reference path, as indicated.
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polarization charge is 1, resulting in a rotation of 2!
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whereas if "=!, the distribution is azimuthal. In
both cases, analyzing the intensity distribution
through vertical or horizontal polarizers leads to two-
fold patterns, rotated with respect to each other by
90°. If we now consider mL=−mR=−2, the polariza-
tion topological charge is 2, and the orthogonal linear
polarization patterns will have a fourfold structure,
rotated by 45° with respect to each other (see Fig. 1).
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traveled along planar, nearly semicircular paths.10–12
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tering considered is elastic). A planar nearly semicircular
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again, if the fields vanish sufficiently quickly as r → ∞ is
often left unstated or understated; Jauch and Rohrlich (1976)
carefully point out this requirement. Bromberg (2006) gives a
lucid discussion of the equivalence of the two approaches.

More problematic, and rightly so, is the apparent lack
of gauge invariance of the spin density. Consequently, it
is typically concluded that the separation of the angular
momentum of a general electromagnetic wave into spin and
orbital components cannot be made in a physically meaningful
way—the result is either gauge dependent or not Lorentz
invariant. However, if we consider the fact that the (quasi-)
monochromaticity of an electromagnetic wave, at least for a
physically achievable wave (i.e., not an infinite plane wave) is
also not Lorentz invariant, it does not come as a great surprise
to find that the spin density of a monochromatic wave is both
gauge independent and physically meaningful (van Enk and
Nienhuis 1994, Crichton and Marston 2000). Since this is in
accord with both the correspondence principle—the quantum
theory must yield the classical theory in an appropriate limit—
and Noether’s theorem, there is every reason to accept (2) as the
correct expression for the angular momentum density, rather
than the naı̈ve (1).

This leads to an interesting problem. A rotationally
symmetric system cannot alter the angular momentum state of
an electromagnetic wave, and thus focusing by a rotationally
symmetric optical system cannot alter the angular momentum
state of a laser beam. If we consider a focused circularly
polarized beam, following Crichton and Marston (2000) we
can measure the spin angular momentum in the far field. In the
far field, the beam is a spherical wave, and, locally, we measure
the radial component of the spin angular momentum. However,
only the component along the beam axis can contribute to the
total angular momentum of the beam. Since the maximum
magnitude of the spin density is h̄ per photon, the total
spin angular momentum must be less than this amount (see
figure 1). On the other hand, the total angular momentum flux
cannot have been changed by the act of focusing the beam.
Therefore, an orbital angular momentum flux must have been
introduced into the beam.

We investigate the nature of this orbital angular
momentum flux, and show that it is associated with the optical
vortex nature of the axial electromagnetic field. We also clearly
demonstrate an orbital motion of energy within the beam.

2. Angular momentum of a focused beam

The simple result of spin angular momentum flux equal to P/ω
is only valid in the paraxial approximation, as it depends on Ez

being zero. If we consider a beam of finite width in its focal
plane, then the beam will spread through diffraction, and will,
at a sufficiently large distance, be propagating in a purely radial
direction. That is, for large r , we must have Er = 0. In this
case, the electric field is purely tangential, and the spin angular
momentum density in polar spherical coordinates is

sr = ε0Im(Eθ E$
φ)/ω, (3)

with the other vector components being zero. For a rotationally
symmetric beam of the type we consider here, sr will be
independent of the azimuthal angle φ.

Figure 1. Reduction of spin about the beam axis by a lens. If a
circular polarized paraxial beam is incident on a lens, the initial spin
flux density vector, s0, is parallel to the beam axis. After focusing, it
will no longer be parallel. At the location shown in the figure, the
final spin density vector s1 is at an angle of θ (this angle will vary
across the focused beam), and only the component sz parallel to the
beam axis will contribute to the total spin flux of the beam. Thus, the
total spin angular momentum flux is reduced by focusing.

Therefore, the maximum possible contribution to the total
spin angular momentum, of which, by symmetry, only the
z component is non-zero, is sr cos θ , where θ is the angle
measured from the z axis. Integrating this over the beam must
result in |Sz | < h̄ per photon. If we consider a non-paraxial
beam with a Gaussian profile, we can write the amplitude in
the far field as

U = U0 exp(− tan2 θ/ tan2 θ0), (4)

where θ0 is the angle at which the amplitude of the field
drops to 1/e of the value at θ = 0. This angle is the beam
convergence angle (Nieminen et al 2003). For maximum
possible spin, we have sr = ε0U 2/ω, and the total spin angular
momentum of the beam, in units of h̄ per photon, can be found
by integrating over a hemisphere:

Sz = A/P (5)

where

A =
∫ π/2

0
exp(−2 tan2 θ/ tan2 θ0) sin θ cos θ dθ (6)

and

P =
∫ π/2

0
exp(−2 tan2 θ/ tan2 θ0) sin θ dθ . (7)
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Figure 3. Electric field components of a strongly focused circularly polarized Gaussian beam, with a convergence angle of 45◦. The x , y, and
z components of the electric field in the focal plane are shown in (a), (b), and (c), while (d) shows phase contours (with a spacing of 2π/20)
for the z component, showing azimuthal variation of phase as seen in vortex beams.
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Figure 4. Poynting vector of a strongly focused circularly polarized
Gaussian beam, with a convergence angle of 45◦. The transverse part
(x and y components) of the Poynting vector in the focal plane are
shown.

of the focal spot along the direction of the electric field. As
this elongated focal spot rotates at the optical frequency, this
shows that there is an unambiguous azimuthal flow of energy.
This movement of field energy is accompanied by a momentum
flux (Umov 1950, Nieminen et al 2007), which in this case is
azimuthal about the beam axis, and therefore results in orbital
angular momentum about the beam axis.

As the beam is more strongly focused, the magnitude of
the longitudinal (z) component of the field increases, and the
orbital angular momentum increases as a result. The same
increase can also be considered to result from the decrease of
spin angular momentum, along with the conservation of total
angular momentum. The change in the angular momentum
and the growth of the longitudinal optical vortex is smooth
and well behaved as the convergence angle of the beam is
increased, with no sudden qualitative or quantitative changes.
As the beam is more strongly focused, the diffraction rings also
become more prominent, but this does not affect the angular
momentum of the beam.

3. Discussion

3.1. Coupling between spin and orbital angular momenta

Due to the dependence of orbital angular momentum density
on the choice of origin about which moments are taken, and
the independence of spin density on this choice, the conversion
of spin to orbital angular momentum must be accompanied
by a torque. Therefore, conversion from one type of angular
momentum to the other cannot occur in free space, or in media
which can be electromagnetically represented by a uniform
scalar permittivity. At the interface between two media, such
as, for example, the surface of a lens, coupling between spin
and orbital angular momenta can occur.

Bomzon et al (2006) claimed that the angular momentum
per photon actually increases when a circularly polarized beam
is focused. However, this apparently paradoxical result simply
further demonstrates the incorrectness of the expression used
for the angular momentum flux.
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different degrees of freedom. In particular, fjþ2il; j"2ilg
is the basis for the OAM qubit which lies in the jlj ¼ 2
subspace of the infinite dimensional Hilbert space of orbi-
tal angular momentum. As a first experimental step, we set
out to verify how accurately the real QP device performs
these transformations in the single-photon regime (see
Fig. 1 for experimental details). First, the QP conversion
efficiency ! from the input TEM00 to the l ¼ $2 modes
has been estimated through the coupling efficiency with
the single-mode fiber. We find ! ’ 85%, ascribed to light
scattering, radial mode residual mismatch, and imperfect
tuning of the QP birefringent retardation " [11,15] (the

unconverted component remains l ¼ 0 and is therefore
filtered out). Next, in order to assess the coherence of the
transformations in Eq. (1), single photons in the states
jHi#j0il or jVi#j0il were used as input in the QP. We
analyzed the output state through a double-fork hologram
and a circular-polarization analysis setup along the two
diffracted modes: the intensity of the #R (#L) polarization
component in the mode corresponding to l ¼ þ2 (l ¼ "2)
was measured to be equal to 99.8% (99.6%) of the total,
with a high agreement with theory. To demonstrate the
realization of the pure states given in Eq. (1), a complete
single-photon two-qubit quantum state tomography has
been carried out, performing measurements both in #
and l degrees of freedom. Besides the normal fjþ2il;
j"2ilg OAM basis, measurements were carried out in the
two superposition bases fjdþil; jd"ilg and fjdRil; jdLilg,
where jd$il ¼ 1ffiffi

2
p ðjþ2il $ j"2ilÞ and jdL;Ril ¼ 1ffiffi

2
p '

ðjþ2il $ ij"2ilÞ. The OAM degree of freedom was ana-
lyzed in these bases by means of different computer-
generated holograms, reported in the inset of Fig. 1 [16].
The experimental results are in high agreement with
theory, as shown in Figs. 2(a) and 2(b).
Because of its peculiarities, the q plate provides a con-

venient way to ‘‘interface’’ the photon OAMwith the more
easily manipulated spin degree of freedom. Hence, as the
next step we show that such an interface can be considered
as a quantum ‘‘transferrer’’ device, which allows one to

FIG. 1 (color online). A Ti:sapphire mode-locked laser con-
verted by second harmonic generation (SHG) into a beam with
wavelength $p ¼ 397:5 nm. This field pumps a nonlinear crystal
of %-barium borate (BBO) which emits a single-mode biphoton
state withH and V polarizations and $ ¼ 795 nm, filtered by the
interference filter (IF) with !$ ¼ 6 nm and then coupled to a
single-mode fiber [19]. The gray dot-dashed box has been op-
tionally inserted to prepare a single-photon state triggered by
detector DT . Birefringent quartz crystals (Q) having different
thicknesses were used to introduce a controlled temporal delay
between the two photons. After setting the input polarization by
means of a suitably oriented quarter wave plate, the photons
were sent through the q plate (QP) and the output OAM states
were analyzed with the help of a hologram (Hol) and a polar-
ization analysis set (PA). In OAM-to-spin conversion experi-
ments, Hol and QP were interchanged. To measure (or prepare)
OAM states in the basis l ¼ $2, a double-fork hologram has
been used [inset (A)], so that the OAM state of the first diffracted
modes is shifted by !l ¼ $2, while the undiffracted zero-order
beam has !l ¼ 0. The photons on the first diffracted modes are
then coupled to single-mode fibers which select output states
with l ¼ 0 and convey them to the detectors DA and DB. Hence,
the detection of a photon in DA (DB) corresponds to a photon
incident on the hologram with OAM l ¼ þ2 (l ¼ "2). The first-
order diffraction efficiency of the hologram was (10%. The
measurement (or preparation) of OAM in superposition states
has been realized by adopting the other holograms shown in the
inset. [The hologram (B) refers to jdþil, (C) to jdRil, (D) to
jd"il. jdLil was also analyzed by hologram (C) after reversing its
orientation.]
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FIG. 2 (color online). (a),(b) Experimental density matrices for
the single-photon entangled state. The computational values
f0; 1g are associated to the fjRi; jLig polarization states and to
fjþ2i; j"2ig for the orbital angular momentum l for the first and
the second qubit, respectively. The incoming state on the QP is
(a) jHi#j0il and (b) jVi#j0il. The average experimental con-
currence is C ¼ ð0:95$ 0:02Þ. (c),(d) Experimental Poincaré
sphere both for the OAM (c) and # (d) degrees of freedom
obtained after the # ! l and the l ! # transferrer, respectively.
Experimentally we carried out single-qubit tomography to de-
termine the Stokes parameters for the # and the analogous
parameters for the l degrees of freedom. The mean fidelity values
are (c) F ¼ ð98$ 1Þ% and (d) F ¼ ð97$ 1Þ%.
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We propose and demonstrate a global and efficient approach for scalar and vectorial beam shaping based on
the interaction of circularly polarized light with a single piece of homogeneous anisotropic medium. The
main idea is to mimic the behavior of a two-dimensional inhomogeneous birefringent medium with a radial
distribution of its optical axis. This is done by transforming an incident Gaussian beam into a conical nipple
of light that further propagates along the optical axis of a c-cut uniaxial crystal. © 2009 Optical Society of
America

OCIS codes: 160.1190, 260.1440, 260.6042, 260.1180.

The generation, propagation, and interaction with
matter of light beams that possess phase (scalar) or
polarization (vectorial) singularities are current top-
ics in optics. In particular, the controlled generation
of optical singularities that combines high efficiency
and the use of simple optical elements is still an open
issue. Besides strategies based on segmented polariz-
ing optics within intra- or extra-cavity geometries, el-
egant approaches relying on a single piece of homo-
geneous uniaxial crystal have been proposed both for
the scalar [1,2] and vectorial cases. In the latter case,
let us mention the obtention of azimuthal [3] or ra-
dial [4] vectorial optical vortices, which have been
recognized later as polarization eigenstates in c-cut
uniaxial crystals [5]. However, the conversion effi-
ciency could be as low as 50% [6], and one needs to
cascade such devices in order to get higher-order sin-
gular optical structures. Such a requirement is by-
passed when exploiting spatially patterned aniso-
tropic optical elements, as shown in the scalar [7] and
vectorial [8] situations. In fact, promising develop-
ments have been made using continuously patterned
liquid crystal systems in two [9] or three [10] dimen-
sions in the scalar case and also in the vectorial case
where two- [8,11,12] or three- [13] dimensional strat-
egies have been implemented. Hence, although at-
tractive, the concept of 100% efficient phase and po-
larization singularities generation using a single
piece of homogeneous uniaxial crystal appears hope-
less and has not been demonstrated so far.

In this Letter, we show that this is possible by ex-
ploiting the analogy between the interaction of (i) a
circularly polarized (CP) conical nipple of light with a
c-cut homogeneous uniaxial crystal having its optical
axis along the main propagation direction of light
[see Fig. 1(a)] and (ii) a collimated CP beam at nor-
mal incidence onto a two-dimensional inhomoge-
neous uniaxial medium having a radial symmetry
[referred to as a “radial plate”; see Fig. 1(b)]. To prove
this, we introduce the optical conical nipple half-apex
angle in air, !0, and the total phase delay between the
ordinary !o" and extraordinary !e" waves at the out-
put of the crystal in case (i),

" =
2#

$

L

cos !
#no − ne!!"$, !1"

where $ is the wavelength in vacuum; L is the
thickness of the crystal; ne!!"=n%n! / !n%

2 cos2 !
+n!

2 sin2 !"1/2, with n% !n!=no" being the refractive
indices along (perpendicular to) the optical axis of the
crystal; and !&!0 /n! is the refracted angle whose
simplified expression is justified by the practical con-
dition !0%1. Therefore, for any value of !, case (i)
possesses a radial plate analog, but with an effective
thickness Leff=L / cos ! and a local birefringence
&neff=no−ne!!", as illustrated in Figs. 1(a) and 1(b),
and "eff= !2# /$"Leff&neff=" in case (ii).

Next, we notice that a radial plate illuminated by a
CP beam can generate, formally with a 100% effi-
ciency, a scalar vortex with a topological charge 2
when its total phase delay matches the half-wave-
plate (HWP) condition [9], i.e., "HWP= !2m+1"#,
where m is an integer. On the other hand, a vectorial
vortex with a topological charge 1 is produced when

Fig. 1. (Color online) (a) CP conical nipple of light imping-
ing on a c-cut calcite crystal, with o.a. being the optical
axis. (b) Analog birefringent radial plate geometry. (c) Ex-
perimental setup: A, axicon; L, lens; C, calcite crystal;
X—QWP, HWP, or nothing; Q, quartz crystal (used only for
the vectorial case, see text); WP, Wollaston prism.
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Categories	
  of	
  SAM	
  –	
  OAM	
  processes	
  iden1fied	
  so	
  far:	
  

q  Propaga1on	
  in	
  homogeneous	
  anisotropic	
  media	
  +	
  devia:on	
  from	
  full	
  paraxiality	
  
(uniaxial	
  crystals,	
  conical	
  diffrac1on)	
  

q  Propaga1on	
  in	
  inhomogeneous	
  isotropic	
  media	
  +	
  large	
  varia:on	
  of	
  propaga:on	
  
direc:on	
  (spin	
  Hall	
  effect,	
  strong	
  focusing,	
  back-­‐scaaering)	
  

q  Propaga1on	
  in	
  inhomogeneous	
  anisotropic	
  media	
  (paaerned	
  liquid	
  crystals,	
  e.g.	
  q-­‐
plates,	
  sub-­‐wavelength	
  gra1ngs,	
  curved	
  space-­‐1me)	
  

In	
  all	
  cases,	
  a	
  global	
  rota:onal	
  symmetry	
  of	
  medium	
  around	
  the	
  z-­‐axis	
  ensures	
  
exact	
  conserva1on	
  of	
  the	
  total	
  angular	
  momentum	
  z-­‐component:	
   Jz = Lz + Sz

SAM – OAM conversion: conditions for occurrence 

No1ce:	
  only	
  the	
  last	
  case	
  allows	
  SAM	
  –	
  OAM	
  
conversion	
  of	
  undeflected	
  fully	
  paraxial	
  beams	
  

Otherwise	
  some	
  exchange	
  of	
  angular	
  momentum	
  with	
  the	
  medium	
  is	
  involved	
  
(e.g.,	
  general	
  q-­‐plates,	
  conical	
  diffrac1on	
  in	
  biaxial	
  crystals)	
  



q-plate: the concept 

[L.	
  Marrucci,	
  C.	
  Manzo,	
  D.	
  Paparo,	
  PRL	
  96,	
  163905	
  (2006);	
  APL	
  88,	
  221102	
  (2006)]	
  



q-plate: origin of the idea (2005) 
Experiment	
  on	
  spinning	
  liquid	
  crystal	
  
droplets	
  by	
  circularly	
  polarized	
  light:	
  
[C.	
  Manzo,	
  D.	
  Paparo,	
  L.	
  Marrucci,	
  I.	
  Jánossy,	
  
Phys.	
  Rev.	
  E	
  73,	
  051707	
  (2006)]	
  	
  

Bipolar	
  droplets:	
  
Almost	
  homogeneous	
  
birefringence.	
  They	
  can	
  

be	
  spun	
  by	
  light.	
  

However,	
  we	
  found	
  two	
  kinds	
  of	
  droplets:	
  

Radial	
  droplets:	
  
Inhomogeneous	
  
birefringence.	
  

They	
  do	
  not	
  spin!	
  

But	
  radial	
  droplets	
  anyway	
  modify	
  the	
  light	
  polariza1on	
  and	
  
therefore	
  should	
  exchange	
  (spin)	
  angular	
  momentum	
  with	
  
light	
  [Istvan	
  Jánossy,	
  private	
  discussion]	
  

	
   	
   	
  So,	
  why	
  don’t	
  they	
  rotate?	
  

The	
  simple	
  answer	
  we	
  found:	
  SAM	
  goes	
  into	
  OAM!	
   q-­‐plate	
  idea!!	
  



Cell	
  thickness	
  and	
  
birefringence	
  chosen	
  
so	
  as	
  to	
  have	
  uniform	
  
half-­‐wave	
  retarda:on	
  

x 

y 

The	
  op1cal	
  axis	
  
orienta1on	
  in	
  the	
  
plate	
  is	
  paYerned	
  

! (x, y) =! (r,! )

α	
  =	
  angle	
  between	
  
the	
  local	
  op1cal	
  axis	
  n	
  
and	
  a	
  reference	
  axis	
  

x 

y 
α 

φ 
r 

n 

q-plate structure: patterned half-wave plates 



Three	
  examples:	
  

q = ½  
 

(α0 = 0) 
q = 1  

 

(α0 = 0) 

q = 1  
 

(α0 = π/2) 

Topological	
  defect	
  of	
  
charge	
  q	
  in	
  the	
  center	
  

with	
  	
  q	
  	
  integer	
  
or	
  half-­‐integer	
  

General	
  
paYern:	
   0( , ) ( , )x y r qα α ϕ ϕ α= = +

q-plate structure: patterned half-wave plates 

No:ce:	
  q	
  =	
  1	
  yields	
  rota:onal-­‐symmetric	
  paYerns	
  (such	
  as	
  the	
  radial	
  droplets)	
  



Consider	
  first	
  a	
  normal	
  (uniform)	
  half-­‐wave	
  plate	
  

The	
  handedness	
  is	
  inverted	
  For	
  circularly	
  polarized	
  input	
  

For	
  linearly	
  polarized	
  input	
   The	
  output	
  polariza1on	
  is	
  rotated	
  

The	
  extent	
  of	
  the	
  polariza1on	
  rota1on	
  depends	
  on	
  the	
  op1cal	
  axis	
  orienta1on	
  

q-plate optical effect 

But	
  what	
  is	
  the	
  effect	
  of	
  rota:ng	
  the	
  op:cal	
  axis	
  in	
  this	
  case?	
  



Apparently	
  no	
  change!	
  

Let’s	
  try	
  it:	
  

But	
  let	
  us	
  check	
  also	
  the	
  op:cal	
  phase	
  

No	
  change	
  in	
  the	
  output	
  polariza1on	
  and	
  op1cal	
  intensity	
  

q-plate optical effect 



Phase-­‐shiq	
  induced	
  by	
  rotated	
  half-­‐wave	
  plate	
  on	
  circular-­‐polarized	
  light:	
  

2αΔΦ = ±Phase-­‐shiq	
  versus	
  half-­‐wave	
  axis	
  rota1on:	
  

The	
  ±	
  sign	
  is	
  
determined	
  by	
  the	
  
input	
  polariza1on	
  
handedness	
  

q-plate optical effect 



Jones	
  matrix	
  of	
  an	
  α-­‐oriented	
  half-­‐wave	
  plate:	
   M = cos2! sin 2!
sin 2! !cos2!

"

#
$

%

&
'

Let	
  us	
  apply	
  it	
  to	
  an	
  input	
  lea-­‐circular	
  polarized	
  plane	
  wave:	
  

M ! 1
i

"

#
$

%

&
'E0 =

cos2! + isin 2!
(icos2! + sin 2!

"

#
$

%

&
'E0 =

1
(i

"

#
$

%

&
'ei2!E0

The	
  output	
  polariza1on	
  
is	
  uniform	
  right-­‐
handed	
  circular	
  

	
  
The	
  wave	
  has	
  acquired	
  
a	
  phase	
  retarda:on	
  

!" = 2!
Pancharatnam-­‐Berry	
  geometrical	
  phase	
  
(unrelated	
  with	
  op1cal	
  path	
  length)	
  

q-plate optical effect: Jones calculus 



Now	
  consider	
  again	
  a	
  non-­‐uniform	
  half-­‐wave	
  plate:	
  

The	
  wavefront	
  gets	
  reshaped!	
  

For	
  the	
  specific	
  q-­‐plate	
  paYern:	
   0( , )r qα ϕ ϕ α= +

( )0( , ) 2 2 2 cost.x y q mα ϕ α ϕΔΦ = ± = ± + ± = +

	
  Helical	
  phase	
  with	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  !	
  m = ±2q

q-plate optical effect 



Examples:	
  

q	
  =	
  1/2	
  

OAM	
  m	
  =	
  1	
  

OAM	
  m	
  =	
  –1	
  

Leq	
  circular	
  polariza1on	
  

Right	
  circular	
  polariza1on	
  

Polariza:on	
  controlled	
  OAM	
  handedness!	
  

q-plate optical effect 



Examples:	
   q	
  =	
  1/2	
  

OAM	
  m	
  =	
  ±1	
  

q	
  =	
  1	
  

OAM	
  m	
  =	
  ±	
  2	
  

q-plate optical effect 



Photon angular momentum balance: case q = 1 

Spin:  Sz = +ħ 
Orbital:  Lz = 0 
Total:  Jz = +ħ 

Spin-­‐to-­‐orbital	
  conversion	
  of	
  op:cal	
  angular	
  momentum	
  

Lea-­‐circular	
  
input:	
  

Spin:    Sz = –ħ 
Orbital: Lz = +2ħ 
Total:  Jz = +ħ 

q-­‐
plate	
  

Right-­‐circular	
  
input:	
  

Spin:  Sz = –ħ 
Orbital:  Lz = 0 
Total:  Jz = –ħ 

Spin:    Sz = +ħ 
Orbital: Lz = –2ħ 
Total:  Jz = –ħ 



Spin:  Sz = ±ħ 
Orbital:  Lz = mħ 
	
  
Total:  Jz = (m±1)ħ 

Spin:    Sz =     ħ 
Orbital: Lz = mħ ±	
  2qħ 
	
  
Total: Jz = [m±(2q–1)]ħ 

!

Torque	
  on	
  the	
  q-­‐plate	
  

For	
  q = 1,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ΔJz = 0	
  	
  
No	
  torque	
  on	
  the	
  medium	
  
(medium	
  is	
  only	
  a	
  “coupler”	
  between	
  
spin	
  and	
  orbital	
  angular	
  momentum	
  of	
  
light)	
  

This	
  is	
  why	
  radial	
  
droplets	
  don’t	
  rotate!	
  

For	
  q ≠ 1,	
  	
  ΔJz = ±2(q–1)ħ  ≠ 0 

But,	
  what	
  happens	
  if	
  the	
  plate	
  birefringent	
  
retarda:on	
  is	
  not	
  just	
  half-­‐wave?	
  

Photon angular momentum balance: general case 



1,m± ! = a ±1,m + b !1,m ± 2q

Birefringent	
  
retarda1on	
  δ	
  

Output	
  photon:	
  coherent	
  superposi1on	
  of	
  
“converted”	
  and	
  “unconverted”	
  states	
  

0

cos
2

sin
2

i

a

b i e α

δ

δ

⎧ =⎪⎪
⎨
⎪ =⎪⎩

Superposi1on	
  coefficients:	
  

Input	
  photon	
  
	
   spin,orbital

No1ce:	
  in	
  the	
  q = 1	
  case,	
  s1ll	
  all-­‐op:cal	
  conversion	
  (no	
  torque	
  on	
  the	
  medium)	
  

The	
  output	
  photon	
  state	
  is	
  not	
  an	
  eigenstate	
  of	
  spin	
  and	
  orbital	
  angular	
  momenta	
  

We	
  use	
  a	
  quantum	
  nota1on:	
  

q-plate optical effect: general birefringence retardation 

No1ce:	
  we	
  call	
  δ	
  =	
  π	
  the	
  “op1mal	
  
tuning”	
  condi1on	
  for	
  the	
  q-­‐plate	
  



q-plates: 
the current technology 

[L.	
  Marrucci,	
  C.	
  Manzo,	
  D.	
  Paparo,	
  PRL	
  96,	
  163905	
  (2006);	
  APL	
  88,	
  221102	
  (2006)]	
  

[S.	
  Slussarenko,	
  A.	
  Murauski,	
  T.	
  Du,	
  V.	
  Chigrinov,	
  L.	
  Marrucci,	
  E.	
  Santamato,	
  Opt.	
  Express	
  19,	
  4085-­‐4090	
  (2011)]	
  

[B.	
  Piccirillo,	
  V.	
  D'Ambrosio,	
  S.	
  Slussarenko,	
  L.	
  Marrucci,	
  E.	
  Santamato,	
  APL	
  97,	
  241104	
  (2010)]	
  

[E.	
  Karimi,	
  B.	
  Piccirillo,	
  E.	
  Nagali,	
  L.	
  Marrucci,	
  E.	
  Santamato,	
  APL	
  94,	
  231124	
  (2009)]	
  



1)  Circular rubbing of one substrate 
(with planar anchoring) 

q = 1 
geometry	
  

2)  Assemble the cell with thickness chosen for 
having half-wave retardation (only approximate)  

Nema1c	
  
liquid	
  
crystal	
  

The	
  cell	
  between	
  
crossed	
  polarizers:	
  

Making a liquid crystal q-plate: the first method 

[L.	
  Marrucci,	
  C.	
  Manzo,	
  D.	
  Paparo,	
  PRL	
  96,	
  163905	
  (2006);	
  APL	
  88,	
  221102	
  (2006)]	
  



Liquid crystal q-plate: testing the optical effect 

Laser	
  (He-­‐Ne)	
  

Screen	
  
or	
  
CCD	
  

q-­‐plate	
  λ/4	
   λ/4	
  

Polarizing	
  
beam-­‐spliaer	
  

Polarizing	
  
beam-­‐spliaer	
  

Wavefront	
  measurement	
  
by	
  interference:	
  

q value smaller mask angular aperture would be necessary. By adjusting the ratio between the
angular speeds of the two motors, different topological charges were impressed on the cell
walls. It can be easily shown that the induced topological charge is given by q= 1± ωp

ωs
, where

ωp and ωs are the angular speeds of the polarizer and sample, respectively, and the ”+” and
”−” signs correspond to opposite and same rotation direction of the two mounts, respectively.
After the exposure, the samples were filled with the LC (MLC 6080 mixture from Merck) and
sealed by epoxy glue. Heating the sample above the LC clearing point and subsequent slow
cooling helped to remove occasional LC alignment defects. Topological charges q= 0.5,1.5,3,
as shown in Fig. 2(a-c), were realized with the procedure described above. However any semi-
integer charge can be realized, in principle, with this technique.

Fig. 2. (Color online) (a-c) Examples of the LC patterns with different topological charges
and photos of the corresponding samples under crossed polarizers. (d-f) CCD pictures of
the intensity beam profiles generated by the QPs shown in (a-c) when they are tuned. The
input beam polarization was circularly polarized (top) or linearly polarized (middle). The
respective interference patterns with a plane wave are also shown (bottom).

3. Optical characterization

When a beam traverses a QP with topological charge q and phase retardation δ , a fraction sin2 δ
2

of the photons in the beam have their SAM reversed and change their OAM by an amount±2q.
More precisely, the photons flipping their spin from −1 to +1 (−1 to +1) change their OAM
of −2q (+2q). The remaining photon fraction cos2 δ

2 remain in their initial SAM and OAM
state. [13,14] When the phase retardation of the QP is tuned to half-wave (δ = π) all the input
photons will be converted. In the particular case of charge q = 1, the total SAM+OAM light
angular momentum remains unchanged in passing through the QP, so that the change of the
photon SAM is transferred into a corresponding opposite change of the photon OAM, yielding
a spin-to-OAM conversion (STOC) [13]. For a single photon, a similar action takes place on
two wave-function components, with amplitudes sin δ

2 and cos
δ
2 respectively.

The preliminary test on our QPs was just to observe the intensity pattern generated by the
QP for a circularly or linearly polarized TEM00 incident beam. The observed intensity patterns
are shown in Fig. 2(d-f, top and middle row). In the case of the circular polarization of the
incident beam the we found the typical doughnut profile of vortex beam, while for the linear
input polarization the intensity pattern shows a number 4q of bright radial lobes, as foreseen
from theory. To better demonstrate the capability of our QPs to generate optical vortices a
measurement of the helical phase front is desirable. Such measurement was done by inserting
the QP into one arm of a Mach-Zehnder interferometer and by registering the interference
pattern with a reference wave. The interference patterns, in the case of a plane reference wave
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As	
  a	
  first	
  step,	
  we	
  check	
  
that	
  a	
  vortex	
  appears	
  in	
  
the	
  outgoing	
  beam:	
  



Lea-­‐circular	
  input	
   Right-­‐circular	
  input	
  

Double-­‐spiral	
  interference	
  paaern	
  

è	
  	
  Helical	
  wavefront	
  with	
  m	
  = ±2	
  
Spiral	
  handedness	
  switches	
  sign	
  
with	
  input	
  polariza1on!	
  

Liquid crystal q-plate: testing the optical effect 

These	
  simple	
  observa:ons	
  confirm	
  the	
  occurrence	
  of	
  SAM	
  –	
  OAM	
  conversion	
  



Making a liquid crystal q-plate 

2. Q-plate structure and fabrication

In the QP, the LC film is enclosed between glass walls perpendicular to the z-axis. The
orientation of the local optical axis of the QP is given by the LC molecular director distribution
nnn(rrr) = (sinθ cosα,sinθ sinα,cosθ), with θ = θ(rrr),α = α(rrr) being the polar angles. The
walls of the QPs are coated for parallel strong anchoring (θ = π/2) and the the surface
alignment profile is made so to have α(x,y) = α(ϕ) = qϕ + α0 in the LC bulk, where
ϕ = arctan(y/x) is the transverse azimuthal coordinate, α0 is a real number, and q is an integer
or half integer number. The surface texture induced by this distribution is known in the physics
of LC as a Schlieren structure with an isolated point defect (or “noyau”) of topological charge
q at the wall center [20]. The “noyaux” in the two walls of the cell are carefully aligned
along the z axis during the cell manufacturing, so that a disclination line of same charge q is
generated in the bulk (from here the name q-plate of the device). As it is well known from
the elastic theory of LC, the equivalence between nnn and −nnn implies that the charge q is either
integer or half-integer [21].

Fig. 1. (Color online) QP fabrication setup scheme.

The traditional way to manufacture a cell with planar alignment of liquid crystal is to rub
the inner sides of the glass walls, previously coated with thin layer of polyimide, with velvet
fabric. The rubbing direction defines the anisotropy of the surface that, in turn, orient the LC
molecules perpendicular (or parallel, depending on the LC type) to the rubbing direction. The
q = 1 QPs can be manufactured in this way, by rubbing the cell walls with a rotating piece of
fabric [13, 15]. Other patterns, with q "= 1 cannot be made by this method. In this work, we
employed a photoalignment technique. The scheme of our setup is shown in Fig. 1. The LC
cell was made from two glass substrates, spin-coated with 1% solution of sulphonic azo-dye
SD1 (Dainippon Ink and Chemicals) in dimethylformamide (DMF) for 30 s at 3000 rpm. The
glass windows were coated with conducting Indium-Tin-Oxide (ITO) to apply and external
electrical field to the LC film. After the evaporation of the solvent, by soft-baking at 120 ◦C
for 5 min, the glasses were assembled together and 6 µm dielectric spacers were used to define
the cell gap. A mercury lamp of 180 mW/cm2 power density was used as the collimated light
source. The light beam was polarized by a linear wiregrid polarizer and made to pass through
an angular mask of 10◦ angular aperture. After the mask, a cylindrical lens was used to focus
and converge the selected sector on the cell. The SD1 surfactant provides planar alignment for
the LC in the direction perpendicular to the writing light polarization, with anchoring energy
comparable with the polyimide rubbing based alignment [22]. Both polarizer and sample were
attached to rotating mounts controlled by PC through step-motors. The rotation step of the
sample was set to 2◦. An exposure time of 2 hours and one complete turn of the sample was
enough to provide high quality alignment of the LC film in all our QPs. Such values, together
with the angular aperture of the mask, resulted from a compromise between having enough
light passing through the mask and having a small enough image of the mask on the cell to
obtain an acceptable smoothly varying local surface alignment. To make QPs with very large
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A	
  beYer	
  method:	
  op:cal	
  wri:ng	
  of	
  the	
  liquid	
  crystal	
  paYern	
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Figure 3. (a) A q = 1 q-plate prepared by a photoalignment
technique, as seen between crossed polarizers. (b), (c) Interference
patterns of the outgoing beam from the q-plate with (b) planar and
(c) spherical reference waves, for a left-circular input polarization.

OAM manipulation that can be obtained by combining one
or more q-plates in suitable optical schemes, but it includes
a brief survey of related results of polarization-based OAM
manipulation. Quantum applications of q-plates and of SAM–
OAM photon interactions are finally discussed in section 5.

2. q-plate manufacture and tuning

The main issue to be addressed in the manufacture of q-
plates is the patterning of the optical axis. Liquid crystals
(LCs) are soft birefringent materials allowing flexible spatial
patterning of the average molecular orientation that defines the
optical axis. LCs can be aligned by several methods. For
static alignment, the simplest choice is to use the so-called
‘surface anchoring’, i.e., a treatment of the bounding substrates
that generates a preferential molecular alignment of the LC in
contact with the surface. For dynamical alignment one can
use external fields, such as magnetic, electric or even optical
fields. LC q-plates can be then manufactured as thin (order of
5–10 µm) LC films, sandwiched between two glass substrates
which have been previously coated with a suitable alignment
layer, typically made of polymer, such as polyimide or other
materials. These materials are suitable for aligning the LC
optical axis parallel (or slightly tilted) to the bounding surfaces,
i.e. the so-called ‘planar anchoring’. To single out a specific
direction in the plane one can then use a mechanical rubbing
procedure (using velvet or other fabrics) of the polymer-coated
substrate. It is, however, hard to introduce an arbitrary pattern
by mechanical rubbing, and this approach is convenient only
in the case of the simplest geometry, corresponding to q = 1,
which is rotationally symmetric. For this practical reason all
the early experimental works with q-plates used q-plates with
q = 1.

A more versatile and cleaner approach to patterning
LC cells is to use a photoinduced alignment method of the
polymer coating of the LC-bounding substrates, as proposed
in [25]. In this approach, the anisotropy of the polymer
is controlled by the linear polarization of the writing light,
which defines the material optical axis (either parallel or
perpendicular to the writing field polarization). There are
different permanent orienting effects of light on the polymer
coatings which can be used. The most common ones are either
photochemical, i.e. based on selectively destroying or creating
chemical links by preferential absorption, or photophysical,
i.e. based on the photoinduced selective reorientation of dye
molecules dispersed in the polymer. One can use this

Figure 4. Setup used to measure the STOC efficiency and the state
purity. Legend: QWP—quarter wave plate, PBS—polarizing
beam-splitter. The fork hologram was inserted on the converted beam
arm to verify the degree of purity of the OAM m = 2 mode
generated on the output. STOC power fraction (blue ) and no
STOC power fraction (red !") as functions of the q-plate temperature.
The curves are theoretical best fits [38].

approach to directly write an anisotropic pattern in a thin
polymer film that becomes itself a q-plate, as for example
recently reported in [65]. However, polymer q-plates are
not dynamically tunable, as their birefringent retardation δ
is fixed by the film thickness and by the polymer degree
of alignment and corresponding birefringence. We instead
recently demonstrated the photoinduced alignment approach
to prepare patterned polymer-coated substrates with which
we could assemble tunable patterned LC q-plates with
arbitrary topological charge q [66]. In figure 3 an LC q-
plate manufactured by the photoalignment method is shown,
together with the interference patterns demonstrating the
helical structure of the outgoing wavefront.

The tuning of an LC q-plate, that is controlling the
birefringence phase retardation δ, useful for optimizing the
STOC process or to adjust it for different wavelengths, can be
achieved by different methods, including mechanical pressure,
thermal methods, and external-field induced LC reorientation.
So far, a thermal approach exploiting the strong dependence
of the LC birefringence on temperature [38] and an electric
one, exploiting the electric-field induced reorientation of the
LC molecular alignment [67] have been demonstrated. The
latter of course allows for a relatively fast dynamical control of
tuning, while the former is more suitable for static tuning.

Since the STOC process is accompanied by polarization
helicity inversion, in the case of a pure circularly polarized
input beam the STOC and non-STOC components of the output
light can be simply separated by a polarizing beam-splitter
(PBS), because the converted and non-converted light will
have orthogonal polarization states. This allows for a very
simple measurement of the STOC efficiency and of the phase
retardation δ that controls it, as shown for example in figure 4.
In this experiment, the optimal STOC efficiency exceeded

4

Photosensi1ve	
  
surface	
  layers	
  (e.g.,	
  
azo-­‐polymers)	
  

Resul1ng	
  q-­‐plates	
  have	
  beaer	
  op1cal	
  quality:	
  

Moreover,	
  by	
  rota:ng	
  both	
  the	
  polarizer	
  and	
  the	
  sample…	
  

q	
  =	
  1	
  

[S.	
  Slussarenko,	
  A.	
  Murauski,	
  T.	
  Du,	
  V.	
  Chigrinov,	
  L.	
  Marrucci,	
  E.	
  Santamato,	
  Opt.	
  Express	
  19,	
  4085-­‐4090	
  (2011)]	
  



q value smaller mask angular aperture would be necessary. By adjusting the ratio between the
angular speeds of the two motors, different topological charges were impressed on the cell
walls. It can be easily shown that the induced topological charge is given by q= 1± ωp

ωs
, where

ωp and ωs are the angular speeds of the polarizer and sample, respectively, and the ”+” and
”−” signs correspond to opposite and same rotation direction of the two mounts, respectively.
After the exposure, the samples were filled with the LC (MLC 6080 mixture from Merck) and
sealed by epoxy glue. Heating the sample above the LC clearing point and subsequent slow
cooling helped to remove occasional LC alignment defects. Topological charges q= 0.5,1.5,3,
as shown in Fig. 2(a-c), were realized with the procedure described above. However any semi-
integer charge can be realized, in principle, with this technique.

Fig. 2. (Color online) (a-c) Examples of the LC patterns with different topological charges
and photos of the corresponding samples under crossed polarizers. (d-f) CCD pictures of
the intensity beam profiles generated by the QPs shown in (a-c) when they are tuned. The
input beam polarization was circularly polarized (top) or linearly polarized (middle). The
respective interference patterns with a plane wave are also shown (bottom).

3. Optical characterization

When a beam traverses a QP with topological charge q and phase retardation δ , a fraction sin2 δ
2

of the photons in the beam have their SAM reversed and change their OAM by an amount±2q.
More precisely, the photons flipping their spin from −1 to +1 (−1 to +1) change their OAM
of −2q (+2q). The remaining photon fraction cos2 δ

2 remain in their initial SAM and OAM
state. [13,14] When the phase retardation of the QP is tuned to half-wave (δ = π) all the input
photons will be converted. In the particular case of charge q = 1, the total SAM+OAM light
angular momentum remains unchanged in passing through the QP, so that the change of the
photon SAM is transferred into a corresponding opposite change of the photon OAM, yielding
a spin-to-OAM conversion (STOC) [13]. For a single photon, a similar action takes place on
two wave-function components, with amplitudes sin δ

2 and cos
δ
2 respectively.

The preliminary test on our QPs was just to observe the intensity pattern generated by the
QP for a circularly or linearly polarized TEM00 incident beam. The observed intensity patterns
are shown in Fig. 2(d-f, top and middle row). In the case of the circular polarization of the
incident beam the we found the typical doughnut profile of vortex beam, while for the linear
input polarization the intensity pattern shows a number 4q of bright radial lobes, as foreseen
from theory. To better demonstrate the capability of our QPs to generate optical vortices a
measurement of the helical phase front is desirable. Such measurement was done by inserting
the QP into one arm of a Mach-Zehnder interferometer and by registering the interference
pattern with a reference wave. The interference patterns, in the case of a plane reference wave
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=2 and with right-circular !R" polarization. By inserting in
the output beam a second QWP and a polarizing beam-
splitter !PBS" oriented so as to select the R-polarization for
the transmission output, a pure doughnut beam is obtained.
The reflected output of the PBS shows instead only the cen-
tral spot !unconverted light". If Pin is the total input power,
the powers of the coherently converted and unconverted
components, PR,2 and PL,0, respectively, are expected to de-
pend on the optical retardation ! according to the following
Malus-like laws:13,17

PR,2 = P0 sin2!

2
PL,0 = P0 cos2!

2
, !1"

where P0=TPin is the total power transmitted coherently by
the QP. To adjust the retardation !, the temperature of the QP
was varied while measuring the power of the two output
beams of the PBS. The results are shown in Fig. 2, together
with best-fit curves based on Eq. !1", assuming a second-
order polynomial dependence !!T"=a+bT+cT2 and adding
a constant offset of 0.5% that accounts for the finite PBS and
wave plates contrast ratios. When the PBS-transmitted power
!full squares in Fig. 2" reaches its maximum, we obtain the
optimal STOC and almost all photons emerge in the m=2
OAM state. More precisely, in this optimal situation, about
99.2% of the beam power is transmitted by the PBS, and
after taking into account the finite contrast ratio of the wave
plates and PBS !as measured without the QP", the actual QP
efficiency in inverting the optical polarization is estimated to
be 99.6%. To test the purity of the OAM eigenmode gener-
ated by our QP at the optimal temperature, we inserted along
the beam a double pitchfork hologram as OAM mode
splitter,6,14 and on the first-order diffracted beam we selected
the central spot by a suitable iris placed before the detector.

After suitable calibration of the detection efficiency, the mea-
sured OAM m=2 mode content fraction was estimated to be
F=97.2% !in quantum optics, F is the “fidelity,” i.e., the
overlap with the desired mode m=2", so that the overall QP
efficiency in generating a pure OAM m=2 mode is "
=97.2%#99.6%=96.9%. This value is net of reflection and
scattering losses in the QP. If all losses are included, the
efficiency of our QP is 85%, a figure which could be easily
improved to more than 90% by simply adding antireflection
coatings. Moreover, we note that unlike all other methods for
OAM generation, the QP approach enables also a very fast
!gigahertz" switching of the OAM sign, by electro-optical
control of the input polarization.

Let us now discuss the second experiment about OAM
mode sorting. More precisely, we present a setup for sorting
the four modes that are obtained by combining the two OAM
modes m=2 and m=−2, and the two orthogonal polarizations
L and R. The setup is the same as the previous one. The
optical retardation of the QP was held fixed at the optimal
value !=$ for maximum STOC efficiency and the input
states m= %2 were generated by an SLM driven with a
pitchfork computer generated hologram !CGH". The first
QWP was rotated so as to produce, alternately, right-circular
and left-circular polarizations. In this way, we created in se-
quence the four photon states #L ,2$, #L ,−2$, #R ,2$, #R ,−2$.
Because the STOC process is complete in a tuned QP, after
passing through the QP these four states are expected to
change, respectively, into #R ,4$, #R ,0$, #L ,0$, #L ,−4$. The
QWP after the QP, changes these states into #H ,4$, #H ,0$,
#V ,0$, #V ,−4$, respectively, so that the two states #H ,4$ and
#H ,0$ are transmitted by the PBS, and the other two states
#V ,0$ and #V ,−4$ are reflected. We see that owing to the QP,
the two states in each of the reflected and transmitted beam
have different values of the photon OAM !m=0 and m=4".
After propagating in the far-field !or in the focal plane of a
lens", these two modes can then be separated by exploiting
their different radial distribution, i.e., a central spot for m
=0 and an outer ring for m=4, as shown in Fig. 3, thus
finally sorting all four initial spin-orbit modes into separate
beams. The radial sorting can be obtained, for example, by
means of a mirror with a hole at its center. The efficiency of
this mode sorter is defined here as the fraction of the optical
power of the eigenmode to be sorted that is directed in the
correct output mode. This efficiency, however, is not 100%
because of the radial mode overlap, leading to some energy
going into the “wrong” OAM output mode. This also leads to
a finite contrast ratio, i.e., to cross-talk between the input
channels. In Table I we report the measured efficiencies and
contrast ratios for the four input spin-orbit base states previ-
ously mentioned, with a discriminating hole radius chosen so
as to balance the output efficiencies for opposite input OAM

FIG. 1. Setup to measure the STOC efficiency and the state purity. Legend:
QWP-quarter wave plate, PBS-polarizing beam-splitter. The fork hologram
was inserted on the converted beam arm for verifying the degree of purity of
the OAM m=2 mode generated on the output.

!
!
!
!!!!!!!!!!!!!!!

!!
!!
!
!!
!
!!
!
!
!
!
!
!
!
!
!!
!
!!!
!!!!!
!!!!
!
!

!!
!
!!

!
!!
!
!!!!!!!!!

!!
!
!
!

!!
!!
!!
!!
!!!
!!!!!!!!!!!!

!!!
!!!!
!!
!!
!!!!!
!!!!!!!!

!!
!!
!!
!!
!
!!
!
!!
!!
!!
!!!!!!!!!

!!

28 30 32 34 36 38 40 42
0

0.25

0.5

0.75

1

T !°C "

P
ow

er
fr

ac
tio

n

FIG. 2. STOC power fraction PR,2 / P0 !black squares" and no STOC power
fraction PL,0 / P0 !empty squares" as functions of the QP temperature. The
curve is the best fit obtained as explained in the text.

FIG. 3. Calculated far-field patterns of OAM modes m=0 and m=4 gener-
ated by the QP for input OAM m= %2 %the input beam was assumed to
HyGG−2,%2!r ,& ,0.1" !Ref. 18" mode&. The dashed circle shows the dis-
criminating area used in the balanced mode sorter.
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Figure 3. (a) A q = 1 q-plate prepared by a photoalignment
technique, as seen between crossed polarizers. (b), (c) Interference
patterns of the outgoing beam from the q-plate with (b) planar and
(c) spherical reference waves, for a left-circular input polarization.

OAM manipulation that can be obtained by combining one
or more q-plates in suitable optical schemes, but it includes
a brief survey of related results of polarization-based OAM
manipulation. Quantum applications of q-plates and of SAM–
OAM photon interactions are finally discussed in section 5.

2. q-plate manufacture and tuning

The main issue to be addressed in the manufacture of q-
plates is the patterning of the optical axis. Liquid crystals
(LCs) are soft birefringent materials allowing flexible spatial
patterning of the average molecular orientation that defines the
optical axis. LCs can be aligned by several methods. For
static alignment, the simplest choice is to use the so-called
‘surface anchoring’, i.e., a treatment of the bounding substrates
that generates a preferential molecular alignment of the LC in
contact with the surface. For dynamical alignment one can
use external fields, such as magnetic, electric or even optical
fields. LC q-plates can be then manufactured as thin (order of
5–10 µm) LC films, sandwiched between two glass substrates
which have been previously coated with a suitable alignment
layer, typically made of polymer, such as polyimide or other
materials. These materials are suitable for aligning the LC
optical axis parallel (or slightly tilted) to the bounding surfaces,
i.e. the so-called ‘planar anchoring’. To single out a specific
direction in the plane one can then use a mechanical rubbing
procedure (using velvet or other fabrics) of the polymer-coated
substrate. It is, however, hard to introduce an arbitrary pattern
by mechanical rubbing, and this approach is convenient only
in the case of the simplest geometry, corresponding to q = 1,
which is rotationally symmetric. For this practical reason all
the early experimental works with q-plates used q-plates with
q = 1.

A more versatile and cleaner approach to patterning
LC cells is to use a photoinduced alignment method of the
polymer coating of the LC-bounding substrates, as proposed
in [25]. In this approach, the anisotropy of the polymer
is controlled by the linear polarization of the writing light,
which defines the material optical axis (either parallel or
perpendicular to the writing field polarization). There are
different permanent orienting effects of light on the polymer
coatings which can be used. The most common ones are either
photochemical, i.e. based on selectively destroying or creating
chemical links by preferential absorption, or photophysical,
i.e. based on the photoinduced selective reorientation of dye
molecules dispersed in the polymer. One can use this

Figure 4. Setup used to measure the STOC efficiency and the state
purity. Legend: QWP—quarter wave plate, PBS—polarizing
beam-splitter. The fork hologram was inserted on the converted beam
arm to verify the degree of purity of the OAM m = 2 mode
generated on the output. STOC power fraction (blue ) and no
STOC power fraction (red !") as functions of the q-plate temperature.
The curves are theoretical best fits [38].

approach to directly write an anisotropic pattern in a thin
polymer film that becomes itself a q-plate, as for example
recently reported in [65]. However, polymer q-plates are
not dynamically tunable, as their birefringent retardation δ
is fixed by the film thickness and by the polymer degree
of alignment and corresponding birefringence. We instead
recently demonstrated the photoinduced alignment approach
to prepare patterned polymer-coated substrates with which
we could assemble tunable patterned LC q-plates with
arbitrary topological charge q [66]. In figure 3 an LC q-
plate manufactured by the photoalignment method is shown,
together with the interference patterns demonstrating the
helical structure of the outgoing wavefront.

The tuning of an LC q-plate, that is controlling the
birefringence phase retardation δ, useful for optimizing the
STOC process or to adjust it for different wavelengths, can be
achieved by different methods, including mechanical pressure,
thermal methods, and external-field induced LC reorientation.
So far, a thermal approach exploiting the strong dependence
of the LC birefringence on temperature [38] and an electric
one, exploiting the electric-field induced reorientation of the
LC molecular alignment [67] have been demonstrated. The
latter of course allows for a relatively fast dynamical control of
tuning, while the former is more suitable for static tuning.

Since the STOC process is accompanied by polarization
helicity inversion, in the case of a pure circularly polarized
input beam the STOC and non-STOC components of the output
light can be simply separated by a polarizing beam-splitter
(PBS), because the converted and non-converted light will
have orthogonal polarization states. This allows for a very
simple measurement of the STOC efficiency and of the phase
retardation δ that controls it, as shown for example in figure 4.
In this experiment, the optimal STOC efficiency exceeded
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at small angle, have a typical “fork”-like structure [11], in which interference fringes have a
disclination, where the optical vortex is located. The disclination order (i.e. the splitting of the
interference line into a higher number of lines) corresponds to the OAM value of the beam, as
shown in Fig. 2(d-f, bottom row). We tested also the STOC efficiency of our QPs, defined as the
ratio between the STOC converted power and the total power in the output. This measurement
was done by registering the power fraction of the light transmitted by the QP having polarization
orthogonal to that of the incident beam. The QP conversion efficiency was changed by changing
the QP retardation δ by applying an external voltage. To avoid electro-chemical effects, we
applied a 2 kHz square-shaped voltage. The measurements were done at 543.5 nm and 633 nm
light wavelengths. The results for the q= 0.5 QP are shown in Fig. 3(a). We obtained a STOC
efficiency of up to 99% for all fabricated QPs. Due to unavoidable reflection, diffusion, and
absorption losses in the QP, the overall STOC efficiency defined as the ratio between the STOC
converted power in the output and the total incident power was found about 86% for all our
QPs. These losses, however, could be easily avoided by adding an antireflection coating.

Fig. 3. (Color online) (a) – fraction of the output power converted by STOC in the QP as a
function of the applied voltage. Red line - 633 nm input beamwavelength, green line - 534.5
nm input beamwavelength. (b) – time behavior of the QP upon sending two consecutive AC
pulses that correspond to the minimum and maximum conversion efficiency. The intensity
patterns in the insets show the on-off switching of the vortex beam with ! = 1. The data
refer to the QP with q= 0.5.

Since the STOC efficiency measurement was based on the polarization state of the beam only,
an additional detailed study of the beam phase structure is required. For doing this we measured
directly the OAM content of the beam generated by the QP, tuned to the maximum conversion,
exploiting a tomographic technique [23]. Since we were not interested in the beam polarization,
we fixed it by inserting a linear polarizer after the QP and carried out only the tomography of
the beam OAM content. The main advantage of the optical tomography is that both amplitude
and phase of the OAM components of a light beam can be reconstructed and that also the
“fidelity” of the beam OAM state with respect to a given theoretical state can be evaluated [24].
Because the tomographic characterization is a very long procedure, we performed this test on
the q = 0.5 QP only, restricting the OAM states to the Hilbert space spanned by the opposite
OAM eigenvalues ! = ±1. In the experiment, the q = 0.5 QP was used to generate the states
|1〉o, |−1〉o, and 1/

√
2(|1〉o− |−1〉o), as described above, and a set of six computer-generated

holograms (CGH) was sent into a spatial light modulator (SLM) to project the given beam
state into the corresponding OAM bases [25, 26]. The density matrices of the measured states
are reported in Fig. 4(a)-(c). The measurements showed an average fidelity of 98± 1% of the
generated states with the expected ones. We tested also the correlation between the circularly
right polarized fraction of the beam coming from the q = 0.5 QP and the power of the ! =
1 component of the same beam for different elliptically polarized states of the input TEM00
beam. The measurements were carried on with a circular polarizer to select the right handed
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ΔΦ = Ω

Pancharatnam-Berry geometrical phase 



Using Pancharatnam-Berry phase for wavefront shaping 

Reshaped	
  output	
  
wavefront	
  

Input	
  
wavefront	
  
(with	
  uniform	
  
ini1al	
  
polariza1on)	
  

Op1cal	
  system	
  
inducing	
  non-­‐uniform	
  
polariza1on	
  
transforma1ons	
  but	
  a	
  
uniform	
  final	
  
polariza1on	
  

What	
  kind	
  of	
  op:cal	
  systems	
  can	
  be	
  used?	
  



Patterned half-wave plates (like “q-plates”) 

Jones	
  matrix:	
  
cos2 ( , ) sin 2 ( , )

( , )
sin 2 ( , ) cos2 ( , )

x y x y
x y

x y x y
α α
α α

⎡ ⎤
= ⎢ ⎥−⎣ ⎦

M

Apply	
  it	
  to	
  an	
  input	
  lea-­‐circular	
  polarized	
  plane	
  wave:	
  

2 ( , )
0 0 0

1 cos2 sin 2 1
( , ) ( , ) ( , ) ( , )

cos2 sin 2
i x yi

x y E r z E r z e E r z
i i i

αα α
α α
+⎡ ⎤ ⎡ ⎤ ⎡ ⎤

× = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥− + −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
M

Wavefront	
  acquires	
  a	
  
posi:on-­‐dependent	
  
phase	
  retarda:on	
  

( , ) 2 ( , )x y x yαΔΦ =
Pancharatnam-­‐Berry	
  geometrical	
  phase	
  

With	
  suitable	
  paYerning	
  of	
  the	
  plate,	
  we	
  may	
  generate	
  wavefronts	
  of	
  any	
  
prescribed	
  shape	
  



Example: a PBOE lens 

This	
  lens	
  will	
  be	
  focusing	
  or	
  defocusing	
  depending	
  on	
  the	
  input	
  circular	
  
polariza1on	
  handedness:	
  fast	
  polariza:on	
  mul:plexing	
  

The	
  lens	
  thickness	
  will	
  be	
  uniform	
  and	
  very	
  thin	
  (few	
  
microns).	
  Similar	
  to	
  Fresnel	
  lens,	
  but	
  without	
  op1cal	
  
discon1nui1es	
  

Op:cal	
  axis	
  paYern:	
  
2( , )r crα ϕ⎡ ⎤=⎣ ⎦

This	
  paaern	
  could	
  be	
  
made	
  with	
  
computer-­‐controlled	
  
micro-­‐rubbing	
  or	
  
photo-­‐alignment	
  



PBOE and polarization holography 

Reference	
  
wavefront	
  
(with	
  opposite	
  
circular	
  
polariza1on)	
  

Input	
  “signal”	
  
wavefront	
  
(circularly	
  polarized)	
  

Polariza1on	
  
hologram	
  

“Develop”	
  it	
  into	
  a	
  cell	
  with	
  
half-­‐wave	
  retarda1on	
  

PBOE	
  which	
  reconstructs	
  the	
  signal	
  
wavefront	
  or	
  its	
  conjugate	
  (with	
  
100%	
  efficiency,	
  single	
  order	
  
output)	
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