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Outline: 

q  Introduction: spin and orbital angular momentum of light 
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q  q-plate: the concept 

q  q-plates: the current technology 

q  Concept generalization: Pancharatnam-Berry phase optical elements 
(PBOE) for arbitrary wavefront shaping 



Introduction: spin and orbital angular 
momentum of light 



Spin and orbital angular momentum of light (SAM & OAM) 

That	  is,	  different	  ways	  for	  a	  light	  “ray”	  to	  “rotate	  upon	  itself”	  while	  it	  propagates	  

An	  equivalent	  expression	  (from	  Noether	  theorem):	  

  
       

   

       

       
    

       

        

       
     
      

              
                

              
          

          

             

      

                   
           

              
             

                  
                 
    

       

 

          
  

  
       

   

       

       
    

       

        

       
     
      

              
                

              
          

          

             

      

                   
           

              
             

                  
                 
    

       

 

          
  

  
       

   

       

       
    

       

        

       
     
      

              
                

              
          

          

             

      

                   
           

              
             

                  
                 
    

       

 

          
  

  
       

   

       

       
    

       

        

       
     
      

              
                

              
          

          

             

      

                   
           

              
             

                  
                 
    

       

 

          
  

Standard	  expression	  of	  field	  angular	  momentum:	  

[S.	  J.	  van	  Enk	  &	  G.	  Nienhuis,	  J.	  Mod.	  Opt.	  41,	  963	  (1994)]	  

Equivalent	  up	  to	  a	  
surface	  term	  

Only	  radia1ve	  terms	  
(transverse	  fields)	  SAM	  

OAM	  



Spin and orbital angular momentum of light (SAM & OAM) 

Some	  old-‐standing	  problems	  with	  SAM	  and	  OAM	  defini:ons:	  

[S.	  J.	  van	  Enk	  &	  G.	  Nienhuis,	  J.	  Mod.	  Opt.	  41,	  963	  (1994);	  T.	  A.	  Nieminen	  et	  al.,	  J.	  Opt.	  A:	  Pure	  Appl.	  Opt	  10,	  115005	  (2008)]	  

q  Other	  defini1ons	  are	  also	  possible	  (par1cularly	  for	  the	  SAM	  and	  OAM	  density	  and/
or	  fluxes):	  Is	  there	  a	  “most	  correct”	  one?	  What	  criteria	  should	  we	  use?	  

q  Gauge	  invariance	  (but	  problem	  solved	  if	  we	  restrict	  to	  radia1ve	  transverse	  fields)	  

q  Actual	  physical	  meaning	  of	  SAM	  and	  OAM	  terms	  (Independent	  measurability?	  Are	  
they	  true	  angular	  momenta,	  i.e.	  generators	  of	  rota1ons	  with	  proper	  commuta1on	  
rules?	  Etc.)	  

q  Coupling	  with	  maaer:	  local	  density	  or	  flux	  coupling?	  SAM	  and	  OAM	  coupling	  with	  
different	  degrees	  of	  freedom	  of	  maaer?	  

However,	  most	  problems	  go	  away	  in	  the	  paraxial	  limit	  (for	  the	  “z”	  component)	  

z	  



Spin and orbital angular momentum of light (SAM & OAM) 

SAM	  and	  OAM	  in	  the	  paraxial	  limit	  (monochroma:c	  wave):	  

SAM:	  fully	  intrinsic,	  related	  
with	  circular	  polariza1ons	  

S = !0
2i!

dr E* !E" # !0ẑ
2"

dr S3"

OAM:	  further	  splits	  into	  

External	  OAM,	  related	  with	  
beam	  axis	  posi1on	  and	  total	  
momentum	  

Internal	  OAM,	  related	  with	  helical	  wavefront	  

Lext = rcm !P

Lint =
!0
2i!

dr Eh
*r !"Eh

h=x,y,z
#$ % !0ẑ

2i!
dr Eh

* &
&!

Eh
h=x,y,z
#$

Depends	  on	  the	  choice	  of	  
origin	  of	  coordinate	  system	  



m = +1 m = −1 

m = +2 m = −2 

( )
0( , ) ( , ) i kz timt r z e e ωϕ −=E r EHelical	  modes:	  

(using	  cylindrical	  
coordinates	  r, φ, z) 

Spin and orbital angular momentum of light (SAM & OAM) 

helical	  phase	  factor:	  
	  
	  
	  
	  

ime ϕ

m = 0,±1,±2,±3…

Angular	  momentum	  (OAM):	  

Lz = mħ    per photon 

[L.	  Allen,	  M.W.	  Beijersbergen,	  R.	  J.	  C.	  Spreeuw,	  and	  J.	  P.	  Woerdman,	  Phys.	  Rev.	  A	  45,	  8185	  (1992)]	  



SAM and OAM interaction with matter 

SAM	  and	  OAM	  are	  separately	  conserved	  during	  propaga1on	  in	  vacuum	  and	  in	  
isotropic	  homogeneous	  transparent	  media.	  What	  about	  other	  media?	  

anisotropic	  (birefringent)	  
medium	  (e.g.,	  wave-‐

plates)	  

acts	  on	  the	  
polariza1on	  

(SAM)	  Effect	  of	  medium	  
anisotropy:	  

acts	  on	  the	  
wavefront	  
(OAM)	  

inhomogenous	  
medium	  (e.g.,	  
phase	  plates)	  Effect	  of	  medium	  

inhomogeneity:	  

[M.W.	  Beijersbergen	  et	  al.,	  Opt.	  Commun.	  112,	  321	  (1994);	  M.	  Berry,	  in	  Singular	  Op1cs,	  SPIE	  3487	  (1998)]	  



SAM and OAM interaction with matter 

“Fork-‐like”	  
hologram	   Diffr.	  order	  0:	  

no	  change	  

Diffr.	  order	  1:	  OAM	  
m	  =	  1	  

Diffr.	  order	  -‐1:	  
OAM	  m	  =	  -‐1	  

Holograms	  can	  be	  considered	  as	  a	  special	  case	  of	  (strongly)	  inhomogeneous	  media:	  

[V.	  Y.	  Bazhenov,	  M.	  V.	  Vasnetsov,	  M.	  S.	  Soskin,	  Sov.	  Phys.—JETP	  Le3.	  52,	  429	  (1990)]	  



Orbital	  angular	  
momentum	  of	  light	  
makes	  the	  par:cle	  
rotate	  around	  the	  beam	  
axis	  (external	  angular	  
momentum)	  

Spin	  angular	  momentum	  
of	  light	  makes	  an	  
absorbing	  par:cle	  spin	  
around	  its	  own	  axis	  
(internal	  angular	  
momentum)	  

Circular-‐polarized	  and/or	  
helical	  beam	  of	  light	  

SAM and OAM interaction with matter 

Absorbing	  media	  couple	  both	  with	  SAM	  and	  OAM,	  although	  not	  exactly	  in	  the	  same	  way:	  

However,	  absorp1on	  allows	  only	  transfer	  of	  angular	  
momentum	  from	  light	  to	  maaer,	  not	  vice	  versa	  

[H.	  He	  et	  al.,	  PRL	  75,	  826	  (1995);	  N.	  B.	  Simpson	  et	  al.,	  Opt.	  Lea.	  22,	  52–54	  (1997);	  A.	  T.	  O’Neil	  et	  al.,	  PRL	  88,	  053601	  (2002)]	  



Spin–orbital angular momentum 
conversion 



SAM – OAM conversion (optical spin-orbit effects) 

“SAM	  –	  OAM	  conversion”	  is	  here	  defined	  as	  an	  op1cal	  process	  in	  which	  SAM	  and	  OAM	  
both	  vary	  during	  propaga1on	  but	  the	  total	  angular	  momentum	  is	  conserved,	  whatever	  
the	  input	  state	  of	  light	  

More	  generally,	  op1cal	  spin-‐orbit	  coupling	  effects	  take	  place	  whenever	  SAM	  and	  OAM	  
affect	  each	  other	  during	  propaga1on.	  SAM	  –	  OAM	  conversion	  is	  a	  special	  case	  of	  spin-‐
orbit	  coupling	  effect	  

Ques:on:	  
Under	  what	  condi:ons	  does	  SAM	  –	  OAM	  

conversion	  take	  place?	  

Before	  aaemp1ng	  an	  answer,	  let	  us	  review	  the	  main	  findings	  reported	  so	  far,	  
following	  a	  chronological	  order	  (probably	  an	  incomplete	  list)	  

No1ce:	  from	  1992	  (when	  the	  OAM	  research	  field	  actually	  started)	  to	  2002,	  there	  was	  no	  
predic1on	  or	  observa1on	  of	  SAM	  –	  OAM	  conversion	  (except	  for	  external	  OAM	  effects)	  



2002: Space-variant sub-wavelength gratings 
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Space-variant Pancharatnam–Berry phase optical elements
with computer-generated subwavelength gratings
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Space-variant Pancharatnam–Berry phase optical elements based on computer-generated subwavelength grat-
ings are presented. By continuously controlling the local orientation and period of the grating we can achieve
any desired phase element. We present a theoretical analysis and experimentally demonstrate a Pancharat-
nam–Berry phase-based diffraction grating for laser radiation at a wavelength of 10.6 mm. © 2002 Optical
Society of America

OCIS codes: 260.5430, 350.1370, 050.2770, 050.1970.

The Pancharatnam–Berry phase is a geometric phase
associated with the polarization of light. When the
polarization of a beam traverses a closed loop on the
Poincaré sphere, the f inal state differs from the initial
state by a phase factor equal to half of the V area, en-
compassed by the loop on the sphere.1,2 In a typical
experiment, the polarization of a uniformly polarized
beam is altered by a series of space-invariant (trans-
versely homogeneous) wave plates and polarizers, and
the phase that evolves in the time domain is measured
by means of interference.3,4

Recently, we considered a Pancharatnam–Berry
phase in the space domain. Using space-variant
(transversely inhomogeneous) metal stripe subwave-
length gratings, we demonstrated conversion of
circular polarization into radial polarization5 and
showed that the conversion was accomplished by a
space-variant phase modif ication of geometric origin
that affected beam propagation.6 Previously, Bhan-
dari suggested the use of a discontinuous spatially
varying wave plate as a lens based on similar geomet-
ric phase effects.7 Recent studies have investigated
periodic polarization gratings.8 – 10 These authors
showed that the polarization of diffracted orders could
differ from polarization of the incident beam. We
intend to prove and to utilize a connection between
the properties of such polarization gratings and the
space-domain Pancharatnam–Berry phase.

In this Letter we consider optical phase elements
based on the space-domain Pancharatnam–Berry
phase. Unlike diffractive and refractive elements,
the phase is not introduced through optical path
differences but results from the geometric phase
that accompanies space-variant polarization manipu-
lation. The elements are polarization dependent,
thereby enabling multipurpose optical elements that
are suitable for applications such as optical switching,
optical interconnects, and beam splitting. We show
that such elements can be realized using continuous
computer-generated space-variant subwavelength
dielectric gratings. The continuity of the gratings en-
sures the continuity of the resulting field, thereby elim-
inating diffraction associated with discontinuity and
enabling the fabrication of elements with high diffrac-
tion efficiency. We experimentally demonstrate

Pancharatnam–Berry phase diffraction gratings for
CO2 laser radiation at a wavelength of 10.6 mm,
showing an ability to form complex polarization-
dependent continuous-phase elements.

Figure 1 illustrates the concept of Pancharatnam–
Berry phase optical elements (PBOEs) on the Poincaré
sphere. Circularly polarized light is incident on a
wave plate with constant retardation and a continuous
space-varying fast axis whose orientation is denoted
by u!x, y". We show that, since the wave plate is
space varying, the beam at different points traverses
different paths on the Poincaré sphere, resulting in a
space-variant phase-front modif ication that originates
from the Pancharatnam–Berry phase. Our goal is
to utilize this space-variant geometric phase to form
novel optical elements.

It is convenient to describe PBOEs by use of Jones
calculus. In this formalism, a wave plate with a
space-varying fast axis is described by the operator

T !x, y" ! R#u!x, y"$J!f"R21#u!x, y"$ ,

where J!f" is the operator for a wave plate with retar-
dation f, R is the operator for an optical rotator, and
u is the local orientation of the axis at each point !x, y".

Fig. 1. Illustration of the principle of PBOEs by use of the
Poincaré sphere.

0146-9592/02/131141-03$15.00/0 © 2002 Optical Society of America

Hasman’s	  group	  (aqer	  an	  idea	  of	  Rajendra	  Bhandari)	  demonstrates	  wavefront	  reshaping	  by	  
exploi1ng	  the	  Pancharatnam-‐Berry	  phase	  arising	  in	  space-‐variant	  polariza1on	  
manipula1ons.	  Among	  other	  examples,	  they	  demonstrate	  genera1on	  of	  helical	  modes	  
(hence	  nonzero	  OAM)	  [Z.	  Bomzon	  et	  al.,	  OL	  27,	  1141	  (2002);	  G.	  Biener	  et	  al.,	  OL	  27,	  1875	  (2002)]	  

•  this	  is	  actually	  the	  first	  reported	  observa1on	  of	  SAM	  –	  OAM	  conversion	  involving	  
internal	  OAM	  (for	  mid-‐infrared	  light,	  λ	  ≈	  10	  μm)	  

•  however,	  the	  authors	  do	  not	  explicitly	  discuss	  the	  angular	  momentum	  of	  light	  in	  
the	  process	  

•  the	  experiment	  was	  carried	  out	  only	  for	  a	  fixed	  input	  polariza1on	  and	  could	  not	  
dis1nguish	  the	  output	  OAM	  sign	  (not	  a	  full	  test	  of	  SAM	  –	  OAM	  conversion)	  

1876 OPTICS LETTERS / Vol. 27, No. 21 / November 1, 2002

where hE ! j1/2 !tx 1 ty exp"if#$j2, hR ! j1/2 !tx 2
ty exp"if#$ %EinjL&j2, and hL ! j1/2 !tx 2 ty exp"if#$ 3
%EinjR&j2 are the polarization order coupling eff icien-
cies, %ajb& denotes an inner product, and jR& ! "1 0#T
and jL& ! "0 1#T represent the right-hand and the
left-hand circular polarization components, respec-
tively. From Eq. (2) one can see that the emerging
beam from a PBOE comprises three polarization
orders. The first maintains the original polarization
state and phase of the incident beam, the second is
right-hand circularly polarized and has a phase modi-
fication of 2u"r, v#, and the third has a polarization
direction and a phase modification opposite those of
the former polarization order. Note that the polar-
ization eff iciencies depend on the shape and material
of the groove as well as on the polarization state of the
incident beam. For the substantial case tx ! ty ! 1
and f ! p, an incident wave with jR& polarization
is subject to total polarization state conversion and
results in an emerging field:

jEout& ! exp!2i2u"r,v#$ jL& . (3)

An important property of Eq. (3) is that the phase
factor depends on the local orientation of the sub-
wavelength grating. This dependence is geometrical
in nature and originates solely from local changes in
the polarization state of the emerging beam. This
dependence can be illustrated by use of a Poincaré
sphere with three Stokes parameters, S1, S2, and
S3, representing a polarization state, as depicted in
Fig. 1(a). The incident right-hand polarized and the
transmitted left-hand polarized waves correspond to
the north and the south poles of the sphere, respec-
tively. Inasmuch as the subwavelength grating is
space varying, the beam at different points traverses
different paths on the Poincaré sphere. For instance,
the geodesic lines Â and B̂ represent different paths
for two waves transmitted through element domains
of local orientations u"r, 0# and u"r, v#. Geomet-
rical calculations show that the phase difference
wp ! 22u"r, v# between states, corresponding to
u"r, 0# and u"r, v# orientations, is equal to half of the
area V enclosed by geodesic lines Â and B̂.9,11 This
fact is in compliance with the well-known rule, pro-
posed by Pancharatnam, for comparing the phases of
two light beams with different polarizations7 and can
be considered an extension into the space domain of
the rule that we mentioned.

To design a continuous subwavelength struc-
ture with the desired phase modification, we de-
fine a space-variant subwavelength grating vector
Kg"r, v#, oriented perpendicular to the desired
subwavelength grooves. Figure 1(b) illustrates
this geometrical definition of the grating vec-
tor. To design a PBOE with a spiral geometrical
phase we need to ensure that the direction of
the grating grooves is given by u"r, v# ! lv'2,
where l is the topological charge. Therefore, from
Fig. 1(b), the grating vector is given by Kg"r, v# !
K0"r, v# (cos!"l'2 2 1#v$r̂ 1 sin!"l'2 2 1#v$v̂), where

K0 ! 2p'L"r, v# is the local spatial frequency of a
grating with a local period L"r, v#.

To ensure the continuity of the subwavelength
grooves we required that = 3 Kg ! 0, which resulted
in a differential equation that could be solved to
yield the local grating period. The solution to this
problem yielded K0"r# ! "2p'L0# "r0'r#l'2, where L0
is the local subwavelength period at r ! r0. Con-
sequently the grating function fg (def ined such
that Kg ! =fg) was then found by integration of
Kg"r, v# over an arbitrary path to yield fg"r, v# !
"2pr0'L0# "r0'r#l'221 cos!"l'2 2 1#v$'"l'2 2 1# for
l fi 2 and fg"r, v# ! "2pr0'L0# ln"r'r0# for l ! 2.
We then obtained a Lee-type binary grating to de-
scribe the grating function,11 fg, for l ! 1, 2, 3, 4.
The grating was fabricated for CO2 laser radiation
with a wavelength of 10.6 mm, with L0 ! 2 mm,
r0 ! 4.7 mm, and a maximum radius of 6 mm, re-
sulting in 2 mm # L"r# # 3.2 mm. We formed the
grating with a maximum local period of 3.2 mm in
order not to exceed the Wood anomaly of GaAs. The
magnified geometries of the gratings for four topologi-
cal charges are presented in Fig. 2. The elements
were fabricated upon 500-mm-thick GaAs wafers
by contact photolithography and electron-cyclotron
resonance etching with BCl3 to a nominal depth of
2.5 mm, resulting in measured values of retardation
of f ! p'2 and tx ! ty ! 0.9. These values are close
to the theoretical predictions achieved by rigorous
coupled-wave analysis. The inset in Fig. 2 shows

Fig. 1. (a) Illustration of the principle of PBOEs by use
of the Poincaré sphere; insets, local orientations of the
subwavelength grooves. (b) Geometrical definition of the
grating vector.

Fig. 2. Top, geometry of the subwavelength gratings for
four topological charges. Bottom, image of a typical grat-
ing profile taken with a scanning-electron microscope.

November 1, 2002 / Vol. 27, No. 21 / OPTICS LETTERS 1877

Fig. 3. (a) Interferogram measurements of the spiral
PBOEs. (b) The corresponding spiral phases for different
topological charges.

Fig. 4. Experimental far-f ield images and their calculated
and measured cross sections for the helical beams with l !
1 4.

a scanning-electron microscope image of one of the
dielectric structures.

Following the fabrication, the spiral PBOEs were
illuminated with a right-hand circularly polarized
beam, jR!, at 10.6-mm wavelength. To provide ex-
perimental evidence of the resultant spiral phase
modif ication of our PBOEs we used a self-interfero-
gram measurement, using PBOEs with retardation
f ! p"2. For such elements the transmitted beam
comprises two polarization orders: jR! polarization
state and jL! with a phase modification of 2ilv,
according to Eq. (2). The near-f ield intensity distri-
butions of the transmitted beams that were followed by
a linear polarizer were then measured. Figure 3(a)
shows the interferogram patterns for various spiral
PBOEs. The intensity dependence on the azimuthal
angle is of the form I ~ 1 1 cos#lv$, whereas the
number of the fringes is equal to l, the topological
charge of the beam. Figure 3(b) illustrates the phase
fronts that result from the interferometer analysis,
indicating spiral phases with different topological
charges.

Figure 4 shows the far-field images of transmitted
beams that have various topological charges as well
as the measured and theoretically calculated cross
sections. We achieved the experimental result by
focusing the beam through a 500-mm focal-length lens

followed by a circular polarizer. We used the circular
polarizer to transmit only the desired jL! state and
to eliminate the jR! polarization order that appeared
because of the insuff icient etched depth of the grating.
Dark spots can be observed at the center of the
far-field images, providing evidence of phase singu-
larity in the center of the helical beams. We found
excellent agreement between theory and experiment,
clearly indicating the spiral phases of the beams with
different topological charges.

To conclude, we have demonstrated the formation
of helical beams by using space-variant Pancharat-
nam–Berry phase optical elements based on com-
puter-generated subwavelength dielectric gratings.
The formation of the spiral phase by the PBOE is
subject to control of the local orientation of the grating.
This can be achieved with a high level of accuracy
by use of an advanced photolithographic process. In
contrast, in the formation of a SPE based on refractive
optics the phase is inf luenced by fabrication errors
caused by inaccuracy of the etched three-dimensional
profile. We are currently investigating a photolitho-
graphic process with which to achieve accurate control
of the retardation phase to yield only the desired
polarization order.

E. Hasman’s e-mail address is mehasman@tx.
technion.ac.il.
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Fig. 1. (a) On-axis propagation of a Gaussian beam; c is a unit vector that defines optical
axis z. (b) Shaping of the TE and TM eigen-modes; corresponding directions of the electric
field are indicated in (c) with arrows.

2. On-axis propagation

2.1. Radially and azimuthally polarized eigen-mode beams

Here we discuss the main processes at work when a uniformly polarized incident light beam
propagates along the optical axis of a uniaxial crystal [36,37,41]. Figure 1 illustrates the on-axis
beam propagation with Gaussian envelope through the crystal. We assume that the refractive in-
dices along the major crystallographic axes x,y,z are no,no,ne, respectively. Let us consider the
ray AB that intersects the origin of the reference frame {x,y,z} so that the plane z0z′ involving
the ray and the crystal optical axis c is tilted at the angle ϕ to the x0z plane, see Fig. 1(a). The
linear polarization component with the envelope Ex′ lies in the plane z0z′ while Ey′ component
is perpendicular to this plane [39], see Fig. 1(b). In the paraxial approximation, we can assume
that the projections of the Ex′ and Ey′ components onto the x0y plane are equal to each other:
Ex′ ≈ Ex, Ey′ ≈ Ey. Because of the cylindrical symmetry the Ex′ components of all rays form
the field of the azimuthally polarized TE mode beam or the ordinary beam, while the Ey′ com-
ponents form the radially polarized TM mode beam or the extraordinary beam, see Fig. 1(c).
Both beams propagate along the crystal optical axis having the same phase velocities char-
acterized by the wave number ko = k0no, where k0 stands for the wavenumber in free space.
However, the Gaussian envelopes have different wavenumbers ko and ke. The exact value of
the ke wavenumber in the beam envelope derived from the solution to the paraxial wave equa-
tion [40,41] is ke = (n2e/no)k0. Thus, the beam with the uniform polarization distribution at the
input plane z= 0 of the crystal can be decomposed as a superposition of the azimuthally (TE)
and the radially (TM) polarized beams. As they propagate through the crystal, the complex am-
plitudes of the TE and TM beam are transformed by different ways shaping a regular pattern
of the polarization distributions at the crystal output. Nevertheless, we can regard the TE and
TM beams as the modal beams with eigen-polarization since they do not change their structure
up to the scale transformation due to diffraction. It is important to note that the description of
the beam behavior depends on the polarization basis of the beam representation. If the linearly
polarized components are detected after the crystal, it makes sense to present the eigen-mode
beams in the linearly polarized basis {ex,ey}: |TE〉 ∼ exy− eyx and |TM〉 ∼ exx+ eyy. From
whence we find that the polarization components have the edge dislocations [29] along the x-
or y-axes. If the circularly polarized components are detected after the crystal, the field can be
conveniently rewritten in the circularly polarized basis {e+,e−}: |TE〉 ∼ r

(
e+e−iϕ − e−eiϕ

)

and |TM〉 ∼ r
(
e+e−iϕ + e−eiϕ

)
. The last expression means that the circularly polarized com-

ponents of the TE and TM modes carry the single-charge optical vortices with opposite signs
of the topological charges.
Let us consider the propagation of a circularly polarized beam through the crystal [37] de-
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Ciaaoni	  et	  al.	  predict	  theore1cally	  that	  a	  gaussian	  
beam	  travelling	  along	  the	  op1cal	  axis	  of	  a	  uniaxial	  
birefringent	  crystal	  undergoes	  SAM	  –	  OAM	  
conversion	  (although	  they	  do	  not	  use	  this	  expression)	  
[JOSA	  A	  20,	  163	  and	  PRE	  67,	  036618	  	  (2003)]	  

First	  observed	  by	  Brasselet	  et	  al.	  in	  2009	  
[Opt.	  Lea.	  34,	  1021	  (2009)]	  

the opposite case, !a ,b"= !0,1", the solution is given
for Eqs. (1) and (2) with E+↔E− and u↔v. The gen-
eral solution is obtained by the linear superposition
with amplitudes #a#2+ #b#2=1.

To elucidate the coupling between the SAM and
OAM for Gaussian beams we note that uniaxial crys-
tals have usually weak birefringence, no−ne
$10−1–10−3, so that the anisotropy and its conse-
quence, the spin-orbit coupling, can be considered as
a perturbation. Introducing the average refractive in-
dex n= !no+ne" /2 and the small parameter != !no
−ne" /n"1 we obtain #o=#!1+! /2" and #e$#!1
−3! /2", where #=kn /2, and we keep only the terms
of the leading order in !. Applying such a procedure
to Eqs. (1) and (2) we derive the following represen-
tation of the general solution, !E+,E−"T$M̂!a ,b"TG,
where G=−!i#w2 /Z"exp!i#r2 /Z" with Z=z− iz0, z0
=#w2, and the transformation matrix

M̂ = % C Se−2i$

Se2i$ C & = C!̂0 + ST̂, !3"

T̂ = !̂x cos!2$" + !̂y sin!2$", !4"

where !̂0 is identity matrix and !̂x,y are Pauli spinor
matrices, C=cos % and S=−i sin % with %=!#r2z /Z2.
Solution in this form is valid everywhere in the crys-
tal if the anisotropy is small, !"1.

The matrix representation given by Eqs. (3) and (4)
allows one to explore the dynamics of polarization
conversion in clear details. Because matrix !̂0 does
not change initial polarization state, the first term
C!̂0 describes the loss of power of the input beam. In
contrast, the second term in Eq. (3), ST̂, shows the
power gain experienced by the circularly polarized
component that is orthogonal to the initial one and
the appearance of OAM compensating the loss of
SAM. More precisely, the matrix T̂ changes the hand-
edness of circular polarization and describes the ap-
pearance of a vortex with a double topological charge,
#l#=2, with the sign opposite to the SAM.

Experimentally accessible quantities to retrieve
the optical spin-to-orbital conversion are the
reduced powers of two components, P±/P0
= !2/&w2"''#E±#2dxdy, where P0 is the input power.
These quantities are plotted in Fig. 1(a) in the case
!a ,b"= !1,0" and two different beam waists. Theoret-
ical curves are obtained [9,10] by using Eqs. (1) and
(2), P±/P0= 1

2 (1± !1+z2 /L2"−1), with L=2#e#ow2 / !#o
−#e"$z0 /!. The angular momenta normalized to the
total angular momentum are shown in Fig. 1(b); they
are defined as follows: SAM±= ±P±/P0 and OAM±
= l±P±/P0 with l+=0 and l−=2.

In our experiments we used uniaxial calcite crystal
samples that are cut perpendicularly to the optical
axis into 10 mm'10 mm'z mm slabs for z
=1. . .14 mm with steps of 1 mm. Linearly polarized
light from a He–Ne laser operating at wavelength (
=633 nm (no=1.656 and ne=1.458) is converted into
circular polarization using a quarter-wave plate. The
beam is then focused by a lens !f=25 mm" onto the

sample whose optical axis coincides with the direc-
tion of propagation. The output beam is collimated by
a second lens !f=100 mm" and passes through a sec-
ond quarter-wave plate and a polarizing beamsplit-
ter, which allows us to separate its orthogonally po-
larized double-charge optical vortex and fundamental
Gaussian components.

The intensity distributions of the c+ !l=0" and c−

!l=2" circularly polarized components of a monochro-
matic beam are shown in Fig. 2 for various propaga-
tion distances z. Both circular components exhibit
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Fig. 1. (Color online) Transfer of normalized (a) powers
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c− (black, blue, minus) circularly polarized components.
Curves, theory; markers, experiment. The beam waist w
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input	  SAM	  =	  ±	  ħ	  	  

Circularly	  
polarized	  input	  

Output	  OAM	  
eigenvalues	  =	  ±	  2ħ	  	  

SAM-‐OAM	  conversion	  
efficiency	  ≤	  50%	  
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2004: Propagation in inhomogeneous media: spin Hall effect of light 

M.	  Onoda	  et	  al.	  predict	  the	  occurrence	  of	  a	  “spin	  Hall	  effect	  of	  light”,	  a	  transverse	  shiq	  
of	  circularly	  polarized	  op1cal	  beams	  crossing	  gradients	  of	  dielectric	  proper1es,	  and	  
explain	  it	  in	  terms	  of	  Berry	  phases	  (similar	  to	  Imbert-‐Fedorov	  shiq	  of	  total	  internal	  
reflec1on)	  [PRL	  93,	  083901	  (2004)]	  

A	  similar	  predic1on	  is	  made	  also	  by	  Kostan1n	  Yu	  Bliokh	  et	  al.	  [Phys.	  Lea.	  A	  333,	  181	  (2004)].	  
Later,	  he	  also	  extends	  this	  theory	  to	  a	  “OAM	  Hall	  effect”	  [K.	  Yu.	  Bliokh,	  PRL	  97,	  0403901	  (2006)]	  

First	  observed	  in	  2008	  by	  
Onur	  Ostein	  and	  Paul	  
Kwiat	  [Science	  319,	  787	  (2008)]	  	  

This	  effect	  (as	  well	  as	  
the	  old	  Imbert-‐Fedorov	  
shiq)	  provide	  examples	  
of	  conversion	  of	  SAM	  
into	  external	  OAM	  



2005: Conical diffraction in biaxial birefringent crystals 

Michael	  V.	  Berry	  et	  al.	  discuss	  a	  form	  of	  SAM-‐
OAM	  conversion	  for	  light	  entering	  biaxial	  
birefringent	  crystals	  [J.	  Opt.	  A:	  Pure	  Appl.	  Opt.	  7,	  685	  
(2005)]	  

the crystal. As expected the fringe pattern is a spiral, indicative of an optical field with Jorb =  
+ 1! per photon. The output and reference beams were then slightly misaligned to generate a 
wedge fringe pattern. Figure 2(ii-iii) shows the wedge fringe patterns for ! = 0° and 45° and 
Fig. 2(iv-v) shows a Mathematica simulation of the same interference patterns. As expected, 
the wedge fringe pattern Fig. 2(iii) for circular polarisation input ! = 45° shows the expected 

single fringe dislocation indicative of a beam with ! = 1 [2]. 

  
Fig. 2. (i) Collinear interference of Gaussian beam with output beam for circularly polarised 
input. Wedge fringe patterns for non-collinear interference of Gaussian beam with output beam 
for (ii) " = 0° and (iii) " = 45°.  (iv-v) Mathematica simulation of (ii) and (iii). 

The intensity distributions as the angle ! was changed from 0° to 45° were also measured. 
These are shown in Fig. 3(a), while Fig. 3(b) shows the same intensity distributions calculated 
using Mathematica using Eq. (3). Linear polarisation into the crystal ! = 0° generates a 1st 
order Hermite-Bessel (HB01) beam Fig. 3(a-i), with zero intensity on the same axis as the 
direction of the incident polarisation; there is no fork dislocation in the wedge fringe pattern-
Fig. 2(ii) indicates that there is no OAM present. As ! is increased from 0° to 45° the beam 
evolves from a Hermite-Bessel (HB01) distribution to the 1st order Bessel distribution Fig. 
3(a-vi). 

  
Fig. 3. Measured (a) and simulated (b) intensity distributions of the output beam as the 
polarisation of the input to the crystal is changed by setting the angle " of the linear 
polarisation relative to the fast axis of the phase plate P1to the following values:(i) 0°, (ii)8°, 
(iii) 16°, (iv) 24°, (v) 32°, (vi)40°and (vii) 45°.(b) Mathematica simulation of the intensity 
patterns in (a) using Eq. (3). 

Following Berry [22], the angular momentum per photon of a light beam is given by 
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Confirmed	  experimentally	  by	  D.	  P.	  O’Dwyer	  et	  
al.	  in	  2010	  [Opt.	  Express	  18,	  16480	  (2010)]	  

Output	  OAM	  eigenvalues	  =	  ±	  ħ	  	  



2006: Propagation in inhomogeneous anisotropic media 

Marrucci	  et	  al.	  predict	  and	  observe	  SAM	  –	  OAM	  conversion	  in	  liquid	  crystal	  cells	  having	  a	  
singular	  paaern	  with	  topological	  charge:	  the	  “q-‐plates”	  [PRL	  96,	  163905	  (2006);	  APL	  88,	  221102	  (2006)]	  

J. Opt. 13 (2011) 064001 Review Article

Figure 1. Four examples of q-plate patterns. (a) (q,α0) = ( 1
2 , 0), (b) (q, α0) = (1, 0), (c) (q, α0) = (1, π

2 ) and (d) (q, α0) = (2, 0). The
segments indicate the optical axis orientation in the transverse plane.

Figure 2. Pictorial illustration of the optical action of a tuned q-plate
on an input circularly polarized plane-wave light, for the case q = 1.
The output is a helical mode with OAM given by m = ±2, with the
sign determined by the input polarization handedness.

with very high efficiency (ideally close to 100%), no deflection
of the propagation axis and with a polarization-controlled
handedness [37, 38]. q-plates can therefore provide a very
convenient approach to generating OAM beams, which can
compete with computer-generated holograms and spatial light
modulators. The polarization control of the OAM sign allows
high-speed switching with rates that in principle can reach
GHz values [25]. Even more interestingly, the polarization
control of the OAM sign allows the development of new
kinds of quantum manipulations of single photons, as has been
demonstrated in a series of experiments mainly performed by
Sciarrino and co-workers in Roma’s quantum optics group,
which will be reviewed below. In particular, as we will show,
the combined use of polarization and OAM for accessing a
high-dimensional quantum space attached to each photon is
progressively enabling the implementation of novel promising
quantum information protocols [39, 40].

Inhomogeneous birefringent media such as q-plates are
not the only systems in which STOC can take place. An
inhomogeneous dichroic medium, such as a space-variant
polarizer with a q-plate-like optical axis geometry, can give
rise to very similar phenomena (with the advantage of an
achromatic response and the disadvantage of significant optical
losses) [41]. An electro-optical device allowing a polarization-
controlled OAM manipulation quite similar to the q-plate
one, based on a pair of opposite spiral phase plates having
electrically controlled refractive index, has been theoretically
proposed recently [42]. A STOC phenomenon bearing many
similarities to that taking place in a q-plate with q = 1

may also occur in a homogeneous uniaxial birefringent crystal,
when an optical beam propagates along the optical axis of
the crystal. This was first proved theoretically by Ciattoni
et al [43, 44] and experimentally by Brasselet et al [45–47].
A similar phenomenon has been shown to occur in a biaxial
crystal by internal conical diffraction [48, 49]. In contrast
to the case of q-plates, however, this approach is limited to
generating OAM m = ±2, due to the rotational symmetry
of the medium. Moreover, the conversion efficiency in the
paraxial limit cannot be higher than 50%. Another interesting
situation in which a form of STOC takes place is when an
initially paraxial circularly polarized beam passes through a
short-focal-length lens. The resulting strongly-focused non-
paraxial beam exhibits an OAM content, as demonstrated
experimentally by particle manipulation experiments [50, 51].
In this case, however, the OAM per photon remains small and
its effects are clearly visible only close to the beam focus.
The possibility of an electro-optical modulation of this effect
has also been reported [52]. Another recent work showed that
optical beams having a radially varying SAM also acquire an
additional rather unexpected component of OAM-like angular
momentum, presumably arising as a consequence of departure
from the paraxial limit [53].

Moreover, the interaction of SAM and external OAM,
that is at the basis of the so-called optical spin Hall effect,
has also been recently conceived and experimentally demon-
strated [54, 55]. Related spin–orbit optical phenomena are the
polarization ‘geometrodynamics’ [56, 57] and the polarization-
based optical sensing of nano-particle displacements [58]. It
should be furthermore mentioned that several works in the field
of singular optics [59], that is strictly related with that of OAM,
have recently tackled issues concerning the interaction between
polarization and wavefront structures in the optical field (see,
e.g., [60–62]). Finally, an emerging field in which the spin–
orbit interaction of SAM and OAM may bear fruitful results
in the near future is that of optical polariton condensates in
semiconductor microcavities (see, e.g., [63, 64]).

In the rest of this paper, we discuss some of the main
developments that have arisen since the first introduction of the
q-plate and the observation of the STOC process. The paper is
organized as follows. In section 2 we survey the developments
in the technology for manufacturing and tuning the liquid
crystal q-plates and mention some nonlinear phenomena in
which a q-plate-like geometry takes place spontaneously.
Section 3 concerns the theory of optical propagation inside
a q-plate and the resulting optical modes at the q-plate
output. Section 4 is mainly about the optical setups for

3

Output	  OAM	  
eigenvalues	  =	  ±	  2ħ,	  
(but	  other	  values	  are	  

also	  possible)	  

SAM-‐OAM	  conversion	  
efficiency	  up	  to	  ≈	  100%	  

demonstrated only for the midinfrared wavelength of
10.6 !m, based on the subwavelength grating technology.5,10

We manufactured q=1 plates working at the visible
wavelength "=633 nm based on the patterned liquid crystal
!LC" technology !see, e.g., Refs. 11 and 12 and references
therein". Nematic LC planar cells were prepared with a thick-
ness !about 1 !m" and a material !E63 from Merck, Darm-
stadt, Germany" chosen so as to obtain a birefringence retar-
dation of approximately a half wave. Before cell assembly,
one of the inner surfaces of the two containing glasses of the
cell was pressed against a piece of fabric kept in continuous
rotation. This “circular rubbing” procedure leads to a surface
easy axis !i.e., the preferred orientation of LC molecules"
having the desired q=1 circular-symmetric geometry, as that
shown in Fig. 1!d". The other glass was left unrubbed, for
degenerate planar alignment. To ensure good LC alignment,
the cell was heated above the clearing point and then cooled
slowly, keeping the rubbed surface slightly colder than the
unrubbed one. In this way, nematic order nucleated on the
rubbed surface and then extended to the whole cell. Some
cells were prepared with a polyimide coating for planar
alignment, others with bare glass, with comparable results
!although they required different rubbing pressures and
lengths". A photograph of a LC q plate held between crossed
polarizers is shown in Fig. 2!a".

To test the optical effect of a q plate, a circularly polar-
ized He–Ne laser beam having a TEM00 transverse mode and
a beam-waist radius of about 1 mm was sent through it, tak-
ing care of aligning the beam axis on the q-plate center. The
intensity profile of the output beam, shown in Fig. 2!b", has
the “doughnut” shape expected for a helical mode. However,
a complete test must be based on measuring the beam wave
front shape, rather than its intensity profile. To this purpose,
we inserted the q plate in the signal arm of a Mach-Zender
interferometer based on the same He–Ne laser source. The
input circular-polarization handedness was selected by prop-
erly rotating a quarter-wave plate. The beam emerging from
the q plate was sent through another quarter-wave plate and a
linear polarizer was arranged for transmitting the polariza-
tion handedness opposite to the initial one, so as to eliminate
any residual unchanged circular polarization !this step would
be unnecessary for an exact half-wave retardation of the q

plate". The final interference pattern generated after superpo-
sition with the reference was formed directly on the sensing
area of a charge coupled device !CCD" camera. We used two
reference wave front geometries: !i" plane tilted, for which
an order of 2 helical wave front will give rise to a double
disclination defect in an otherwise regular straightline fringe
pattern, and !ii" spherical, for which the helical wave front
will give rise to a double spiral fringe pattern. Figures
2!c"–2!f" show the interference patterns we obtained for one
of our cells in these two geometries, respectively, for left-
circular #panels !c" and !e"$ and right-circular #panels !d" and
!f"$ input polarizations. These results confirm that the wave
front of the light emerging from our q plate is indeed helical
of order ±2, as expected, with the # sign determined by the
input polarization handedness.

This polarization-based control of the generated helical
wave front is a good example of the possible advantages of
the PBOE approach to wave front shaping. Indeed, all other
existing approaches to helical mode generation !i.e., cylindri-
cal lenses, spiral phase plates, and holographic methods"
have an essentially fixed output. Of course, by introducing a
suitable spatial light modulator, dynamical control becomes
possible, but only at relatively low switching rates. In our
approach, a simple electro-optical control of the input polar-
ization allows switching of the generated helical mode at
very high rate. By cascading several q plates in series with
suitable electro-optic devices in between, as shown in Fig. 3,
one can obtain fast switching among several different helical
orders. This could be very useful if helical modes are to be
used in multistate optical information encoding, as recently
proposed for classical communication13 and for quantum
communication and computation.14,15

FIG. 1. Examples of half-wave PBOE geometries. Dashes indicate local
optical axis direction. !a" PBOE behaving as a circular-polarizing beam
splitter or switch; !b" PBOE behaving as a polarization-dependent lens; !c"
q-plate PBOE with q=1/2 and $0=0, generating helical modes of order ±1;
and !d" q-plate PBOE with q=1 and $0=% /2, generating helical modes of
order ±2.

FIG. 2. Experimental images. !a" A LC q plate held between crossed polar-
izers, showing the expected pattern for q=1 geometry. !b" “Doughnut” in-
tensity profile of the beam emerging from the q plate. !c"–!f" Interference
patterns of helical modes generated by our q plate. !c" and !d" panels refer to
the plane-wave reference geometry, !e"–!f" panels to the spherical-wave ref-
erence one. Panels on the left, !c" and !e", are for a left-circular input po-
larization and those on the right, !d" and !f", for a right-circular one.

221102-2 Marrucci, Manzo, and Paparo Appl. Phys. Lett. 88, 221102 !2006"
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This	  is	  the	  first	  paper	  explicitly	  repor1ng	  
and	  fully	  demonstra1ng	  experimental	  
op1cal	  SAM	  –	  OAM	  conversion!	  



2006: Backscattering from disordered media 

polarization charge is 1, resulting in a rotation of 2!
of the electric field. If "=0, the distribution is radial,
whereas if "=!, the distribution is azimuthal. In
both cases, analyzing the intensity distribution
through vertical or horizontal polarizers leads to two-
fold patterns, rotated with respect to each other by
90°. If we now consider mL=−mR=−2, the polariza-
tion topological charge is 2, and the orthogonal linear
polarization patterns will have a fourfold structure,
rotated by 45° with respect to each other (see Fig. 1).

The patterns shown in Fig. 1 resemble the spatial
distributions of the intensity observed in backscatter-
ing from turbid media when linearly polarized light
is incident on it and the return is viewed through a
linear analyzer.1–3 As we shall see in the following,
phase vortices can indeed be associated with these
patterns.

To explore the origins of the phase vortices, let us
specify first some of the characteristics of the mul-
tiple scattering process we are examining. We will
consider media characterized by a homogeneous ran-
dom distribution of spherical elastic scatterers that
are large with respect to the wavelength and there-
fore scatter preferentially in the forward direction.
Scattering at a small angle is known to be, with very
high probability, helicity preserving. We also consider
a narrow incident beam that is axially symmetric
and does not contain OAM and that is incident nor-
mally at the origin of the reference frame. Finally,
the scattered light is collected within a narrow angle
centered about the exact backscattering direction;
i.e., we impose the constraint that light is collected
only if it emerges normal to the surface. This is ex-
actly the radar geometry used in observing the polar-
ization patterns discussed here. The backscattered
light has, in this case, a significant component that

traveled along planar, nearly semicircular paths.10–12

The backscattered light is dominated by adiabatic
transport along helicity-preserving paths, which al-
lows us to consider the evolution of the optical geo-
metrical phase.13 A consequence of the constraint
that light exits near the normal direction is that the
waves under consideration can be treated as
paraxial.

A geometrical phase is usually associated with a
closed trajectory in the configuration space, i.e., the k
space. This is not the case in backscattering, since
the incident and emergent k vectors are antiparallel.
However, the trajectory can be closed by a reference
path that is a great circle on the k sphere, going from
the back direction to the forward direction.5 As such,
any backscattered path acquires a phase propor-
tional to the solid angle enclosed by curves associated
with the reference and actual paths. Planar scatter-
ing paths are also associated with great circles, lead-
ing to a solid angle that is equal to the area defined
by great circles intersecting at the poles. In Fig. 2
this angle is designated #, and the acquired geo-
metrical phase factor is equal to exp!−i$#".13 The
solid angle increases linearly from 0 to 4! as % in-
creases linearly from 0 to 2! (this is the known result
for a solid angle spanned by two intersecting great
circles creating a geometrical shape known as a
lune), so it can be written as 2%. One can conclude
that the RC wave acquires a phase vortex with a to-
pological charge equal to +2, while the LC one ac-
quires a −2 topological charge.

As for scattering of linearly polarized waves, let us
first discuss the contributions of the planar trajecto-
ries. For a horizontally polarized incident wave, ex-
pressed as 1/#2!L̂+R̂", the contribution to the scat-
tered field at a point on the surface can be written as
A!r ,% ,s"exp!iks"$exp!−i2%"L̂+exp!i2%"R̂%, where s is
the path length that gives rise to a common dynami-
cal phase and A!r ,% ,s" is an amplitude factor. The
two circularly polarized modes propagate along the

Fig. 1. Polarization distribution obtained by superposing
a right circularly polarized phase vortex (with a topological
charge equal to −2) and a left circular phase vortex (with a
topological charge equal to 2). (a) Intensity image, where
the vectors indicate the electric field direction. (b) Intensity
distribution after a horizontal linear analyzer that is pro-
portional to cos2!2%", where % is the azimuth angle. (c) In-
tensity distribution after a vertical linear analyzer that is
proportional to sin2!2%".

Fig. 2. (Color online) Scattering paths illustrated (a) in
real space and (b) in k space. In k space the path describes
the locations of the tip of the k vectors after each scattering
event (they all lie on the surface of a sphere, since the scat-
tering considered is elastic). A planar nearly semicircular
path in real space will have a corresponding path in k space
that is a geodesic, starting at the forward pole and ending
at the backward pole. The geometric phase corresponding
to this path is the solid angle subtended between the actual
path and the reference path, as indicated.
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polarization charge is 1, resulting in a rotation of 2!
of the electric field. If "=0, the distribution is radial,
whereas if "=!, the distribution is azimuthal. In
both cases, analyzing the intensity distribution
through vertical or horizontal polarizers leads to two-
fold patterns, rotated with respect to each other by
90°. If we now consider mL=−mR=−2, the polariza-
tion topological charge is 2, and the orthogonal linear
polarization patterns will have a fourfold structure,
rotated by 45° with respect to each other (see Fig. 1).

The patterns shown in Fig. 1 resemble the spatial
distributions of the intensity observed in backscatter-
ing from turbid media when linearly polarized light
is incident on it and the return is viewed through a
linear analyzer.1–3 As we shall see in the following,
phase vortices can indeed be associated with these
patterns.
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fore scatter preferentially in the forward direction.
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a narrow incident beam that is axially symmetric
and does not contain OAM and that is incident nor-
mally at the origin of the reference frame. Finally,
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centered about the exact backscattering direction;
i.e., we impose the constraint that light is collected
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ization patterns discussed here. The backscattered
light has, in this case, a significant component that

traveled along planar, nearly semicircular paths.10–12
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lows us to consider the evolution of the optical geo-
metrical phase.13 A consequence of the constraint
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ing to a solid angle that is equal to the area defined
by great circles intersecting at the poles. In Fig. 2
this angle is designated #, and the acquired geo-
metrical phase factor is equal to exp!−i$#".13 The
solid angle increases linearly from 0 to 4! as % in-
creases linearly from 0 to 2! (this is the known result
for a solid angle spanned by two intersecting great
circles creating a geometrical shape known as a
lune), so it can be written as 2%. One can conclude
that the RC wave acquires a phase vortex with a to-
pological charge equal to +2, while the LC one ac-
quires a −2 topological charge.

As for scattering of linearly polarized waves, let us
first discuss the contributions of the planar trajecto-
ries. For a horizontally polarized incident wave, ex-
pressed as 1/#2!L̂+R̂", the contribution to the scat-
tered field at a point on the surface can be written as
A!r ,% ,s"exp!iks"$exp!−i2%"L̂+exp!i2%"R̂%, where s is
the path length that gives rise to a common dynami-
cal phase and A!r ,% ,s" is an amplitude factor. The
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the vectors indicate the electric field direction. (b) Intensity
distribution after a horizontal linear analyzer that is pro-
portional to cos2!2%", where % is the azimuth angle. (c) In-
tensity distribution after a vertical linear analyzer that is
proportional to sin2!2%".

Fig. 2. (Color online) Scattering paths illustrated (a) in
real space and (b) in k space. In k space the path describes
the locations of the tip of the k vectors after each scattering
event (they all lie on the surface of a sphere, since the scat-
tering considered is elastic). A planar nearly semicircular
path in real space will have a corresponding path in k space
that is a geodesic, starting at the forward pole and ending
at the backward pole. The geometric phase corresponding
to this path is the solid angle subtended between the actual
path and the reference path, as indicated.
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C.	  Schwartz	  explains	  the	  previously	  observed	  paaerns	  of	  back-‐scaaered	  light	  from	  
disordered	  media	  in	  terms	  of	  Berry	  phases	  and	  SAM	  –	  OAM	  conversion	  [OL	  31,	  1121	  
(2006)]	  
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again, if the fields vanish sufficiently quickly as r → ∞ is
often left unstated or understated; Jauch and Rohrlich (1976)
carefully point out this requirement. Bromberg (2006) gives a
lucid discussion of the equivalence of the two approaches.

More problematic, and rightly so, is the apparent lack
of gauge invariance of the spin density. Consequently, it
is typically concluded that the separation of the angular
momentum of a general electromagnetic wave into spin and
orbital components cannot be made in a physically meaningful
way—the result is either gauge dependent or not Lorentz
invariant. However, if we consider the fact that the (quasi-)
monochromaticity of an electromagnetic wave, at least for a
physically achievable wave (i.e., not an infinite plane wave) is
also not Lorentz invariant, it does not come as a great surprise
to find that the spin density of a monochromatic wave is both
gauge independent and physically meaningful (van Enk and
Nienhuis 1994, Crichton and Marston 2000). Since this is in
accord with both the correspondence principle—the quantum
theory must yield the classical theory in an appropriate limit—
and Noether’s theorem, there is every reason to accept (2) as the
correct expression for the angular momentum density, rather
than the naı̈ve (1).

This leads to an interesting problem. A rotationally
symmetric system cannot alter the angular momentum state of
an electromagnetic wave, and thus focusing by a rotationally
symmetric optical system cannot alter the angular momentum
state of a laser beam. If we consider a focused circularly
polarized beam, following Crichton and Marston (2000) we
can measure the spin angular momentum in the far field. In the
far field, the beam is a spherical wave, and, locally, we measure
the radial component of the spin angular momentum. However,
only the component along the beam axis can contribute to the
total angular momentum of the beam. Since the maximum
magnitude of the spin density is h̄ per photon, the total
spin angular momentum must be less than this amount (see
figure 1). On the other hand, the total angular momentum flux
cannot have been changed by the act of focusing the beam.
Therefore, an orbital angular momentum flux must have been
introduced into the beam.

We investigate the nature of this orbital angular
momentum flux, and show that it is associated with the optical
vortex nature of the axial electromagnetic field. We also clearly
demonstrate an orbital motion of energy within the beam.

2. Angular momentum of a focused beam

The simple result of spin angular momentum flux equal to P/ω
is only valid in the paraxial approximation, as it depends on Ez

being zero. If we consider a beam of finite width in its focal
plane, then the beam will spread through diffraction, and will,
at a sufficiently large distance, be propagating in a purely radial
direction. That is, for large r , we must have Er = 0. In this
case, the electric field is purely tangential, and the spin angular
momentum density in polar spherical coordinates is

sr = ε0Im(Eθ E$
φ)/ω, (3)

with the other vector components being zero. For a rotationally
symmetric beam of the type we consider here, sr will be
independent of the azimuthal angle φ.

Figure 1. Reduction of spin about the beam axis by a lens. If a
circular polarized paraxial beam is incident on a lens, the initial spin
flux density vector, s0, is parallel to the beam axis. After focusing, it
will no longer be parallel. At the location shown in the figure, the
final spin density vector s1 is at an angle of θ (this angle will vary
across the focused beam), and only the component sz parallel to the
beam axis will contribute to the total spin flux of the beam. Thus, the
total spin angular momentum flux is reduced by focusing.

Therefore, the maximum possible contribution to the total
spin angular momentum, of which, by symmetry, only the
z component is non-zero, is sr cos θ , where θ is the angle
measured from the z axis. Integrating this over the beam must
result in |Sz | < h̄ per photon. If we consider a non-paraxial
beam with a Gaussian profile, we can write the amplitude in
the far field as

U = U0 exp(− tan2 θ/ tan2 θ0), (4)

where θ0 is the angle at which the amplitude of the field
drops to 1/e of the value at θ = 0. This angle is the beam
convergence angle (Nieminen et al 2003). For maximum
possible spin, we have sr = ε0U 2/ω, and the total spin angular
momentum of the beam, in units of h̄ per photon, can be found
by integrating over a hemisphere:

Sz = A/P (5)

where

A =
∫ π/2

0
exp(−2 tan2 θ/ tan2 θ0) sin θ cos θ dθ (6)

and

P =
∫ π/2

0
exp(−2 tan2 θ/ tan2 θ0) sin θ dθ . (7)

2

Y.	  Zhao	  et	  al.	  [PRL	  99,	  073901	  (2007)]	  and	  H.	  Adachi	  et	  al.	  [PRA	  75,	  063409	  (2007)]	  report	  the	  
experimental	  demonstra1on	  of	  a	  nonzero	  OAM	  content	  in	  strongly	  focused	  circularly	  
polarized	  beams	  

A	  first	  predic1on	  of	  this	  effect	  
was	  actually	  given	  by	  T.	  A.	  
Nieminen	  	  et	  al.	  [Arxiv	  2004;	  J.	  
Opt.	  A	  10,	  115005	  (2008)]	  

(however,	  this	  OAM	  
appears	  only	  in	  strongly	  
non-‐paraxial	  regime,	  
where	  the	  defini1on	  of	  
SAM	  and	  OAM	  as	  dis1nct	  
angular	  momenta	  is	  not	  
so	  clear)	  

J. Opt. A: Pure Appl. Opt. 10 (2008) 115005 T A Nieminen et al

Figure 3. Electric field components of a strongly focused circularly polarized Gaussian beam, with a convergence angle of 45◦. The x , y, and
z components of the electric field in the focal plane are shown in (a), (b), and (c), while (d) shows phase contours (with a spacing of 2π/20)
for the z component, showing azimuthal variation of phase as seen in vortex beams.
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Figure 4. Poynting vector of a strongly focused circularly polarized
Gaussian beam, with a convergence angle of 45◦. The transverse part
(x and y components) of the Poynting vector in the focal plane are
shown.

of the focal spot along the direction of the electric field. As
this elongated focal spot rotates at the optical frequency, this
shows that there is an unambiguous azimuthal flow of energy.
This movement of field energy is accompanied by a momentum
flux (Umov 1950, Nieminen et al 2007), which in this case is
azimuthal about the beam axis, and therefore results in orbital
angular momentum about the beam axis.

As the beam is more strongly focused, the magnitude of
the longitudinal (z) component of the field increases, and the
orbital angular momentum increases as a result. The same
increase can also be considered to result from the decrease of
spin angular momentum, along with the conservation of total
angular momentum. The change in the angular momentum
and the growth of the longitudinal optical vortex is smooth
and well behaved as the convergence angle of the beam is
increased, with no sudden qualitative or quantitative changes.
As the beam is more strongly focused, the diffraction rings also
become more prominent, but this does not affect the angular
momentum of the beam.

3. Discussion

3.1. Coupling between spin and orbital angular momenta

Due to the dependence of orbital angular momentum density
on the choice of origin about which moments are taken, and
the independence of spin density on this choice, the conversion
of spin to orbital angular momentum must be accompanied
by a torque. Therefore, conversion from one type of angular
momentum to the other cannot occur in free space, or in media
which can be electromagnetically represented by a uniform
scalar permittivity. At the interface between two media, such
as, for example, the surface of a lens, coupling between spin
and orbital angular momenta can occur.

Bomzon et al (2006) claimed that the angular momentum
per photon actually increases when a circularly polarized beam
is focused. However, this apparently paradoxical result simply
further demonstrates the incorrectness of the expression used
for the angular momentum flux.

4
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different degrees of freedom. In particular, fjþ2il; j"2ilg
is the basis for the OAM qubit which lies in the jlj ¼ 2
subspace of the infinite dimensional Hilbert space of orbi-
tal angular momentum. As a first experimental step, we set
out to verify how accurately the real QP device performs
these transformations in the single-photon regime (see
Fig. 1 for experimental details). First, the QP conversion
efficiency ! from the input TEM00 to the l ¼ $2 modes
has been estimated through the coupling efficiency with
the single-mode fiber. We find ! ’ 85%, ascribed to light
scattering, radial mode residual mismatch, and imperfect
tuning of the QP birefringent retardation " [11,15] (the

unconverted component remains l ¼ 0 and is therefore
filtered out). Next, in order to assess the coherence of the
transformations in Eq. (1), single photons in the states
jHi#j0il or jVi#j0il were used as input in the QP. We
analyzed the output state through a double-fork hologram
and a circular-polarization analysis setup along the two
diffracted modes: the intensity of the #R (#L) polarization
component in the mode corresponding to l ¼ þ2 (l ¼ "2)
was measured to be equal to 99.8% (99.6%) of the total,
with a high agreement with theory. To demonstrate the
realization of the pure states given in Eq. (1), a complete
single-photon two-qubit quantum state tomography has
been carried out, performing measurements both in #
and l degrees of freedom. Besides the normal fjþ2il;
j"2ilg OAM basis, measurements were carried out in the
two superposition bases fjdþil; jd"ilg and fjdRil; jdLilg,
where jd$il ¼ 1ffiffi

2
p ðjþ2il $ j"2ilÞ and jdL;Ril ¼ 1ffiffi

2
p '

ðjþ2il $ ij"2ilÞ. The OAM degree of freedom was ana-
lyzed in these bases by means of different computer-
generated holograms, reported in the inset of Fig. 1 [16].
The experimental results are in high agreement with
theory, as shown in Figs. 2(a) and 2(b).
Because of its peculiarities, the q plate provides a con-

venient way to ‘‘interface’’ the photon OAMwith the more
easily manipulated spin degree of freedom. Hence, as the
next step we show that such an interface can be considered
as a quantum ‘‘transferrer’’ device, which allows one to

FIG. 1 (color online). A Ti:sapphire mode-locked laser con-
verted by second harmonic generation (SHG) into a beam with
wavelength $p ¼ 397:5 nm. This field pumps a nonlinear crystal
of %-barium borate (BBO) which emits a single-mode biphoton
state withH and V polarizations and $ ¼ 795 nm, filtered by the
interference filter (IF) with !$ ¼ 6 nm and then coupled to a
single-mode fiber [19]. The gray dot-dashed box has been op-
tionally inserted to prepare a single-photon state triggered by
detector DT . Birefringent quartz crystals (Q) having different
thicknesses were used to introduce a controlled temporal delay
between the two photons. After setting the input polarization by
means of a suitably oriented quarter wave plate, the photons
were sent through the q plate (QP) and the output OAM states
were analyzed with the help of a hologram (Hol) and a polar-
ization analysis set (PA). In OAM-to-spin conversion experi-
ments, Hol and QP were interchanged. To measure (or prepare)
OAM states in the basis l ¼ $2, a double-fork hologram has
been used [inset (A)], so that the OAM state of the first diffracted
modes is shifted by !l ¼ $2, while the undiffracted zero-order
beam has !l ¼ 0. The photons on the first diffracted modes are
then coupled to single-mode fibers which select output states
with l ¼ 0 and convey them to the detectors DA and DB. Hence,
the detection of a photon in DA (DB) corresponds to a photon
incident on the hologram with OAM l ¼ þ2 (l ¼ "2). The first-
order diffraction efficiency of the hologram was (10%. The
measurement (or preparation) of OAM in superposition states
has been realized by adopting the other holograms shown in the
inset. [The hologram (B) refers to jdþil, (C) to jdRil, (D) to
jd"il. jdLil was also analyzed by hologram (C) after reversing its
orientation.]
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FIG. 2 (color online). (a),(b) Experimental density matrices for
the single-photon entangled state. The computational values
f0; 1g are associated to the fjRi; jLig polarization states and to
fjþ2i; j"2ig for the orbital angular momentum l for the first and
the second qubit, respectively. The incoming state on the QP is
(a) jHi#j0il and (b) jVi#j0il. The average experimental con-
currence is C ¼ ð0:95$ 0:02Þ. (c),(d) Experimental Poincaré
sphere both for the OAM (c) and # (d) degrees of freedom
obtained after the # ! l and the l ! # transferrer, respectively.
Experimentally we carried out single-qubit tomography to de-
termine the Stokes parameters for the # and the analogous
parameters for the l degrees of freedom. The mean fidelity values
are (c) F ¼ ð98$ 1Þ% and (d) F ¼ ð97$ 1Þ%.
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E.	  Nagali	  et	  al.	  report	  the	  first	  experimental	  demonstra1on	  of	  SAM	  –	  OAM	  conversion	  in	  
single	  photons	  and	  in	  correlated	  photon	  pairs	  [PRL	  103,	  013601	  (2009)]	  
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We propose and demonstrate a global and efficient approach for scalar and vectorial beam shaping based on
the interaction of circularly polarized light with a single piece of homogeneous anisotropic medium. The
main idea is to mimic the behavior of a two-dimensional inhomogeneous birefringent medium with a radial
distribution of its optical axis. This is done by transforming an incident Gaussian beam into a conical nipple
of light that further propagates along the optical axis of a c-cut uniaxial crystal. © 2009 Optical Society of
America

OCIS codes: 160.1190, 260.1440, 260.6042, 260.1180.

The generation, propagation, and interaction with
matter of light beams that possess phase (scalar) or
polarization (vectorial) singularities are current top-
ics in optics. In particular, the controlled generation
of optical singularities that combines high efficiency
and the use of simple optical elements is still an open
issue. Besides strategies based on segmented polariz-
ing optics within intra- or extra-cavity geometries, el-
egant approaches relying on a single piece of homo-
geneous uniaxial crystal have been proposed both for
the scalar [1,2] and vectorial cases. In the latter case,
let us mention the obtention of azimuthal [3] or ra-
dial [4] vectorial optical vortices, which have been
recognized later as polarization eigenstates in c-cut
uniaxial crystals [5]. However, the conversion effi-
ciency could be as low as 50% [6], and one needs to
cascade such devices in order to get higher-order sin-
gular optical structures. Such a requirement is by-
passed when exploiting spatially patterned aniso-
tropic optical elements, as shown in the scalar [7] and
vectorial [8] situations. In fact, promising develop-
ments have been made using continuously patterned
liquid crystal systems in two [9] or three [10] dimen-
sions in the scalar case and also in the vectorial case
where two- [8,11,12] or three- [13] dimensional strat-
egies have been implemented. Hence, although at-
tractive, the concept of 100% efficient phase and po-
larization singularities generation using a single
piece of homogeneous uniaxial crystal appears hope-
less and has not been demonstrated so far.

In this Letter, we show that this is possible by ex-
ploiting the analogy between the interaction of (i) a
circularly polarized (CP) conical nipple of light with a
c-cut homogeneous uniaxial crystal having its optical
axis along the main propagation direction of light
[see Fig. 1(a)] and (ii) a collimated CP beam at nor-
mal incidence onto a two-dimensional inhomoge-
neous uniaxial medium having a radial symmetry
[referred to as a “radial plate”; see Fig. 1(b)]. To prove
this, we introduce the optical conical nipple half-apex
angle in air, !0, and the total phase delay between the
ordinary !o" and extraordinary !e" waves at the out-
put of the crystal in case (i),

" =
2#

$

L

cos !
#no − ne!!"$, !1"

where $ is the wavelength in vacuum; L is the
thickness of the crystal; ne!!"=n%n! / !n%

2 cos2 !
+n!

2 sin2 !"1/2, with n% !n!=no" being the refractive
indices along (perpendicular to) the optical axis of the
crystal; and !&!0 /n! is the refracted angle whose
simplified expression is justified by the practical con-
dition !0%1. Therefore, for any value of !, case (i)
possesses a radial plate analog, but with an effective
thickness Leff=L / cos ! and a local birefringence
&neff=no−ne!!", as illustrated in Figs. 1(a) and 1(b),
and "eff= !2# /$"Leff&neff=" in case (ii).

Next, we notice that a radial plate illuminated by a
CP beam can generate, formally with a 100% effi-
ciency, a scalar vortex with a topological charge 2
when its total phase delay matches the half-wave-
plate (HWP) condition [9], i.e., "HWP= !2m+1"#,
where m is an integer. On the other hand, a vectorial
vortex with a topological charge 1 is produced when

Fig. 1. (Color online) (a) CP conical nipple of light imping-
ing on a c-cut calcite crystal, with o.a. being the optical
axis. (b) Analog birefringent radial plate geometry. (c) Ex-
perimental setup: A, axicon; L, lens; C, calcite crystal;
X—QWP, HWP, or nothing; Q, quartz crystal (used only for
the vectorial case, see text); WP, Wollaston prism.
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Conversion	  efficiency	  
can	  reach	  ≈100%	  

Fadeyeva	  et	  al.	  [JOSA	  A	  27,	  381	  (2010),	  Opt.	  Express	  18,	  10848	  (2010)]	  and	  Loussert	  et	  al.	  [Loussert	  
et	  al.,	  Opt.	  Lea.	  35,	  7	  (2010)]	  demonstrate	  high	  efficiency	  SAM	  –	  OAM	  conversion	  of	  
conical	  (Bessel)	  beams	  propaga1ng	  through	  a	  uniaxial	  birefringent	  crystal	  

2010: Conical beams in uniaxial birefringent crystals 

Output	  OAM	  =	  ±2ħ	  



2011: Propagation in curved space-time 



Categories	  of	  SAM	  –	  OAM	  processes	  iden1fied	  so	  far:	  

q  Propaga1on	  in	  homogeneous	  anisotropic	  media	  +	  devia:on	  from	  full	  paraxiality	  
(uniaxial	  crystals,	  conical	  diffrac1on)	  

q  Propaga1on	  in	  inhomogeneous	  isotropic	  media	  +	  large	  varia:on	  of	  propaga:on	  
direc:on	  (spin	  Hall	  effect,	  strong	  focusing,	  back-‐scaaering)	  

q  Propaga1on	  in	  inhomogeneous	  anisotropic	  media	  (paaerned	  liquid	  crystals,	  e.g.	  q-‐
plates,	  sub-‐wavelength	  gra1ngs,	  curved	  space-‐1me)	  

In	  all	  cases,	  a	  global	  rota:onal	  symmetry	  of	  medium	  around	  the	  z-‐axis	  ensures	  
exact	  conserva1on	  of	  the	  total	  angular	  momentum	  z-‐component:	   Jz = Lz + Sz

SAM – OAM conversion: conditions for occurrence 

No1ce:	  only	  the	  last	  case	  allows	  SAM	  –	  OAM	  
conversion	  of	  undeflected	  fully	  paraxial	  beams	  

Otherwise	  some	  exchange	  of	  angular	  momentum	  with	  the	  medium	  is	  involved	  
(e.g.,	  general	  q-‐plates,	  conical	  diffrac1on	  in	  biaxial	  crystals)	  



q-plate: the concept 

[L.	  Marrucci,	  C.	  Manzo,	  D.	  Paparo,	  PRL	  96,	  163905	  (2006);	  APL	  88,	  221102	  (2006)]	  



q-plate: origin of the idea (2005) 
Experiment	  on	  spinning	  liquid	  crystal	  
droplets	  by	  circularly	  polarized	  light:	  
[C.	  Manzo,	  D.	  Paparo,	  L.	  Marrucci,	  I.	  Jánossy,	  
Phys.	  Rev.	  E	  73,	  051707	  (2006)]	  	  

Bipolar	  droplets:	  
Almost	  homogeneous	  
birefringence.	  They	  can	  

be	  spun	  by	  light.	  

However,	  we	  found	  two	  kinds	  of	  droplets:	  

Radial	  droplets:	  
Inhomogeneous	  
birefringence.	  

They	  do	  not	  spin!	  

But	  radial	  droplets	  anyway	  modify	  the	  light	  polariza1on	  and	  
therefore	  should	  exchange	  (spin)	  angular	  momentum	  with	  
light	  [Istvan	  Jánossy,	  private	  discussion]	  

	   	   	  So,	  why	  don’t	  they	  rotate?	  

The	  simple	  answer	  we	  found:	  SAM	  goes	  into	  OAM!	   q-‐plate	  idea!!	  



Cell	  thickness	  and	  
birefringence	  chosen	  
so	  as	  to	  have	  uniform	  
half-‐wave	  retarda:on	  

x 

y 

The	  op1cal	  axis	  
orienta1on	  in	  the	  
plate	  is	  paYerned	  

! (x, y) =! (r,! )

α	  =	  angle	  between	  
the	  local	  op1cal	  axis	  n	  
and	  a	  reference	  axis	  

x 

y 
α 

φ 
r 

n 

q-plate structure: patterned half-wave plates 



Three	  examples:	  

q = ½  
 

(α0 = 0) 
q = 1  

 

(α0 = 0) 

q = 1  
 

(α0 = π/2) 

Topological	  defect	  of	  
charge	  q	  in	  the	  center	  

with	  	  q	  	  integer	  
or	  half-‐integer	  

General	  
paYern:	   0( , ) ( , )x y r qα α ϕ ϕ α= = +

q-plate structure: patterned half-wave plates 

No:ce:	  q	  =	  1	  yields	  rota:onal-‐symmetric	  paYerns	  (such	  as	  the	  radial	  droplets)	  



Consider	  first	  a	  normal	  (uniform)	  half-‐wave	  plate	  

The	  handedness	  is	  inverted	  For	  circularly	  polarized	  input	  

For	  linearly	  polarized	  input	   The	  output	  polariza1on	  is	  rotated	  

The	  extent	  of	  the	  polariza1on	  rota1on	  depends	  on	  the	  op1cal	  axis	  orienta1on	  

q-plate optical effect 

But	  what	  is	  the	  effect	  of	  rota:ng	  the	  op:cal	  axis	  in	  this	  case?	  



Apparently	  no	  change!	  

Let’s	  try	  it:	  

But	  let	  us	  check	  also	  the	  op:cal	  phase	  

No	  change	  in	  the	  output	  polariza1on	  and	  op1cal	  intensity	  

q-plate optical effect 



Phase-‐shiq	  induced	  by	  rotated	  half-‐wave	  plate	  on	  circular-‐polarized	  light:	  

2αΔΦ = ±Phase-‐shiq	  versus	  half-‐wave	  axis	  rota1on:	  

The	  ±	  sign	  is	  
determined	  by	  the	  
input	  polariza1on	  
handedness	  

q-plate optical effect 



Jones	  matrix	  of	  an	  α-‐oriented	  half-‐wave	  plate:	   M = cos2! sin 2!
sin 2! !cos2!

"

#
$

%

&
'

Let	  us	  apply	  it	  to	  an	  input	  lea-‐circular	  polarized	  plane	  wave:	  

M ! 1
i

"

#
$

%

&
'E0 =

cos2! + isin 2!
(icos2! + sin 2!

"

#
$

%

&
'E0 =

1
(i

"

#
$

%

&
'ei2!E0

The	  output	  polariza1on	  
is	  uniform	  right-‐
handed	  circular	  

	  
The	  wave	  has	  acquired	  
a	  phase	  retarda:on	  

!" = 2!
Pancharatnam-‐Berry	  geometrical	  phase	  
(unrelated	  with	  op1cal	  path	  length)	  

q-plate optical effect: Jones calculus 



Now	  consider	  again	  a	  non-‐uniform	  half-‐wave	  plate:	  

The	  wavefront	  gets	  reshaped!	  

For	  the	  specific	  q-‐plate	  paYern:	   0( , )r qα ϕ ϕ α= +

( )0( , ) 2 2 2 cost.x y q mα ϕ α ϕΔΦ = ± = ± + ± = +

	  Helical	  phase	  with	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  !	  m = ±2q

q-plate optical effect 



Examples:	  

q	  =	  1/2	  

OAM	  m	  =	  1	  

OAM	  m	  =	  –1	  

Leq	  circular	  polariza1on	  

Right	  circular	  polariza1on	  

Polariza:on	  controlled	  OAM	  handedness!	  

q-plate optical effect 



Examples:	   q	  =	  1/2	  

OAM	  m	  =	  ±1	  

q	  =	  1	  

OAM	  m	  =	  ±	  2	  

q-plate optical effect 



Photon angular momentum balance: case q = 1 

Spin:  Sz = +ħ 
Orbital:  Lz = 0 
Total:  Jz = +ħ 

Spin-‐to-‐orbital	  conversion	  of	  op:cal	  angular	  momentum	  

Lea-‐circular	  
input:	  

Spin:    Sz = –ħ 
Orbital: Lz = +2ħ 
Total:  Jz = +ħ 

q-‐
plate	  

Right-‐circular	  
input:	  

Spin:  Sz = –ħ 
Orbital:  Lz = 0 
Total:  Jz = –ħ 

Spin:    Sz = +ħ 
Orbital: Lz = –2ħ 
Total:  Jz = –ħ 



Spin:  Sz = ±ħ 
Orbital:  Lz = mħ 
	  
Total:  Jz = (m±1)ħ 

Spin:    Sz =     ħ 
Orbital: Lz = mħ ±	  2qħ 
	  
Total: Jz = [m±(2q–1)]ħ 

!

Torque	  on	  the	  q-‐plate	  

For	  q = 1,	  	  	  	  	  	  	  	  	  	  ΔJz = 0	  	  
No	  torque	  on	  the	  medium	  
(medium	  is	  only	  a	  “coupler”	  between	  
spin	  and	  orbital	  angular	  momentum	  of	  
light)	  

This	  is	  why	  radial	  
droplets	  don’t	  rotate!	  

For	  q ≠ 1,	  	  ΔJz = ±2(q–1)ħ  ≠ 0 

But,	  what	  happens	  if	  the	  plate	  birefringent	  
retarda:on	  is	  not	  just	  half-‐wave?	  

Photon angular momentum balance: general case 



1,m± ! = a ±1,m + b !1,m ± 2q

Birefringent	  
retarda1on	  δ	  

Output	  photon:	  coherent	  superposi1on	  of	  
“converted”	  and	  “unconverted”	  states	  

0

cos
2

sin
2

i

a

b i e α

δ

δ

⎧ =⎪⎪
⎨
⎪ =⎪⎩

Superposi1on	  coefficients:	  

Input	  photon	  
	   spin,orbital

No1ce:	  in	  the	  q = 1	  case,	  s1ll	  all-‐op:cal	  conversion	  (no	  torque	  on	  the	  medium)	  

The	  output	  photon	  state	  is	  not	  an	  eigenstate	  of	  spin	  and	  orbital	  angular	  momenta	  

We	  use	  a	  quantum	  nota1on:	  

q-plate optical effect: general birefringence retardation 

No1ce:	  we	  call	  δ	  =	  π	  the	  “op1mal	  
tuning”	  condi1on	  for	  the	  q-‐plate	  



q-plates: 
the current technology 

[L.	  Marrucci,	  C.	  Manzo,	  D.	  Paparo,	  PRL	  96,	  163905	  (2006);	  APL	  88,	  221102	  (2006)]	  

[S.	  Slussarenko,	  A.	  Murauski,	  T.	  Du,	  V.	  Chigrinov,	  L.	  Marrucci,	  E.	  Santamato,	  Opt.	  Express	  19,	  4085-‐4090	  (2011)]	  

[B.	  Piccirillo,	  V.	  D'Ambrosio,	  S.	  Slussarenko,	  L.	  Marrucci,	  E.	  Santamato,	  APL	  97,	  241104	  (2010)]	  

[E.	  Karimi,	  B.	  Piccirillo,	  E.	  Nagali,	  L.	  Marrucci,	  E.	  Santamato,	  APL	  94,	  231124	  (2009)]	  



1)  Circular rubbing of one substrate 
(with planar anchoring) 

q = 1 
geometry	  

2)  Assemble the cell with thickness chosen for 
having half-wave retardation (only approximate)  

Nema1c	  
liquid	  
crystal	  

The	  cell	  between	  
crossed	  polarizers:	  

Making a liquid crystal q-plate: the first method 

[L.	  Marrucci,	  C.	  Manzo,	  D.	  Paparo,	  PRL	  96,	  163905	  (2006);	  APL	  88,	  221102	  (2006)]	  



Liquid crystal q-plate: testing the optical effect 

Laser	  (He-‐Ne)	  

Screen	  
or	  
CCD	  

q-‐plate	  λ/4	   λ/4	  

Polarizing	  
beam-‐spliaer	  

Polarizing	  
beam-‐spliaer	  

Wavefront	  measurement	  
by	  interference:	  

q value smaller mask angular aperture would be necessary. By adjusting the ratio between the
angular speeds of the two motors, different topological charges were impressed on the cell
walls. It can be easily shown that the induced topological charge is given by q= 1± ωp

ωs
, where

ωp and ωs are the angular speeds of the polarizer and sample, respectively, and the ”+” and
”−” signs correspond to opposite and same rotation direction of the two mounts, respectively.
After the exposure, the samples were filled with the LC (MLC 6080 mixture from Merck) and
sealed by epoxy glue. Heating the sample above the LC clearing point and subsequent slow
cooling helped to remove occasional LC alignment defects. Topological charges q= 0.5,1.5,3,
as shown in Fig. 2(a-c), were realized with the procedure described above. However any semi-
integer charge can be realized, in principle, with this technique.

Fig. 2. (Color online) (a-c) Examples of the LC patterns with different topological charges
and photos of the corresponding samples under crossed polarizers. (d-f) CCD pictures of
the intensity beam profiles generated by the QPs shown in (a-c) when they are tuned. The
input beam polarization was circularly polarized (top) or linearly polarized (middle). The
respective interference patterns with a plane wave are also shown (bottom).

3. Optical characterization

When a beam traverses a QP with topological charge q and phase retardation δ , a fraction sin2 δ
2

of the photons in the beam have their SAM reversed and change their OAM by an amount±2q.
More precisely, the photons flipping their spin from −1 to +1 (−1 to +1) change their OAM
of −2q (+2q). The remaining photon fraction cos2 δ

2 remain in their initial SAM and OAM
state. [13,14] When the phase retardation of the QP is tuned to half-wave (δ = π) all the input
photons will be converted. In the particular case of charge q = 1, the total SAM+OAM light
angular momentum remains unchanged in passing through the QP, so that the change of the
photon SAM is transferred into a corresponding opposite change of the photon OAM, yielding
a spin-to-OAM conversion (STOC) [13]. For a single photon, a similar action takes place on
two wave-function components, with amplitudes sin δ

2 and cos
δ
2 respectively.

The preliminary test on our QPs was just to observe the intensity pattern generated by the
QP for a circularly or linearly polarized TEM00 incident beam. The observed intensity patterns
are shown in Fig. 2(d-f, top and middle row). In the case of the circular polarization of the
incident beam the we found the typical doughnut profile of vortex beam, while for the linear
input polarization the intensity pattern shows a number 4q of bright radial lobes, as foreseen
from theory. To better demonstrate the capability of our QPs to generate optical vortices a
measurement of the helical phase front is desirable. Such measurement was done by inserting
the QP into one arm of a Mach-Zehnder interferometer and by registering the interference
pattern with a reference wave. The interference patterns, in the case of a plane reference wave
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As	  a	  first	  step,	  we	  check	  
that	  a	  vortex	  appears	  in	  
the	  outgoing	  beam:	  



Lea-‐circular	  input	   Right-‐circular	  input	  

Double-‐spiral	  interference	  paaern	  

è	  	  Helical	  wavefront	  with	  m	  = ±2	  
Spiral	  handedness	  switches	  sign	  
with	  input	  polariza1on!	  

Liquid crystal q-plate: testing the optical effect 

These	  simple	  observa:ons	  confirm	  the	  occurrence	  of	  SAM	  –	  OAM	  conversion	  



Making a liquid crystal q-plate 

2. Q-plate structure and fabrication

In the QP, the LC film is enclosed between glass walls perpendicular to the z-axis. The
orientation of the local optical axis of the QP is given by the LC molecular director distribution
nnn(rrr) = (sinθ cosα,sinθ sinα,cosθ), with θ = θ(rrr),α = α(rrr) being the polar angles. The
walls of the QPs are coated for parallel strong anchoring (θ = π/2) and the the surface
alignment profile is made so to have α(x,y) = α(ϕ) = qϕ + α0 in the LC bulk, where
ϕ = arctan(y/x) is the transverse azimuthal coordinate, α0 is a real number, and q is an integer
or half integer number. The surface texture induced by this distribution is known in the physics
of LC as a Schlieren structure with an isolated point defect (or “noyau”) of topological charge
q at the wall center [20]. The “noyaux” in the two walls of the cell are carefully aligned
along the z axis during the cell manufacturing, so that a disclination line of same charge q is
generated in the bulk (from here the name q-plate of the device). As it is well known from
the elastic theory of LC, the equivalence between nnn and −nnn implies that the charge q is either
integer or half-integer [21].

Fig. 1. (Color online) QP fabrication setup scheme.

The traditional way to manufacture a cell with planar alignment of liquid crystal is to rub
the inner sides of the glass walls, previously coated with thin layer of polyimide, with velvet
fabric. The rubbing direction defines the anisotropy of the surface that, in turn, orient the LC
molecules perpendicular (or parallel, depending on the LC type) to the rubbing direction. The
q = 1 QPs can be manufactured in this way, by rubbing the cell walls with a rotating piece of
fabric [13, 15]. Other patterns, with q "= 1 cannot be made by this method. In this work, we
employed a photoalignment technique. The scheme of our setup is shown in Fig. 1. The LC
cell was made from two glass substrates, spin-coated with 1% solution of sulphonic azo-dye
SD1 (Dainippon Ink and Chemicals) in dimethylformamide (DMF) for 30 s at 3000 rpm. The
glass windows were coated with conducting Indium-Tin-Oxide (ITO) to apply and external
electrical field to the LC film. After the evaporation of the solvent, by soft-baking at 120 ◦C
for 5 min, the glasses were assembled together and 6 µm dielectric spacers were used to define
the cell gap. A mercury lamp of 180 mW/cm2 power density was used as the collimated light
source. The light beam was polarized by a linear wiregrid polarizer and made to pass through
an angular mask of 10◦ angular aperture. After the mask, a cylindrical lens was used to focus
and converge the selected sector on the cell. The SD1 surfactant provides planar alignment for
the LC in the direction perpendicular to the writing light polarization, with anchoring energy
comparable with the polyimide rubbing based alignment [22]. Both polarizer and sample were
attached to rotating mounts controlled by PC through step-motors. The rotation step of the
sample was set to 2◦. An exposure time of 2 hours and one complete turn of the sample was
enough to provide high quality alignment of the LC film in all our QPs. Such values, together
with the angular aperture of the mask, resulted from a compromise between having enough
light passing through the mask and having a small enough image of the mask on the cell to
obtain an acceptable smoothly varying local surface alignment. To make QPs with very large
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A	  beYer	  method:	  op:cal	  wri:ng	  of	  the	  liquid	  crystal	  paYern	  

J. Opt. 13 (2011) 064001 Review Article

Figure 3. (a) A q = 1 q-plate prepared by a photoalignment
technique, as seen between crossed polarizers. (b), (c) Interference
patterns of the outgoing beam from the q-plate with (b) planar and
(c) spherical reference waves, for a left-circular input polarization.

OAM manipulation that can be obtained by combining one
or more q-plates in suitable optical schemes, but it includes
a brief survey of related results of polarization-based OAM
manipulation. Quantum applications of q-plates and of SAM–
OAM photon interactions are finally discussed in section 5.

2. q-plate manufacture and tuning

The main issue to be addressed in the manufacture of q-
plates is the patterning of the optical axis. Liquid crystals
(LCs) are soft birefringent materials allowing flexible spatial
patterning of the average molecular orientation that defines the
optical axis. LCs can be aligned by several methods. For
static alignment, the simplest choice is to use the so-called
‘surface anchoring’, i.e., a treatment of the bounding substrates
that generates a preferential molecular alignment of the LC in
contact with the surface. For dynamical alignment one can
use external fields, such as magnetic, electric or even optical
fields. LC q-plates can be then manufactured as thin (order of
5–10 µm) LC films, sandwiched between two glass substrates
which have been previously coated with a suitable alignment
layer, typically made of polymer, such as polyimide or other
materials. These materials are suitable for aligning the LC
optical axis parallel (or slightly tilted) to the bounding surfaces,
i.e. the so-called ‘planar anchoring’. To single out a specific
direction in the plane one can then use a mechanical rubbing
procedure (using velvet or other fabrics) of the polymer-coated
substrate. It is, however, hard to introduce an arbitrary pattern
by mechanical rubbing, and this approach is convenient only
in the case of the simplest geometry, corresponding to q = 1,
which is rotationally symmetric. For this practical reason all
the early experimental works with q-plates used q-plates with
q = 1.

A more versatile and cleaner approach to patterning
LC cells is to use a photoinduced alignment method of the
polymer coating of the LC-bounding substrates, as proposed
in [25]. In this approach, the anisotropy of the polymer
is controlled by the linear polarization of the writing light,
which defines the material optical axis (either parallel or
perpendicular to the writing field polarization). There are
different permanent orienting effects of light on the polymer
coatings which can be used. The most common ones are either
photochemical, i.e. based on selectively destroying or creating
chemical links by preferential absorption, or photophysical,
i.e. based on the photoinduced selective reorientation of dye
molecules dispersed in the polymer. One can use this

Figure 4. Setup used to measure the STOC efficiency and the state
purity. Legend: QWP—quarter wave plate, PBS—polarizing
beam-splitter. The fork hologram was inserted on the converted beam
arm to verify the degree of purity of the OAM m = 2 mode
generated on the output. STOC power fraction (blue ) and no
STOC power fraction (red !") as functions of the q-plate temperature.
The curves are theoretical best fits [38].

approach to directly write an anisotropic pattern in a thin
polymer film that becomes itself a q-plate, as for example
recently reported in [65]. However, polymer q-plates are
not dynamically tunable, as their birefringent retardation δ
is fixed by the film thickness and by the polymer degree
of alignment and corresponding birefringence. We instead
recently demonstrated the photoinduced alignment approach
to prepare patterned polymer-coated substrates with which
we could assemble tunable patterned LC q-plates with
arbitrary topological charge q [66]. In figure 3 an LC q-
plate manufactured by the photoalignment method is shown,
together with the interference patterns demonstrating the
helical structure of the outgoing wavefront.

The tuning of an LC q-plate, that is controlling the
birefringence phase retardation δ, useful for optimizing the
STOC process or to adjust it for different wavelengths, can be
achieved by different methods, including mechanical pressure,
thermal methods, and external-field induced LC reorientation.
So far, a thermal approach exploiting the strong dependence
of the LC birefringence on temperature [38] and an electric
one, exploiting the electric-field induced reorientation of the
LC molecular alignment [67] have been demonstrated. The
latter of course allows for a relatively fast dynamical control of
tuning, while the former is more suitable for static tuning.

Since the STOC process is accompanied by polarization
helicity inversion, in the case of a pure circularly polarized
input beam the STOC and non-STOC components of the output
light can be simply separated by a polarizing beam-splitter
(PBS), because the converted and non-converted light will
have orthogonal polarization states. This allows for a very
simple measurement of the STOC efficiency and of the phase
retardation δ that controls it, as shown for example in figure 4.
In this experiment, the optimal STOC efficiency exceeded

4

Photosensi1ve	  
surface	  layers	  (e.g.,	  
azo-‐polymers)	  

Resul1ng	  q-‐plates	  have	  beaer	  op1cal	  quality:	  

Moreover,	  by	  rota:ng	  both	  the	  polarizer	  and	  the	  sample…	  

q	  =	  1	  

[S.	  Slussarenko,	  A.	  Murauski,	  T.	  Du,	  V.	  Chigrinov,	  L.	  Marrucci,	  E.	  Santamato,	  Opt.	  Express	  19,	  4085-‐4090	  (2011)]	  



q value smaller mask angular aperture would be necessary. By adjusting the ratio between the
angular speeds of the two motors, different topological charges were impressed on the cell
walls. It can be easily shown that the induced topological charge is given by q= 1± ωp

ωs
, where

ωp and ωs are the angular speeds of the polarizer and sample, respectively, and the ”+” and
”−” signs correspond to opposite and same rotation direction of the two mounts, respectively.
After the exposure, the samples were filled with the LC (MLC 6080 mixture from Merck) and
sealed by epoxy glue. Heating the sample above the LC clearing point and subsequent slow
cooling helped to remove occasional LC alignment defects. Topological charges q= 0.5,1.5,3,
as shown in Fig. 2(a-c), were realized with the procedure described above. However any semi-
integer charge can be realized, in principle, with this technique.

Fig. 2. (Color online) (a-c) Examples of the LC patterns with different topological charges
and photos of the corresponding samples under crossed polarizers. (d-f) CCD pictures of
the intensity beam profiles generated by the QPs shown in (a-c) when they are tuned. The
input beam polarization was circularly polarized (top) or linearly polarized (middle). The
respective interference patterns with a plane wave are also shown (bottom).

3. Optical characterization

When a beam traverses a QP with topological charge q and phase retardation δ , a fraction sin2 δ
2

of the photons in the beam have their SAM reversed and change their OAM by an amount±2q.
More precisely, the photons flipping their spin from −1 to +1 (−1 to +1) change their OAM
of −2q (+2q). The remaining photon fraction cos2 δ

2 remain in their initial SAM and OAM
state. [13,14] When the phase retardation of the QP is tuned to half-wave (δ = π) all the input
photons will be converted. In the particular case of charge q = 1, the total SAM+OAM light
angular momentum remains unchanged in passing through the QP, so that the change of the
photon SAM is transferred into a corresponding opposite change of the photon OAM, yielding
a spin-to-OAM conversion (STOC) [13]. For a single photon, a similar action takes place on
two wave-function components, with amplitudes sin δ

2 and cos
δ
2 respectively.

The preliminary test on our QPs was just to observe the intensity pattern generated by the
QP for a circularly or linearly polarized TEM00 incident beam. The observed intensity patterns
are shown in Fig. 2(d-f, top and middle row). In the case of the circular polarization of the
incident beam the we found the typical doughnut profile of vortex beam, while for the linear
input polarization the intensity pattern shows a number 4q of bright radial lobes, as foreseen
from theory. To better demonstrate the capability of our QPs to generate optical vortices a
measurement of the helical phase front is desirable. Such measurement was done by inserting
the QP into one arm of a Mach-Zehnder interferometer and by registering the interference
pattern with a reference wave. The interference patterns, in the case of a plane reference wave
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Making a liquid crystal q-plate 

We	  can	  make	  q-‐plates	  with	  arbitrary	  q!	  

q value smaller mask angular aperture would be necessary. By adjusting the ratio between the
angular speeds of the two motors, different topological charges were impressed on the cell
walls. It can be easily shown that the induced topological charge is given by q= 1± ωp

ωs
, where

ωp and ωs are the angular speeds of the polarizer and sample, respectively, and the ”+” and
”−” signs correspond to opposite and same rotation direction of the two mounts, respectively.
After the exposure, the samples were filled with the LC (MLC 6080 mixture from Merck) and
sealed by epoxy glue. Heating the sample above the LC clearing point and subsequent slow
cooling helped to remove occasional LC alignment defects. Topological charges q= 0.5,1.5,3,
as shown in Fig. 2(a-c), were realized with the procedure described above. However any semi-
integer charge can be realized, in principle, with this technique.

Fig. 2. (Color online) (a-c) Examples of the LC patterns with different topological charges
and photos of the corresponding samples under crossed polarizers. (d-f) CCD pictures of
the intensity beam profiles generated by the QPs shown in (a-c) when they are tuned. The
input beam polarization was circularly polarized (top) or linearly polarized (middle). The
respective interference patterns with a plane wave are also shown (bottom).

3. Optical characterization

When a beam traverses a QP with topological charge q and phase retardation δ , a fraction sin2 δ
2

of the photons in the beam have their SAM reversed and change their OAM by an amount±2q.
More precisely, the photons flipping their spin from −1 to +1 (−1 to +1) change their OAM
of −2q (+2q). The remaining photon fraction cos2 δ

2 remain in their initial SAM and OAM
state. [13,14] When the phase retardation of the QP is tuned to half-wave (δ = π) all the input
photons will be converted. In the particular case of charge q = 1, the total SAM+OAM light
angular momentum remains unchanged in passing through the QP, so that the change of the
photon SAM is transferred into a corresponding opposite change of the photon OAM, yielding
a spin-to-OAM conversion (STOC) [13]. For a single photon, a similar action takes place on
two wave-function components, with amplitudes sin δ

2 and cos
δ
2 respectively.

The preliminary test on our QPs was just to observe the intensity pattern generated by the
QP for a circularly or linearly polarized TEM00 incident beam. The observed intensity patterns
are shown in Fig. 2(d-f, top and middle row). In the case of the circular polarization of the
incident beam the we found the typical doughnut profile of vortex beam, while for the linear
input polarization the intensity pattern shows a number 4q of bright radial lobes, as foreseen
from theory. To better demonstrate the capability of our QPs to generate optical vortices a
measurement of the helical phase front is desirable. Such measurement was done by inserting
the QP into one arm of a Mach-Zehnder interferometer and by registering the interference
pattern with a reference wave. The interference patterns, in the case of a plane reference wave
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=2 and with right-circular !R" polarization. By inserting in
the output beam a second QWP and a polarizing beam-
splitter !PBS" oriented so as to select the R-polarization for
the transmission output, a pure doughnut beam is obtained.
The reflected output of the PBS shows instead only the cen-
tral spot !unconverted light". If Pin is the total input power,
the powers of the coherently converted and unconverted
components, PR,2 and PL,0, respectively, are expected to de-
pend on the optical retardation ! according to the following
Malus-like laws:13,17

PR,2 = P0 sin2!

2
PL,0 = P0 cos2!

2
, !1"

where P0=TPin is the total power transmitted coherently by
the QP. To adjust the retardation !, the temperature of the QP
was varied while measuring the power of the two output
beams of the PBS. The results are shown in Fig. 2, together
with best-fit curves based on Eq. !1", assuming a second-
order polynomial dependence !!T"=a+bT+cT2 and adding
a constant offset of 0.5% that accounts for the finite PBS and
wave plates contrast ratios. When the PBS-transmitted power
!full squares in Fig. 2" reaches its maximum, we obtain the
optimal STOC and almost all photons emerge in the m=2
OAM state. More precisely, in this optimal situation, about
99.2% of the beam power is transmitted by the PBS, and
after taking into account the finite contrast ratio of the wave
plates and PBS !as measured without the QP", the actual QP
efficiency in inverting the optical polarization is estimated to
be 99.6%. To test the purity of the OAM eigenmode gener-
ated by our QP at the optimal temperature, we inserted along
the beam a double pitchfork hologram as OAM mode
splitter,6,14 and on the first-order diffracted beam we selected
the central spot by a suitable iris placed before the detector.

After suitable calibration of the detection efficiency, the mea-
sured OAM m=2 mode content fraction was estimated to be
F=97.2% !in quantum optics, F is the “fidelity,” i.e., the
overlap with the desired mode m=2", so that the overall QP
efficiency in generating a pure OAM m=2 mode is "
=97.2%#99.6%=96.9%. This value is net of reflection and
scattering losses in the QP. If all losses are included, the
efficiency of our QP is 85%, a figure which could be easily
improved to more than 90% by simply adding antireflection
coatings. Moreover, we note that unlike all other methods for
OAM generation, the QP approach enables also a very fast
!gigahertz" switching of the OAM sign, by electro-optical
control of the input polarization.

Let us now discuss the second experiment about OAM
mode sorting. More precisely, we present a setup for sorting
the four modes that are obtained by combining the two OAM
modes m=2 and m=−2, and the two orthogonal polarizations
L and R. The setup is the same as the previous one. The
optical retardation of the QP was held fixed at the optimal
value !=$ for maximum STOC efficiency and the input
states m= %2 were generated by an SLM driven with a
pitchfork computer generated hologram !CGH". The first
QWP was rotated so as to produce, alternately, right-circular
and left-circular polarizations. In this way, we created in se-
quence the four photon states #L ,2$, #L ,−2$, #R ,2$, #R ,−2$.
Because the STOC process is complete in a tuned QP, after
passing through the QP these four states are expected to
change, respectively, into #R ,4$, #R ,0$, #L ,0$, #L ,−4$. The
QWP after the QP, changes these states into #H ,4$, #H ,0$,
#V ,0$, #V ,−4$, respectively, so that the two states #H ,4$ and
#H ,0$ are transmitted by the PBS, and the other two states
#V ,0$ and #V ,−4$ are reflected. We see that owing to the QP,
the two states in each of the reflected and transmitted beam
have different values of the photon OAM !m=0 and m=4".
After propagating in the far-field !or in the focal plane of a
lens", these two modes can then be separated by exploiting
their different radial distribution, i.e., a central spot for m
=0 and an outer ring for m=4, as shown in Fig. 3, thus
finally sorting all four initial spin-orbit modes into separate
beams. The radial sorting can be obtained, for example, by
means of a mirror with a hole at its center. The efficiency of
this mode sorter is defined here as the fraction of the optical
power of the eigenmode to be sorted that is directed in the
correct output mode. This efficiency, however, is not 100%
because of the radial mode overlap, leading to some energy
going into the “wrong” OAM output mode. This also leads to
a finite contrast ratio, i.e., to cross-talk between the input
channels. In Table I we report the measured efficiencies and
contrast ratios for the four input spin-orbit base states previ-
ously mentioned, with a discriminating hole radius chosen so
as to balance the output efficiencies for opposite input OAM

FIG. 1. Setup to measure the STOC efficiency and the state purity. Legend:
QWP-quarter wave plate, PBS-polarizing beam-splitter. The fork hologram
was inserted on the converted beam arm for verifying the degree of purity of
the OAM m=2 mode generated on the output.
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FIG. 2. STOC power fraction PR,2 / P0 !black squares" and no STOC power
fraction PL,0 / P0 !empty squares" as functions of the QP temperature. The
curve is the best fit obtained as explained in the text.

FIG. 3. Calculated far-field patterns of OAM modes m=0 and m=4 gener-
ated by the QP for input OAM m= %2 %the input beam was assumed to
HyGG−2,%2!r ,& ,0.1" !Ref. 18" mode&. The dashed circle shows the dis-
criminating area used in the balanced mode sorter.
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Figure 3. (a) A q = 1 q-plate prepared by a photoalignment
technique, as seen between crossed polarizers. (b), (c) Interference
patterns of the outgoing beam from the q-plate with (b) planar and
(c) spherical reference waves, for a left-circular input polarization.

OAM manipulation that can be obtained by combining one
or more q-plates in suitable optical schemes, but it includes
a brief survey of related results of polarization-based OAM
manipulation. Quantum applications of q-plates and of SAM–
OAM photon interactions are finally discussed in section 5.

2. q-plate manufacture and tuning

The main issue to be addressed in the manufacture of q-
plates is the patterning of the optical axis. Liquid crystals
(LCs) are soft birefringent materials allowing flexible spatial
patterning of the average molecular orientation that defines the
optical axis. LCs can be aligned by several methods. For
static alignment, the simplest choice is to use the so-called
‘surface anchoring’, i.e., a treatment of the bounding substrates
that generates a preferential molecular alignment of the LC in
contact with the surface. For dynamical alignment one can
use external fields, such as magnetic, electric or even optical
fields. LC q-plates can be then manufactured as thin (order of
5–10 µm) LC films, sandwiched between two glass substrates
which have been previously coated with a suitable alignment
layer, typically made of polymer, such as polyimide or other
materials. These materials are suitable for aligning the LC
optical axis parallel (or slightly tilted) to the bounding surfaces,
i.e. the so-called ‘planar anchoring’. To single out a specific
direction in the plane one can then use a mechanical rubbing
procedure (using velvet or other fabrics) of the polymer-coated
substrate. It is, however, hard to introduce an arbitrary pattern
by mechanical rubbing, and this approach is convenient only
in the case of the simplest geometry, corresponding to q = 1,
which is rotationally symmetric. For this practical reason all
the early experimental works with q-plates used q-plates with
q = 1.

A more versatile and cleaner approach to patterning
LC cells is to use a photoinduced alignment method of the
polymer coating of the LC-bounding substrates, as proposed
in [25]. In this approach, the anisotropy of the polymer
is controlled by the linear polarization of the writing light,
which defines the material optical axis (either parallel or
perpendicular to the writing field polarization). There are
different permanent orienting effects of light on the polymer
coatings which can be used. The most common ones are either
photochemical, i.e. based on selectively destroying or creating
chemical links by preferential absorption, or photophysical,
i.e. based on the photoinduced selective reorientation of dye
molecules dispersed in the polymer. One can use this

Figure 4. Setup used to measure the STOC efficiency and the state
purity. Legend: QWP—quarter wave plate, PBS—polarizing
beam-splitter. The fork hologram was inserted on the converted beam
arm to verify the degree of purity of the OAM m = 2 mode
generated on the output. STOC power fraction (blue ) and no
STOC power fraction (red !") as functions of the q-plate temperature.
The curves are theoretical best fits [38].

approach to directly write an anisotropic pattern in a thin
polymer film that becomes itself a q-plate, as for example
recently reported in [65]. However, polymer q-plates are
not dynamically tunable, as their birefringent retardation δ
is fixed by the film thickness and by the polymer degree
of alignment and corresponding birefringence. We instead
recently demonstrated the photoinduced alignment approach
to prepare patterned polymer-coated substrates with which
we could assemble tunable patterned LC q-plates with
arbitrary topological charge q [66]. In figure 3 an LC q-
plate manufactured by the photoalignment method is shown,
together with the interference patterns demonstrating the
helical structure of the outgoing wavefront.

The tuning of an LC q-plate, that is controlling the
birefringence phase retardation δ, useful for optimizing the
STOC process or to adjust it for different wavelengths, can be
achieved by different methods, including mechanical pressure,
thermal methods, and external-field induced LC reorientation.
So far, a thermal approach exploiting the strong dependence
of the LC birefringence on temperature [38] and an electric
one, exploiting the electric-field induced reorientation of the
LC molecular alignment [67] have been demonstrated. The
latter of course allows for a relatively fast dynamical control of
tuning, while the former is more suitable for static tuning.

Since the STOC process is accompanied by polarization
helicity inversion, in the case of a pure circularly polarized
input beam the STOC and non-STOC components of the output
light can be simply separated by a polarizing beam-splitter
(PBS), because the converted and non-converted light will
have orthogonal polarization states. This allows for a very
simple measurement of the STOC efficiency and of the phase
retardation δ that controls it, as shown for example in figure 4.
In this experiment, the optimal STOC efficiency exceeded

4

“Tuning” a liquid crystal q-plate 

We	  need	  a	  method	  for	  controlling	  and	  adjus1ng	  the	  
birefringence	  retarda1on	  δ	  of	  the	  q-‐plate	  

Our	  first	  demonstrated	  
method	  was	  thermal:	  
exploi1ng	  the	  material	  Δn(T)	  

By	  changing	  δ,	  the	  converted	  and	  
unconverted	  components	  of	  the	  
output	  wave	  oscillate	  

[E.	  Karimi,	  B.	  Piccirillo,	  E.	  Nagali,	  L.	  Marrucci,	  E.	  Santamato,	  APL	  94,	  231124	  (2009)]	  



at small angle, have a typical “fork”-like structure [11], in which interference fringes have a
disclination, where the optical vortex is located. The disclination order (i.e. the splitting of the
interference line into a higher number of lines) corresponds to the OAM value of the beam, as
shown in Fig. 2(d-f, bottom row). We tested also the STOC efficiency of our QPs, defined as the
ratio between the STOC converted power and the total power in the output. This measurement
was done by registering the power fraction of the light transmitted by the QP having polarization
orthogonal to that of the incident beam. The QP conversion efficiency was changed by changing
the QP retardation δ by applying an external voltage. To avoid electro-chemical effects, we
applied a 2 kHz square-shaped voltage. The measurements were done at 543.5 nm and 633 nm
light wavelengths. The results for the q= 0.5 QP are shown in Fig. 3(a). We obtained a STOC
efficiency of up to 99% for all fabricated QPs. Due to unavoidable reflection, diffusion, and
absorption losses in the QP, the overall STOC efficiency defined as the ratio between the STOC
converted power in the output and the total incident power was found about 86% for all our
QPs. These losses, however, could be easily avoided by adding an antireflection coating.

Fig. 3. (Color online) (a) – fraction of the output power converted by STOC in the QP as a
function of the applied voltage. Red line - 633 nm input beamwavelength, green line - 534.5
nm input beamwavelength. (b) – time behavior of the QP upon sending two consecutive AC
pulses that correspond to the minimum and maximum conversion efficiency. The intensity
patterns in the insets show the on-off switching of the vortex beam with ! = 1. The data
refer to the QP with q= 0.5.

Since the STOC efficiency measurement was based on the polarization state of the beam only,
an additional detailed study of the beam phase structure is required. For doing this we measured
directly the OAM content of the beam generated by the QP, tuned to the maximum conversion,
exploiting a tomographic technique [23]. Since we were not interested in the beam polarization,
we fixed it by inserting a linear polarizer after the QP and carried out only the tomography of
the beam OAM content. The main advantage of the optical tomography is that both amplitude
and phase of the OAM components of a light beam can be reconstructed and that also the
“fidelity” of the beam OAM state with respect to a given theoretical state can be evaluated [24].
Because the tomographic characterization is a very long procedure, we performed this test on
the q = 0.5 QP only, restricting the OAM states to the Hilbert space spanned by the opposite
OAM eigenvalues ! = ±1. In the experiment, the q = 0.5 QP was used to generate the states
|1〉o, |−1〉o, and 1/

√
2(|1〉o− |−1〉o), as described above, and a set of six computer-generated

holograms (CGH) was sent into a spatial light modulator (SLM) to project the given beam
state into the corresponding OAM bases [25, 26]. The density matrices of the measured states
are reported in Fig. 4(a)-(c). The measurements showed an average fidelity of 98± 1% of the
generated states with the expected ones. We tested also the correlation between the circularly
right polarized fraction of the beam coming from the q = 0.5 QP and the power of the ! =
1 component of the same beam for different elliptically polarized states of the input TEM00
beam. The measurements were carried on with a circular polarizer to select the right handed
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Since the STOC efficiency measurement was based on the polarization state of the beam only,
an additional detailed study of the beam phase structure is required. For doing this we measured
directly the OAM content of the beam generated by the QP, tuned to the maximum conversion,
exploiting a tomographic technique [23]. Since we were not interested in the beam polarization,
we fixed it by inserting a linear polarizer after the QP and carried out only the tomography of
the beam OAM content. The main advantage of the optical tomography is that both amplitude
and phase of the OAM components of a light beam can be reconstructed and that also the
“fidelity” of the beam OAM state with respect to a given theoretical state can be evaluated [24].
Because the tomographic characterization is a very long procedure, we performed this test on
the q = 0.5 QP only, restricting the OAM states to the Hilbert space spanned by the opposite
OAM eigenvalues ! = ±1. In the experiment, the q = 0.5 QP was used to generate the states
|1〉o, |−1〉o, and 1/
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2(|1〉o− |−1〉o), as described above, and a set of six computer-generated

holograms (CGH) was sent into a spatial light modulator (SLM) to project the given beam
state into the corresponding OAM bases [25, 26]. The density matrices of the measured states
are reported in Fig. 4(a)-(c). The measurements showed an average fidelity of 98± 1% of the
generated states with the expected ones. We tested also the correlation between the circularly
right polarized fraction of the beam coming from the q = 0.5 QP and the power of the ! =
1 component of the same beam for different elliptically polarized states of the input TEM00
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“Tuning” a liquid crystal q-plate 

A	  more	  convenient	  approach:	  
electric	  tuning	  

The	  working	  principle	  is	  the	  electric-‐field	  induced	  
reorienta1on	  of	  the	  liquid	  crystal	  molecular	  orienta1on	  

Electric	  q-‐plate:	  conversion	  efficiency	  and	  1me	  response:	  

[B.	  Piccirillo,	  V.	  D'Ambrosio,	  S.	  Slussarenko,	  L.	  Marrucci,	  E.	  Santamato,	  APL	  97,	  241104	  (2010)]	  



q-plates: not only us 

Liquid-‐crystal-‐polymer	  q-‐plates	  (diffrac1ve	  waveplates)	  by	  Beam	  Co.	  (FL,	  USA):	  
[Nelson	  V.	  Tabiryan	  et	  al.]	  

A	  drawback	  of	  this	  polymer-‐only	  technology:	  not	  easily	  tunable	  



Concept	  generaliza:on:	  
	  

Pancharatnam-‐Berry	  phase	  op:cal	  elements	  
(PBOE)	  for	  arbitrary	  wavefront	  shaping	  

[Z.	  Bomzon,	  G.	  Biener,	  V.	  Kleiner,	  and	  E.	  Hasman,	  Opt.	  Le3.	  27,	  1141	  (2002)]	  

[R.	  Bhandari,	  Phys.	  Rep.	  281,	  1–64	  (1997)]	  

[L.	  Marrucci,	  C.	  Manzo,	  D.	  Paparo,	  Appl.	  Phys.	  Le3.	  88,	  221102	  (2006)]	  



It	  is	  an	  op:cal	  phase	  shia	  ΔΦ	  that	  arises	  due	  to	  a	  sequence	  of	  polariza:on	  
transforma:ons,	  independent	  of	  the	  op:cal	  path	  length	  

	  ΔΦ	  is	  fixed	  by	  the	  geometry	  of	  the	  “path”	  in	  the	  polariza:on	  space	  (Poincaré	  
sphere)	  

For	  a	  closed	  path,	  ΔΦ	  =	  Ω	  /	  2,	  where	  Ω	  is	  the	  
solid	  angle	  subtended	  by	  the	  enclosed	  area	  in	  
the	  Poincaré	  sphere	  

For	  two	  different	  open	  paths	  sharing	  the	  same	  
ini:al	  and	  final	  states,	  ΔΦ	  =	  Ω	  /	  2	  gives	  the	  
difference	  in	  the	  acquired	  op1cal	  phase	  in	  the	  
two	  transforma1ons	  

Ω	  

2
ΔΦ = Ω

Pancharatnam-Berry geometrical phase 



Using Pancharatnam-Berry phase for wavefront shaping 

Reshaped	  output	  
wavefront	  

Input	  
wavefront	  
(with	  uniform	  
ini1al	  
polariza1on)	  

Op1cal	  system	  
inducing	  non-‐uniform	  
polariza1on	  
transforma1ons	  but	  a	  
uniform	  final	  
polariza1on	  

What	  kind	  of	  op:cal	  systems	  can	  be	  used?	  



Patterned half-wave plates (like “q-plates”) 

Jones	  matrix:	  
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Apply	  it	  to	  an	  input	  lea-‐circular	  polarized	  plane	  wave:	  
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x y E r z E r z e E r z
i i i
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M

Wavefront	  acquires	  a	  
posi:on-‐dependent	  
phase	  retarda:on	  

( , ) 2 ( , )x y x yαΔΦ =
Pancharatnam-‐Berry	  geometrical	  phase	  

With	  suitable	  paYerning	  of	  the	  plate,	  we	  may	  generate	  wavefronts	  of	  any	  
prescribed	  shape	  



Example: a PBOE lens 

This	  lens	  will	  be	  focusing	  or	  defocusing	  depending	  on	  the	  input	  circular	  
polariza1on	  handedness:	  fast	  polariza:on	  mul:plexing	  

The	  lens	  thickness	  will	  be	  uniform	  and	  very	  thin	  (few	  
microns).	  Similar	  to	  Fresnel	  lens,	  but	  without	  op1cal	  
discon1nui1es	  

Op:cal	  axis	  paYern:	  
2( , )r crα ϕ⎡ ⎤=⎣ ⎦

This	  paaern	  could	  be	  
made	  with	  
computer-‐controlled	  
micro-‐rubbing	  or	  
photo-‐alignment	  



PBOE and polarization holography 

Reference	  
wavefront	  
(with	  opposite	  
circular	  
polariza1on)	  

Input	  “signal”	  
wavefront	  
(circularly	  polarized)	  

Polariza1on	  
hologram	  

“Develop”	  it	  into	  a	  cell	  with	  
half-‐wave	  retarda1on	  

PBOE	  which	  reconstructs	  the	  signal	  
wavefront	  or	  its	  conjugate	  (with	  
100%	  efficiency,	  single	  order	  
output)	  
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