

q-plates: some classical and quantum applications

Lorenzo Marrucci
Università di Napoli "Federico II"

Outline:

A brief reminder on the q-plate concept and operation principles
Let's "go quantum": single photons with OAM

- q-plate effect on single photons
. A "quantum interface": Quantum information transfer $S A M \leftrightarrow O A M$
\square Coherent unitary mapping SAM \leftrightarrow OAM
Generating a 2-photon quantum state with OAM correlations
Quantum information transfer: some examples of applications
Moving further up in the photon space dimensionality

A brief reminder on the q-plate concept and operation principles

[L. Marrucci, C. Manzo, D. Paparo, PRL 96, 163905 (2006); APL 88, 221102 (2006)]

q-plate structure: patterned half-wave plates

q-plate structure: patterned half-wave plates

General

$$
\alpha(x, y)=\alpha(r, \varphi)=q \varphi+\alpha_{0}
$$

with q integer or half-integer

Three examples:
Topological defect of

q-plate optical effect: Jones calculus

Jones matrix of an α-oriented half-wave plate: $\mathbf{M}=\left[\begin{array}{cc}\cos 2 \alpha & \sin 2 \alpha \\ \sin 2 \alpha & -\cos 2 \alpha\end{array}\right]$

Let us apply it to an input left-circular polarized plane wave:

q-plate optical effect

For a non-uniform optical axis orientation:

The wavefront gets reshaped!

For the specific q-plate pattern:
$\alpha(r, \varphi)=q \varphi+\alpha_{0}$

$\Delta \Phi(x, y)= \pm 2 \alpha= \pm 2 q \varphi+\left(\pm 2 \alpha_{0}\right)=m \varphi+$ cost.

$$
\text { Helical phase with } \quad m= \pm 2 q \text { ! }
$$

q-plate optical effect

Examples:

$$
q=1 / 2
$$

Left circular polarization

$$
\text { OAM } m=1
$$

Right circular polarization

OAM $m=-1$

Polarization controlled OAM handedness

q-plate optical effect

Examples:

$q=1 / 2$

$$
q=1
$$

OAM $m= \pm 2$

Photon angular momentum balance: case $q=1$

Left-circular input:

Total: $J_{z}=+\hbar$

Spin:	$S_{z}=+\hbar$	$q-$ plate
Orbital:	$L_{z}=0$	Spin: $S_{z}=-\hbar$
Orbital: $L_{z}=2 \hbar$		

Total: $J_{z}=+\hbar$

Spin: $S_{z}=-\hbar \quad$ Spin: $S_{z}=+\hbar$
Orbital: $L_{z}=0$
Right-circular Total: $J_{z}=-\hbar$

Orbital: $L_{z}=-2 \hbar$
Total: $J_{z}=-\hbar$

Spin-to-orbital conversion of optical angular momentum

Cascading q-plates

stage 1

By multiple polarization control, one can access any value of OAM

In principle, the switching can be as fast as GHz rates (MHz are fairly easy)
[L. Marrucci, C. Manzo, D. Paparo, APL 88, 221102 (2006)]

Let's "go quantum": single photons with OAM

Notice: we will actually be using the quantum language and notation also for describing optical processes which are fully within the scope of classical electromagnetism

Single photons with OAM

Notation: a photon having a given polarization (SAM) and OAM state

$|\psi\rangle=|\mathrm{SAM}\rangle|\mathrm{OAM}\rangle=|h\rangle_{\pi}|m\rangle_{o}$

SAM (π): a 2D space

$$
\begin{array}{ll}
h=H, V & \text { (linear polarizations) } \\
h=L, R & \text { (circular polarizations) }
\end{array}
$$

OAM (o): an ∞ D space

$$
m=0, \pm 1, \pm 2, \pm 3, \ldots
$$

(Interesting for quantum information: lots of room in just one photon!)

Quantum OAM superpositions

Polarization superpositions:

$$
|\psi\rangle=\alpha|L\rangle_{\pi}+\beta|R\rangle_{\pi}=\alpha^{\prime}|H\rangle_{\pi}+\beta^{\prime}|V\rangle_{\pi}
$$

OAM superpositions:

$$
|\psi\rangle=\alpha|+2\rangle_{o}+\beta|-2\rangle_{o}, \begin{aligned}
& \text { An OAM "qubit" }
\end{aligned}
$$

Higher-dimensional superpositions are also possible with OAM ("qudits")

Quantum superpositions: Poincaré (or Bloch) sphere

The (well known) case of polarization:

Quantum superpositions: Poincaré-like sphere

The case of an OAM subspace ($|m|=2$):

What is the behavior of a q-plate in the quantum domain?

q-plate effect on single photons

[L. Marrucci, Proc. SPIE 6587, 658708 (2007)]
[E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, E. Santamato, PRL 103, 013601 (2009)]

q-plate quantum effect on single photons

For SAM-OAM eigenstates, nothing new:

$$
\begin{aligned}
& |L\rangle_{\pi}|0\rangle_{o} \Rightarrow \text { (@) } \Rightarrow|R\rangle_{\pi}|+2\rangle_{o} \\
& |R\rangle_{\pi}|0\rangle_{o} \Rightarrow \text { (@) } \Rightarrow|L\rangle_{\pi}|-2\rangle_{o}
\end{aligned}
$$

What happens with quantum superpositions?

q-plate quantum effect on single photons

The q-plate is also expected to preserve the superpositions (it is coherent):

$$
|\psi\rangle=\alpha|L\rangle_{\pi}|0\rangle_{o}+\beta|R\rangle_{\pi}|0\rangle_{o} \leftrightharpoons \text { (@) } \Rightarrow \alpha|R\rangle_{\pi}|+2\rangle_{o}+\beta|L\rangle_{\pi}|-2\rangle_{o}
$$

In particular for a linearly polarized input (H or V):

$$
\begin{aligned}
& |H\rangle_{\pi}|0\rangle_{o}=\frac{1}{\sqrt{2}}\left(|L\rangle_{\pi}+|R\rangle_{\pi}\right)|0\rangle_{o} \Rightarrow(@) \frac{1}{\sqrt{2}}\left(|R\rangle_{\pi}|+2\rangle_{o}+|L\rangle_{\pi}|-2\rangle_{o}\right) \\
& |V\rangle_{\pi}|0\rangle_{o}=\frac{1}{i \sqrt{2}}\left(|L\rangle_{\pi}-|R\rangle_{\pi}\right)|0\rangle_{o} \Rightarrow\left(@ \square \frac{1}{i \sqrt{2}}\left(|R\rangle_{\pi}|+2\rangle_{o}-|L\rangle_{\pi}|-2\rangle_{o}\right)\right.
\end{aligned}
$$

Entangled state of spin and orbital angular momentum of the same photon!

q-plate quantum effect on single photons

Notice: this single-photon entanglement is not a "non-local" property and can be also understood classically

$$
\frac{1}{\sqrt{2}}\left(|R\rangle_{\pi}|+2\rangle_{o}+|L\rangle_{\pi}|-2\rangle_{o}\right)=
$$

A non-separable polarization - spatial mode distribution

Still interesting for quantum information protocols and for making some fundamental tests on quantum mechanics

q-plate effect on single photons: experiment

q-plate effect on single photons: experiment

Quantum tomography of polarization-OAM entangled states

Input H photons

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|R\rangle_{\pi}|+2\rangle_{o}+|L\rangle_{\pi}|-2\rangle_{o}\right)
$$

Input V photons

$$
|\psi\rangle=\frac{1}{\sqrt{2}}\left(|R\rangle_{\pi}|+2\rangle_{o}-|L\rangle_{\pi}|-2\rangle_{o}\right)
$$

q-plate quantum effect: what can we do with it?

A "quantum interface":

Quantum information transfer SAM \leftrightarrow OAM

[E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, et al., Phys. Rev. Lett. 103, 013601 (2009)]
[E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, et al., Opt. Express 17, 18745-18759 (2009)]

Quantum information transfer SAM \leftrightarrow OAM

1) $S A M \rightarrow$ OAM

Arbitrary polarization qubit: $\quad|\psi\rangle_{\pi}=|\psi\rangle_{\pi}|0\rangle_{o}=\left(\alpha|L\rangle_{\pi}+\beta|R\rangle_{\pi}\right)|0\rangle_{o}$
q-plate effect:

\Rightarrow

$$
\alpha|R\rangle_{\pi}|+2\rangle_{o}+\beta|L\rangle_{\pi}|-2\rangle_{o}
$$

H polarizer:

$$
\Rightarrow \frac{1}{\sqrt{2}}|H\rangle_{\pi}\left(\alpha|+2\rangle_{o}+\beta|-2\rangle_{o}\right)=\frac{1}{\sqrt{2}}|H\rangle_{\pi}|\psi\rangle_{o}
$$

Quantum information transfer SAM \leftrightarrow OAM

2) OAM \rightarrow SAM

Arbitrary OAM qubit:

$$
|\psi\rangle_{o}=|H\rangle_{\pi}|\psi\rangle_{o}=|H\rangle_{\pi}\left(\alpha|+2\rangle_{o}+\beta|-2\rangle_{o}\right)
$$

q-plate effect:

$$
\Rightarrow \frac{\alpha}{\sqrt{2}}\left(|R\rangle_{\pi}|+4\rangle_{o}+|L\rangle_{\pi}|0\rangle_{o}\right)+\frac{\beta}{\sqrt{2}}\left(|R\rangle_{\pi}|0\rangle_{o}+|L\rangle_{\pi}|-4\rangle_{o}\right)
$$

Coupling to single mode fiber:

$$
\Rightarrow \frac{1}{\sqrt{2}}\left(\alpha|L\rangle_{\pi}+\beta|R\rangle_{\pi}\right)|0\rangle_{o}=\frac{1}{\sqrt{2}}|\psi\rangle_{\pi}|0\rangle_{o}
$$

Quantum information transfer SAM \leftrightarrow OAM: the experiment

[E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, et al., Opt. Express 17, 18745-18759 (2009)]

Quantum information transfer SAM \leftrightarrow OAM: the experiment

Poincaré sphere state reconstructions

SAM \rightarrow OAM

OAM \rightarrow SAM

Quantum information transfer SAM \leftrightarrow OAM: the experiment

Typical quantum tomography results (SAM \rightarrow OAM):

Quantum information transfer SAM \leftrightarrow OAM: back and forth

[E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, et al., Opt. Express 17, 18745-18759 (2009)]

Quantum information transfer SAM \leftrightarrow OAM: back and forth

Quantum information transfer SAM \leftrightarrow OAM: cascaded transfer

[E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, et al., Opt. Express 17, 18745-18759 (2009)]

Quantum information transfer SAM \leftrightarrow OAM: cascaded transfer

SAM \rightarrow OAM (subspace ± 4)

Thus far only probabilistic (lossy) transfer, with 50% success probability. Can we do better?

Coherent unitary mapping SAM \leftrightarrow OAM (or determistic reversible quantum information transfer)

[E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, et al., Opt. Express 17, 18745-18759 (2009)]
[E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, E. Santamato, PRA 81, 053813 (2010)]

Coherent unitary mapping SAM \leftrightarrow OAM

Yes: reversible and deterministic transfer is possible (ideally 100\% success probability) :

Sagnac interferometer with PBS input/output and Dove prism (DP)

This scheme has not been tested yet in the single photon regime...
... but we did it in the (equivalent) classical regime

Coherent unitary mapping SAM \leftrightarrow OAM

A 3D version of the setup:

[E. Karimi, S. Slussarenko, B. Piccirillo, L. Marrucci, E. Santamato, PRA 81, 053813 (2010)]

Coherent unitary mapping SAM \leftrightarrow OAM

Experimental results (output mode images and interference patterns):

All OAM states on the OAM Poincaré-like sphere can be reproduced using polarization control only.

Coherent unitary mapping SAM \leftrightarrow OAM

A different (closed) path on the Poincaré sphere:

Coherent unitary mapping SAM \leftrightarrow OAM

Yet another path:

Coherent unitary mapping SAM \leftrightarrow OAM

Pancharatnam geometric phase resulting in the closed paths also transferred:

Single photon: not uniquely quantum effects (just like classical optics, but at lower intensity)

We need to test the case of two (or more) photons for having truly quantum correlation effects

Generating a 2-photon quantum state with OAM correlations

[E. Nagali, F. Sciarrino, F. De Martini, L. Marrucci, B. Piccirillo, E. Karimi, E. Santamato, PRL 103, 013601 (2009)]

2-photon quantum correlations in OAM

Consider 2 photons with orthogonal linear polarizations H, V :

$$
|\psi\rangle=|H\rangle_{1}|V\rangle_{2}
$$

Same state in the circular-polarization basis:

$$
\text { For identical photons: } \quad|\psi\rangle=\frac{1}{i \sqrt{2}}(|L\rangle|L\rangle-|R\rangle|R\rangle) \quad \begin{gathered}
\begin{array}{c}
\text { 2-photon } \\
\text { quantum } \\
\text { interference }
\end{array}
\end{gathered}
$$

When identical, the two photons must always have the same polarization handedness: quantum correlations!

2-photon quantum correlations in OAM

SAM \rightarrow OAM

$$
|\psi\rangle=\frac{1}{i \sqrt{2}}(|+2\rangle|+2\rangle-|-2\rangle|-2\rangle)
$$

Obtained a 2-photon state with OAM quantum correlations!

How to verify?

Photons "separator" (introducing a delay)

There should be no coincidences when the photons are identical

2-photon quantum correlations in OAM

2-photon quantum correlations in OAM

Verifying coalescence enhancement:

2-photon quantum correlations in OAM

$\begin{aligned} & \begin{array}{l}\text { Coherence } \\ \text { check: }\end{array}\end{aligned}|\psi\rangle=\frac{1}{i \sqrt{2}}(|+2\rangle|+2\rangle-|-2\rangle|-2\rangle)=|h\rangle|v\rangle=\frac{1}{\sqrt{2}}(|a\rangle|a\rangle-|d\rangle|d\rangle)$

Quantum information transfer: some examples of applications

Hybrid OAM - SAM entanglement and quantum contextuality tests

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, E. Santamato, PRA 82, 022115 (2010)

Hybrid OAM - SAM entanglement and quantum contextuality tests

E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, E.

Santamato, PRA 82, 022115 (2010)

Quantum cloning of OAM qubits and SAM - OAM qudits

LETTERS

PUBLISHED ONLINE: 22 NOVEMBER 2009 | DOO: 10.1038/NPHOTON.2009.214
nature
photonics

Optimal quantum cloning of orbital angular momentum photon qubits through Hong-Ou-Mandel coalescence

Eleonora Nagali', Linda Sansoni', Fabio Sciarrino ${ }^{1,2 \star}$, Francesco De Martini ${ }^{1,3}$, Lorenzo Marrucci ${ }^{4,5 \star}$, Bruno Piccirillo ${ }^{4,6}$, Ebrahim Karimi ${ }^{4}$ and Enrico Santamato ${ }^{4,6}$

Experimental Optimal Cloning of Four-Dimensional Quantum States of Photons
E. Nagali, ${ }^{1}$ D. Giovannini, ${ }^{1}$ L. Marrucci,,${ }^{2,3}$ S. Slussarenko, ${ }^{2}$ E. Santamato, ${ }^{2}$ and F. Sciarrino ${ }^{1,4, *}$

The next step:

Moving further up in the photon space dimensionality

A single-beam universal quantum gate in SAM - OAM space:

Main idea: to exploit OAM - radial profile correlations arising in free propagation

A"q-box":

The complete device:

Controlling a higher-dimensional OAM subspace with a single q-plate

m

[S. Slussarenko, E. Karimi, B. Piccirillo, L. Marrucci, E. Santamato, JOSA A 28, 61-65 (2011)]

Acknowledgments

Naples group:

Rome group: (OAM line)

Current sponsor:

