From qubit to qudit with hybrid OAM-polarization quantum state

Fabio Sciarrino

Dipartimento di Fisica, Sapienza Università di Roma

Istituto Nazionale di Ottica, CNR
http:
quantumoptics.phys.uniroma1.it

High dimensional systems:
Orbital angular momentum of light

Integrated photonic quantum circuits

Hyper-entanglement generation and manipulation

Amplification of optical quantum states

Quantum Optics Group

Dipartimento di Fisica, Sapienza Università di Roma

http: \backslash quantumoptics.phys.uniroma1.it

Quantum information

Theory of Information

$+$

Quantum Mechanics
Quantum bit (qubit): quantum state in $\boldsymbol{H}_{\mathbf{2}}$
Challenges: from basic sciences to emerging quantum technologies
(1) Fundamental physics:

Shed light on the boundary between classical and quantum world
Exploiting quantum parallelism to simulate quantum random many-body systems
(1) New cryptographic protocols, quantum imaging, quantum metrology
(2) Quantum computing, quantum simulation

Entanalement: superpositi
many s $\quad \begin{gathered}\text { Entanglement: new resource to } \\ \text { elaborate information }\end{gathered} \quad \begin{aligned} & \text { istic trait } \\ & \text { echanics }\end{aligned}$
E. Schrödinger

Optical implementation

Quantum optics: excellent experimental test bench for various novel concepts introduced within the framework of the QI theory

$$
\alpha|0\rangle+\beta|1\rangle \longleftrightarrow \alpha|H\rangle+\beta|V\rangle
$$

Polarization state of a single photon

Entangled states:

Characterization

Applications

- Non-locality tests
- Quantum cryptography
- Quantum teleportation
- Quantum metrology
- Quantum computation
- Simulate quantum random many-body systems

Outline

- Introduction to quantum information

I- OAM qubit

- Qubit implementation via 2-dimensional subspace of OAM
- Quantum transferrer between polarization and OAM
- Generation of hybrid OAM-polarization entangled states
- Resilience of OAM qubit

II - Higher dimensional quantum systems

- Realization of π - OAM ququart
- Quantum cryptography based on contextuality

The orbital angular momentum of light for quantum information processing

Quantum information \square qubit

Different degrees of freedom: \qquad Polarization

- Linear Momentum

O Orbital Angular Momentum
○

The orbital angular momentum of light for quantum information processing

Quantum information \square qubit

Different degrees of freedom:

- Polarization
- Linear Momentum

Orbital Angular Momentum ○

Orbital Angular Momentum (OAM)

Degree of freedom of light associated with rotationally structured transverse spatial modes
$\mathrm{OAM} \Rightarrow \begin{gathered}\text { Infinite-dimensional } \\ \text { degree of freedom }\end{gathered}$

Qudit (d>2)

Multi-level quantum system

The orbital angular momentum of light

$$
\left|d_{R, L}\right\rangle=\frac{1}{\sqrt{2}}(|+2\rangle \pm i|-2\rangle) \quad\left|d_{ \pm\rangle}=\frac{1}{\sqrt{2}}(|+2\rangle \pm|-2\rangle) \quad \text { Polarization } \quad\right. \text { OAM }
$$

The q-plate device (1/2)

The q-plate thickness is chosen in order to have half-wave retardation depending on the working wavelength.

The q-plate device (2/2)

Input State

Spin:	$S_{z}=-\hbar$	$q-$ plate
Orbital:	$L_{z}=0$	

TEM_{00} with right circular polarization

Spin:	$S_{z}=+\hbar$	$S_{z}=-\hbar$
Orbital:	$L_{z}=0$	$L_{z}=+2 \hbar q$

TEM_{00} with left circular polarization

Qplate in the quantum regime

$$
\begin{array}{rll}
|L\rangle_{\pi}|m\rangle_{o} & \xrightarrow{Q P} & |R\rangle_{\pi}|m+2\rangle_{o} \\
|R\rangle_{\pi}|m\rangle_{o} & \xrightarrow{Q P} & |L\rangle_{\pi}|m-2\rangle_{o}
\end{array}
$$

Unitary evolution on a generic input state

$$
\alpha|L\rangle_{\pi}|m\rangle_{o}+\beta|R\rangle_{\pi}|m\rangle_{o} \xrightarrow{Q P} \alpha|R\rangle_{\pi}|m+2\rangle_{o}+\beta|L\rangle_{\pi}|m-2\rangle_{o}
$$

- The qplate: a quantum interface between polarization and OAM
- Single photon entanglement between polarization and OAM
${ }^{\wedge}$ Quantum transferrer: polarization \longrightarrow OAM
${ }^{2}$ Quantum transferrer: OAM \longrightarrow polarization

Single photon entanglement

The q-plate introduces a quantum correlation between the OAM and the polarization π degree of freedom

$$
\sqrt{2}
$$

Single-photon entanglement

$$
\begin{aligned}
& |H\rangle_{\pi}|0\rangle_{o} \quad \text { QP } \\
& |V\rangle_{\pi}|0\rangle_{o}
\end{aligned} \quad \frac{1}{\sqrt{2}}\left[|L\rangle_{\pi}|-2\rangle_{o_{2}} \pm|R\rangle_{\pi}|+2\rangle_{o_{2}}\right]
$$

$\mathfrak{R}[\rho]$
$\mathfrak{I}[\rho] \quad$ Input State $|H\rangle_{\pi}|0\rangle_{o}$

$$
\begin{aligned}
\rho_{\pi, o_{2}}= & \frac{1}{2}\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
C & =0.95 \pm 0.02
\end{aligned}
$$

Single photon entanglement

The q-plate introduces a quantum correlation between the OAM and the polarization π degree of freedom

$$
』
$$

Single-photon entanglement

$$
\begin{aligned}
& |H\rangle_{\pi}|0\rangle_{o} \\
& |V\rangle_{\pi}|0\rangle_{o}
\end{aligned} \quad \text { QP } \frac{1}{\sqrt{2}}\left[|L\rangle_{\pi}|-2\rangle_{o_{2}} \pm|R\rangle_{\pi}|+2\rangle_{o_{2}}\right]
$$

$\mathfrak{R}[\rho]$

$\mathfrak{J}[\rho] \quad$ Input State $|V\rangle_{\pi}|0\rangle_{o}$

$$
\begin{aligned}
\rho_{\pi, o_{2}} & =\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
C & =0.97 \pm 0.02
\end{aligned}
$$

Single photon entanglement: Quantum state characterization

One photon-2 qubits

- 1 qubit encoded in polarization
- 1 qubit encoded in OAM

Measurement of 2 qubits

- Holograms:

Measurement of OAM qubit

- Waveplates + PBS:

Measurement of polarization qubit

Characterization of 2 qubits statets:

- Quantum state tomography
(analogue for a 2×2 space of the measurement of Stokes parameters)
- Reconstruction of the density matrix

Quantum transferrers $\pi \rightarrow$ OAM

Transferrer $\boldsymbol{\pi} \rightarrow \mathbf{0}_{2}$

$$
\left(\alpha|R\rangle_{\pi}+\beta|L\rangle_{\pi}\right)|0\rangle_{o_{2}}
$$

$$
\alpha|L\rangle_{\pi}|-2\rangle_{o_{2}}+\beta|R\rangle_{\pi}|+2\rangle_{o_{2}}
$$

Single qubit tomography

$$
F=(98 \pm 1) \%
$$

Qubit 1 Qubit π

$$
|H\rangle_{\pi}\left(\alpha|-2\rangle_{o_{2}}+\beta|+2\rangle_{o_{2}}\right)
$$

Quantum transferrers OAM $\rightarrow \pi$

Transferrer $\mathbf{0}_{2} \rightarrow \pi$

$$
\begin{gathered}
|H\rangle_{\pi}|\varphi\rangle_{o_{2}} \\
\qquad|H\rangle_{\pi}\left(\alpha|-2\rangle_{o_{2}}+\beta|+2\rangle_{o_{2}}\right)
\end{gathered}
$$

\& qplate $\alpha|R\rangle_{\pi}|0\rangle_{o}+\beta|L\rangle_{\pi}|0\rangle_{o}$
$\alpha|R\rangle_{\pi}|-4\rangle_{o_{4}}+\beta|L\rangle_{\pi}|+4\rangle_{o_{4}}$

1. Single mode fiber

Probability of success: 50%

Qubit $\boldsymbol{\pi} \quad$ Qubit 1

$$
\left(\alpha|R\rangle_{\pi}+\beta|L\rangle_{\pi}\right)|0\rangle_{o_{2}}
$$

Hybrid entanglement between π and OAM

Hybrid entangled states: entanglement between different degrees of freedom of a particle pair

Hybrid entanglement between π and OAM

Decoherence of OAM qubit for partial transmission

Free-space information transfer using

 light beams carrying orbital angular momentumGraham Gibson, Johannes Courtial, Miles J. Padgett Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, Scotland g.gibson@physics.gla.ac.uk

Mikhail Vasnetsov, Valeriy Pas'ko
Institute of Physics, 03028 Kiev, Ukraine
Stephen M. Barnett, Sonja Franke-Arnold
Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 ONG,

PRL 94, 153901 (2005) PHYSICAL REVIEW LETTERS $\quad \begin{gathered}\text { week ending } \\ 22\end{gathered}$

Atmospheric Turbulence and Orbital Angular Momentum of Single Photons for Optical Communication

C. Paterson*

The Blackett Laboratory, Imperial College London, London SW7 2BW, United Kingdom
(Received 8 November 2004; published 18 April 2005)

OPTICS LETTERS / Vol. 34, No. 2 / January 15, 2009

Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum

Glenn A. Tyler ${ }^{1}$ and Robert W. Boyd ${ }^{2, *}$
The Optical Sciences Company, P.O. Box 25309, Anaheim, California 92825, USA ${ }^{2}$ Department of Physics and Astronomy, The Institute of Optics, University of Rochester, Rochester, New York 14627, USA
*Corresponding author: boyd@optics.rochester.edu

PHYSICAL REVIEW A 83, 042338 (2011)

Resilience of orbital-angular-momentum photonic qubits and effects on hybrid entanglement
Daniele Giovannini, ${ }^{1}$ Eleonora Nagali, ${ }^{1}$ Lorenzo Marrucci, ${ }^{2,3}$ and Fabio Sciarrino ${ }^{1,4,{ }^{*}}$
${ }^{1}$ Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185, Italy
${ }^{2}$ Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
${ }^{3}$ CNR-SPIN, Complesso Universitario di Monte S. Angelo, I-80126 Napoli, Italy
${ }^{4}$ Istituto Nazionale di Ottica (INO-CNR), Largo E. Fermi 6, Florence I-50125, Italy
(Received 17 November 2010; published 29 April 2011)

Resilience of OAM qubit (1/4)

How a partial transmission does affect the transmission of information?
Obstructions:
 obstruction

Direction of propagation

Resilience of OAM qubit (2/4)

Planar transverse obstruction:

Spread of the OAM values

(a) $T=1$

(c) $T=0.28$

(b) $T=0.5$

(d) $T=0.05$

FIG. 3. (Color online) Spread in the measurement probabilities of OAM modes with $\ell^{\prime}=-2, \ldots, 12$ for various positions x_{0} of a $B\left(x_{0}\right)$ aperture inserted into the path of an $\ell=2$ beam (i.e., for decreasing values of transmittance T).

Resilience of OAM qubit (3/4)

Initial qubit state

Unchanged state component
Orthogonal state compoment in the o_{2} subspace

Probability to remain in the encoding subspace

$$
P_{o_{2}}=\left|\kappa_{\psi}\right|^{2}+\left|\kappa_{\psi^{\perp}}\right|^{2}
$$

$$
|\psi\rangle=|H\rangle_{\pi}\left(\alpha|-2\rangle_{o_{2}}+\beta|+2\rangle_{o_{2}}\right)
$$

obstruction

$$
\begin{aligned}
\kappa_{\psi} & =\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y A^{*}(x, y) A^{\prime}(x, y) \\
\kappa_{\psi^{\perp}} & =\int_{-\infty}^{\infty} d x \int_{-\infty}^{\infty} d y\left[A^{\perp}(x, y)\right]^{*} A^{\prime}(x, y)
\end{aligned}
$$

Fidelity of state transmission

$$
F=P(\psi) /\left[P(\psi)+P\left(\psi^{\perp}\right)\right]
$$

Resilience of OAM qubit (4/4)

(a)

(b)
(b)

(b)

Average values over six states belonging to 3 mutually unbiased basis

(a)

$\begin{array}{ll}\text { (a) } B\left(x_{0}\right) & \text { (b) } \Pi\left(r_{0}\right)\end{array}$

Giovannini, Nagali, Marrucci, and Sciarrino, Phys. Rev. A 83, 042338 (2011)

Resilience of hybrid polarization-OAM entanglement

Giovannini, Nagali, Marrucci, and Sciarrino, Phys. Rev. A 83, 042338 (2011)

The quest for higher quantum dimensionality

- qubit: Hilbert space of dimension 2

- qudit: Hilbert space of dimension d

Quantum systems with $\mathrm{d}>2$ have been proposed as carriers of information in various contexts like quantum cryptography
Volume 88, Number 12 PHYSICAL REVIEW LETTERS 25 March 2002

Optimal Eavesdropping in Cryptography with Three-Dimensional Quantum States
D. BruB ${ }^{1}$ and C. Macchiavello ${ }^{2}$
${ }^{1}$ Institua für Theoretische Physik, Universität Hannover, 30167 Hannover, Germany
${ }^{2}$ Dipartimento di Fisica "A. Volta" and INFM-Unità di Pavia, Via Bassi 6, 27100 Pavia, Laty
(Received 27 June 2001; published 8 March 2002)
We study optimal eavesdropping in quantum cryptography with three-dimensional systems, and show that this scheme is more secure against symmetric attacks than protocols using two-dimensional states. We generalize the according eavesdropping transformation to arbitrary dimensions, and discuss the connection with optimal quantum cloning.
-More robust against isotropic noise
'Higher transmission rates through communication channels
${ }^{\wedge}$ Increase the noise threshold that quantum key distribution protocols can tolerate

Violation of local realism for qudits expected to grow with d

Violations of Local Realism by Two Entangled N-Dimensional Systems Are Stronger than for Two Qubits

> Dagomir Kaszlikowski, ${ }^{1}$ Piotr Gnaciński, ${ }^{1}$ Marek Źukowski, ${ }^{1,2}$ Wieslaw Miklaszewski, ${ }^{1}$ and Anton Zeilinger ${ }^{2}$
> ${ }^{1}$ Instytut Fizyki Teoretycznej i Astrofizyki Uniwersytet Gdariski, PL-80-952 Gdarisk, Poland
> ${ }^{2}$ Institut fïr Experimentalphysik, Univesität Wien, Boltzmanngasse 5, A-1090 Wien, Austria (Received 15 May 2000)
> $\rho_{N}\left(F_{N}\right)=F_{N} \rho_{\text {noise }}+\left(1-F_{N}\right)\left|\Psi_{\max }^{N}\right\rangle\left\langle\Psi_{\max }^{N}\right|$
$F_{N}^{\max }$ is the threshold maximal "noise fraction" for which
 the state still does not allow a local realistic model

Bell Inequalities for Arbitrarily High-Dimensional Systems

[^0]
Closing the detection loophole in Bell's test

Higher violation of Bell's inequalities

Detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum system of dimension larger than two.

For four dimensional systems the detection efficiency can be lowered to 61.8%.

PRL 104, 060401 (2010)	PHYSICAL REVIEW	LETTERS	$\left.\begin{array}{l}\text { week ending } \\ \hline\end{array}\right)$

Closing the Detection Loophole in Bell Experiments Using Qudits

Tamás Vértesi, ${ }^{1}$ Stefano Pironio, ${ }^{2}$ and Nicolas Brunner ${ }^{3}$
${ }^{1}$ Institute of Nuclear Research of the Hungarian Academy of Sciences, H-4001 Debrecen, P.O. Box 51, Hungary
${ }^{2}$ Group of Applied Physics, University of Geneva, CH-1211 Geneva 4, Switzerland
${ }^{3}$ H.H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 ITL, United Kingdom (Received 8 October 2009; published 11 February 2010)

We show that the detection efficiencies required for closing the detection loophole in Bell tests can be significantly lowered using quantum systems of dimension larger than two. We introduce a series of asymmetric Bell tests for which an efficiency arbitrarily close to $1 / N$ can be tolerated using N-dimensional systems, and a symmetric Bell test for which the efficiency can be lowered down to 61.8% using four-dimensional systems. Experimental perspectives for our schemes look promising considering recent progress in atom-photon entanglement and in photon hyperentanglement.

Higher dimensionality based on OAM

The OAM is a natural candidate for the experimental implementation of single-photon d-dimensional states.

Two possible strategies for qudit implementation
$\rightarrow \mathrm{d}$-dimensional subspace of OAM

$\mathrm{d}=2$

$\mathrm{d}=3$

$\mathrm{d}=2$

d=3

Higher dimensionality based on OAM

The OAM is a natural candidate for the experimental implementation of single-photon d-dimensional states.

Two possible strategies for qudit implementation
$\rightarrow \mathrm{d}$-dimensional subspace of OAM

$\mathrm{d}=2$

d=3

$\mathrm{d}=2$

$\mathrm{d}=3$
\rightarrow hybrid implementation based on OAM and other degree of freedom

Ququart ($\mathrm{d}=4$) implemented by exploiting polarization and bidimensional subspace of OAM
$\{|1\rangle,|2\rangle,|3\rangle,|4\rangle\} \Longleftrightarrow\{|H,+2\rangle,|H,-2\rangle,|V,+2\rangle,|V,-2\rangle\}$,

Mutually unbiased bases (MUBs) in dimension d

d-dimensional space:
k orthonormal basis are said to be mutually unbiased

$$
\begin{aligned}
& \text { if the basis states }\left|e_{j}^{\beta}\right\rangle \mid \text { satisfy the relation: } \\
& \left|\left\langle e_{i}^{\alpha} \mid e_{j}^{\beta}\right\rangle\right|=\left\{\begin{array}{cl}
\delta_{i j} & \text { if } \alpha=\beta, \\
\frac{1}{\sqrt{d}} & \text { if } \alpha \neq \beta,
\end{array} \text { where } \quad i, j=1, \ldots ., k\right.
\end{aligned}
$$

How many MUBs can one introduce in a given Hilbert space (HS)?

In a d-dimensional HS the number of MUBs can not exceed d+1 (W. K. Wootters, 1989)

If d is a prime number or a prime power, the number of MUBs is $d+1$ (W. K. Wootters, 1989)

Given a composite dimension $\mathrm{d}=\mathrm{d}_{1} \ldots \mathrm{~d}_{\mathrm{N}}$ there will be a number of separable MUBs corresponding to the ones of an Hilbert space with dimension $\min \left\{d_{j}\right\}$ (Wiesnak 2011)

Mutually unbiased bases (MUBs) in dimension d

d	MUBs
2	3
3	4
4	5
6	$? ?$ (at least 3)
7	8

Why working with MUBs?

Experimental quantum tomography of photonic qudits via mutually unbiased basis

G. Lima, ${ }^{1,2, *}$ L. Neves, ${ }^{1,2}$, R. Guzmán,,1,3, E. S. Gómez, ${ }^{1,2}$ W. A. T. Nogueira, ${ }^{1,2}$ A. Delgado, ${ }^{1,2}$ A. Vargas, ${ }^{1,3}$ and C. Saavedra ${ }^{1,2}$ ${ }^{1}$ Center for Optics and Photonics, Universidad de Concepciôn, Casilla 4016, Concepción, Chile
${ }^{2}$ Departamento de Física, Universidad de Concepción, Casilla 160-C, Concepción, Chile ${ }^{3}$ Departamento de Ciencias Fisicas, Universidad de La Frontera, Temaco, Casilla 54-D, Chile
'Corresponding author: glima@udec.el

To recontruct the density matrix of a quantum state in a d-dimensional space, at least ($\mathrm{d}+1$) orthonormal bases are needed to determine the (d-1)(d-1) parameters that describe MUBs - based quantum state tomography requires projection for a minimal number of bases to be performed.

MUBs- quantum cryptography

Realization of -OAM ququart

Generate ququart states (4-dimensional) encoded in a single photon by manipulating the OAM and polarization degrees of freedom

The complete characterization of a ququart state is achieved by defining and measuring five mutually unbiased bases with four states each.

Separable states

Theory		
Ququart States		
	Ququart Logic Bases	$O A M-\pi$
I	\|1)	$\|H,+2\rangle$
	\|2>	$\|H,-2\rangle$
	$\|3\rangle$	$\|V,+2\rangle$
	\|4)	$\|V,-2\rangle$
II	$\frac{1}{2}(\|1\rangle+\|2\rangle+\|3\rangle+\|4\rangle)$	$\|A, h\rangle$
	$\frac{1}{2}(\|1\rangle-\|2\rangle+\|3\rangle-\|4\rangle)$	$\|A, v\rangle$
	$\frac{1}{2}(\|1\rangle+\|2\rangle-\|3\rangle-\|4\rangle)$	$\|D, h\rangle$
	$\frac{1}{2}(\|1\rangle-\|2\rangle-\|3\rangle+\|4\rangle)$	$\|D, v\rangle$
III	$\frac{1}{2}(\|1\rangle+i\|2\rangle+i\|3\rangle-\|4\rangle)$	$\|R, a\rangle$
	$\frac{1}{2}(\|1\rangle-i\|2\rangle+i\|3\rangle+\|4\rangle)$	$\|R, d\rangle$
	$\frac{1}{2}(\|1\rangle+i\|2\rangle-i\|3\rangle+\|4\rangle)$	$\|L, a\rangle$
	$\frac{1}{2}(\|1\rangle-i\|2\rangle-i\|3\rangle-\|4\rangle)$	$\|L, d\rangle$

Entangled states

Theory		
Ququart States		
	Ququart Logic Bases	$O A M-\pi$
IV	$\begin{aligned} & \frac{1}{2}(\|1\rangle+\|2\rangle+i\|3\rangle-i\|4\rangle) \\ & \frac{1}{2}(\|1\rangle-\|2\rangle+i\|3\rangle+i\|4\rangle) \\ & \frac{1}{2}(\|1\rangle+\|2\rangle-i\|3\rangle+i\|4\rangle) \\ & \frac{1}{2}(\|1\rangle-\|2\rangle-i\|3\rangle-i\|4\rangle) \end{aligned}$	$\begin{aligned} & \frac{1}{\sqrt{2}}(\|R,+2\rangle+\|L,-2\rangle) \\ & \frac{1}{\sqrt{2}}(\|R,+2\rangle-\|L,-2\rangle) \\ & \frac{1}{\sqrt{2}}(\|L,+2\rangle+\|R,-2\rangle) \\ & \frac{1}{\sqrt{2}}(\|L,+2\rangle-\|R,-2\rangle) \end{aligned}$
V	$\begin{aligned} & \hline \frac{1}{2}(\|1\rangle+i\|2\rangle+\|3\rangle-i\|4\rangle) \\ & \frac{1}{2}(\|1\rangle+i\|2\rangle-\|3\rangle+i\|4\rangle) \\ & \frac{1}{2}(\|1\rangle-i\|2\rangle+\|3\rangle+i\|4\rangle) \\ & \frac{1}{2}(\|1\rangle-i\|2\rangle-\|3\rangle-i\|4\rangle) \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{\sqrt{2}}(\|H, a\rangle+\|V, d\rangle) \\ & \frac{1}{\sqrt{2}}(\|H, a\rangle-\|V, d\rangle) \\ & \frac{1}{\sqrt{2}}(\|H, d\rangle+\|V, a\rangle) \\ & \frac{1}{\sqrt{2}}(\|H, d\rangle-\|V, a\rangle) \end{aligned}$

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, Phys. Rev. A 81, 052317 (2010).

Realization of -OAM ququart

Generate ququart states (4-dimensional) encoded in a single photon by manipulating the OAM and polarization degrees of freedom

Separable states of polarization and OAM

Entangled states of polarization and OAM

Bases: IV - V

Analysis
Bases : I- II - III

E. Nagali, L. Sansoni, L. Marrucci, E. Santamato, and F. Sciarrino, Phys. Rev. A 81, 052317 (2010).

Realization of $\boldsymbol{\pi}$-OAM ququart

- By combining qplates, waveplates, PBS, single mode fibers all the states belonging to the mutually unbiased basis can be generated and characterized

Preparation				$F_{\text {exp }}$
α	β	γ	δ	
-45	0	0	0	$(99.9 \pm 0.4) \%$
+45	0	0	0	$(94.6 \pm 0.4) \%$
-45	0	0	+45	$(99.9 \pm 0.4) \%$
+45	0	0	+45	$(95.8 \pm 0.4) \%$
0	0	0	+22.5	$(95.0 \pm 0.4) \%$
0	+45	0	+22.5	$(89.2 \pm 0.4) \%$
0	0	0	-22.5	$(97.7 \pm 0.4) \%$
+45	0	0	-22.5	$(95.0 \pm 0.4) \%$
0	-22.5	+45	0	$(96.3 \pm 0.4) \%$
0	+22.5	+45	0	$(95.7 \pm 0.4) \%$
0	-22.5	-45	+45	$(94.1 \pm 0.4) \%$
0	+22.5	-45	+45	$(94.5 \pm 0.4) \%$
0	0	-	-	$(84.8 \pm 0.4) \%$
0	+45	-	-	$(91.4 \pm 0.4) \%$
0	0	-	+45	$(89.4 \pm 0.4) \%$
0	+45	-	+45	$(88.4 \pm 0.4) \%$
0	+22.5	-	-	$(89.7 \pm 0.4) \%$
0	-22.5	-	-	$(86.1 \pm 0.4) \%$
0	+22.5	-	+45	$(88.4 \pm 0.4) \%$
0	-22.5	-	+45	$(92.0 \pm 0.4) \%$

Tests on the Foundations of Quantum Mechanics

- Can Quantum Mechanics theory be completed by a more general theory which provides a complete description of reality (Local Hidden Variables)?

Tests on the Foundations of Quantum Mechanics

- Can Quantum Mechanics theory be completed by a more general theory which provides a complete description of reality (Local Hidden Variables)?
- Entanglement: usefull resource to test Bell's inequalities satisfied by LHV

$$
\begin{aligned}
& \quad\left|\left\langle A_{0} B_{0}\right\rangle+\left\langle A_{0} B_{1}\right\rangle+\left\langle A_{1} B_{0}\right\rangle-\left\langle A_{1} B_{1}\right\rangle\right| \leq 2 \\
& \left|\psi^{-}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle) \\
& +1
\end{aligned}
$$

Local Hidden Variables Non-contextual theory

- Other approach to test local hidden variables...

It exploits the concept of contextuality
A result is non-contextual if is independent of the context of observation, that is, of which other compatible observables are jointly measured.

Compatibility: compatible observables are those which can be measured "without disturbing each other"
(in $\mathrm{QM} \leftrightarrow$ commutating observables).

Local Hidden Variables Non-contextual theory

- Other approach to test local hidden variables...

It exploits the concept of contextuality
A result is non-contextual if is independent of the context of observation, that is, of which other compatible observables are jointly measured.

Compatibility: compatible observables are those which can be measured "without disturbing each other"
(in QM \leftrightarrow commutating observables).
LOCAL HIDDEN VARIABLE (LHV) THEORIES: pre-assigned value for the observables

Result is independent of context of observation
LHV non-contextual theory

Quantum contextuality: Kochen-Specker theorem

For any physical system, in any state, there exist a finite set of observables such that it is impossible to pre-assign them noncontextual results respecting the predictions of QM.
(any physical system in which observables can belong to more than one context, i.e., those represented in QM by a Hilbert space of dimension $d>2$)

A result is noncontextual if is independent of which other compatible observables are jointly measured.

E. P. Specker, A. Specker, and S. Kochen, Zürich, early 1963.

Higher quantum dimensionality to test contextuality

4 dimensional system:

Logic ququart basis

$$
\begin{gathered}
\{|1\rangle,|2\rangle,|3\rangle,|4\rangle\} \\
\alpha|1\rangle+\beta|2\rangle+\gamma|3\rangle+\delta|4\rangle \\
(\alpha, \beta, \gamma, \delta)
\end{gathered}
$$

18 states
Grouped in 9 basis

$$
v_{45}=(0,1,0,-1)
$$

Each state belongs to two different basis
(not possible for dimension 2)

Higher quantum dimensionality to test contextuality

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents an elementary yes-no test (described in QM by the projection operator onto the corresponding normalized vector; for instance, 111-1 represents the projector onto the vector $(1,1,1,-1) / 2)$.

Higher quantum dimensionality to test contextuality

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents an elementary yes-no test (described in QM by the projection operator onto the corresponding normalized vector; for instance, 111-1 represents the projector onto the vector $(1,1,1,-1) / 2)$.
- Each column contains four orthogonal four-dimensional vectors, so the corresponding projectors commute (i.e., represent compatible tests) and sum the identity. Therefore, in any assignment of "yes" (1) or "no" (0) answers that satisfies the predictions of QM, each column must have assigned the answer "yes" to one and only one vector.

Higher quantum dimensionality to test contextuality

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- Each vector represents an elementary yes-no test (described in QM by the projection operator onto the corresponding normalized vector; for instance, 111-1 represents the projector onto the vector $(1,1,1,-1) / 2)$.
- Each column contains four orthogonal four-dimensional vectors, so the corresponding projectors commute (i.e., represent compatible tests) and sum the identity. Therefore, in any assignment of "yes" (1) or "no" (0) answers that satisfies the predictions of QM, each column must have assigned the answer "yes" to one and only one vector.

Higher quantum dimensionality to test contextuality

1000	1111	1111	1000	1001	1001	$111-1$	$111-1$	$100-1$
0100	$11-1-1$	$1-11-1$	0010	0100	$1-11-1$	$1-100$	0101	0110
0011	$1-100$	$10-10$	0101	0010	$11-1-1$	0011	$10-10$	$11-11$
$001-1$	$001-1$	$010-1$	$010-1$	$100-1$	0110	$11-11$	$1-111$	$1-111$

- A noncontextual assignment is impossible: Each vector appears in two columns, so the total number of "yes" answers must be an even number, but the total number of "yes" answers must also be equal to the number of columns, which is an odd number.

Assign to each observable a defined value (non-contextual theory)

CONTRADICTION: QUANTUM CONTEXTUALITY!

Quantum cryptography protected by Kochen-Specker contextuality

- Quantum cryptography:

Quantum key distribution (QKD)
Exploits transmission of qubit on two mutually unbiased basis

- QKD + Quantum contextuality

Extrasecurity to check that the experimental apparatus behaves in a purely quantum mechanical way

Classically "mimicking" BB84 QKD protocol

red eyeclass
urn

Balltyp	red	green
Typ 1	0	0
Typ 2	0	1
Typ 3	1	0
Typ 4	1	1

Part of the data discarded (50\%)

HOW CAN WE TEST THE QKD APPARATUS TO CHECK THAT IT IS
TRULY QUANTUM ?
K. Svozil, Am. J. Phys. 74, 800 (2006).

Quantym cryptography certified by quantum contextuality

Rectilinear Basis
Diagonal Basis
BB84- QKD

KS - QKD
Svozil, arXiv:0903.0231

- 9 basis with four states each
- probability that Alice and Bob use the same basis $\mathrm{p}=1 / 9$
- 2 bit are exchanged
- Quantumness of apparata can be directly checked
- Tolerate a communication noise of about 6.5\%

Higher quantum dimensionality via hybrid polarization-OAM ququart

$$
\alpha|1\rangle+\beta|2\rangle+\gamma|3\rangle+\delta|4\rangle
$$

optical implementation
$\alpha|H,+1\rangle+\beta|H, 1-1\rangle+\gamma|V,+1\rangle+\delta|V,-1\rangle$

Basis	Class	Example		
		Set	Logic	π-OAM
$\begin{gathered} I-I I \\ I I I-V I I I \end{gathered}$	P_{2}	I	$\begin{gathered} 1000 \\ 0100 \\ 0011 \\ 001-1 \end{gathered}$	$\begin{gathered} \|H,+1\rangle \\ \|H,-1\rangle \\ \|V, h\rangle \\ \|V, v\rangle \end{gathered}$
V	B_{2}	V	$\begin{array}{\|c\|} \hline 1-111 \\ 100-1 \\ 0110 \\ \hline \end{array}$	$\begin{gathered} \frac{1}{\sqrt{2}}(\|H, v\rangle+\|V, h\rangle) \\ \frac{1}{\sqrt{2}}(\|H,+1\rangle-\|V,-1\rangle) \\ \frac{1}{\sqrt{2}}(\|H,-1\rangle+\|V,+1\rangle) \end{gathered}$
$I X$	M_{1}	IX	$\begin{array}{\|c\|} \hline 0001 \\ 0110 \\ 1000 \\ 01-10 \end{array}$	$\begin{gathered} \|V,-1\rangle \\ \frac{1}{\sqrt{2}}(\|H,-1\rangle+\|V,+1\rangle) \\ \|H,+1\rangle \\ \frac{1}{\sqrt{2}}(\|H,-1\rangle-\|V,+1\rangle) \end{gathered}$
$I V-V I-V I I$	M_{2}	VII	$\begin{gathered} 111-1 \\ 1-100 \\ 0011 \\ 11-11 \end{gathered}$	$\begin{gathered} \frac{1}{\sqrt{2}}(\|A,+1\rangle+\|D,-1\rangle) \\ \|H, v\rangle \\ \|V, h\rangle \\ \frac{1}{\sqrt{2}}(\|D,+1\rangle+\|A,-1\rangle) \end{gathered}$

Cabello, D'Ambrosio, Nagali, Sciarrino, in preparation

Optical schemes for polarization-OAM implementation

Finally... optical schemes (v 0.1) not straightforward...

Cabello, D'Ambrosio, Nagali, Sciarrino, in preparation

Conclusions and perspectives

- The qplate is a reliable interface between OAM and polarization
> Qubit transferrer from polarization to OAM and viceversa
> Resilience to partial transmission
> Experimental implementation and manipulation of ququart states
> NEXT STEPS: Higher dimensionality for fundamental test and protocols of quantum information

http:
quantumoptics.phys.uniroma1.it

 www.phorbitech.eu

[^0]: Daniel Collins, ${ }^{1,2}$ Nicolas Gisin, ${ }^{3}$ Noah Linden, ${ }^{4}$ Serge Massar, ${ }^{5}$ and Sandu Popescu ${ }^{1,2}$
 ${ }^{1}$ H. H. Wils Physics Labonatoys University of Bristol, Typdall Arentee, Brinol BSS ITL, Unihed Kingdom ${ }^{2}$ BRMS, Hewleff-Pachard Laboratories, Stoke Gifford, Bristol BSI2 60Z, Unifed Kingdom ${ }^{3}$ Grapp of Appled Physics, Univerrity of Genewa, 20 , rue de IEcole-de-Medecine, CH-12/I Geneva 4, Switzerkand
 ${ }^{4}$ Department of Mashematics, Brisol Universiy, University Walk, Briswo BS8 /TW Unikd Kingdom
 Service de Physique Theorique, Universite Libve de Brutelles, CP 225 , Bowlevard du Triomphe, B1050 Bruvelles, Belghum (Recerved 23 July 2001, poblished 10 Jannary 2002)

