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Plan for the Lectures

Lecture I: Supersymmetry Introduction
1 Why supersymmetry?
2 Basics of Supersymmetry
3 R Symmetries (a theme in these lectures)
4 SUSY soft breakings
5 MSSM: counting of parameters
6 MSSM: features
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Lecture II: Microscopic supersymmetry: supersymmetry
breaking

1 Nelson-Seiberg Theorem (R symmetries)
2 O’Raifeartaigh Models
3 The Goldstino
4 Flat directions/pseudomoduli: Coleman-Weinberg vacuum

and finding the vacuum.
5 Integrating out pseudomoduli (if time) – non-linear

lagrangians.

Michael Dine Supersymmetry and the LHC



Lecture III: Dynamical (Metastable) Supersymmetry
Breaking

1 Non-renormalization theorems
2 SUSY QCD/Gaugino Condensation
3 Generalizing Gaugino condensation
4 A simple – dumb – approach to Supersymmetry Breaking:

Retrofitting.
5 Other types of metastable breaking: ISS (Intriligator, Shih

and Seiberg)
6 Retrofitting – a second look. Why it might be right

(cosmological constant!).
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Lecture IV: Mediating Supersymmetry Breaking
1 Gravity Mediation
2 Minimal Gauge Mediation (one – really three) parameter

description of the MSSM.
3 General Gauge Mediation
4 Assessment.
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Supersymmetry

Virtues
1 Hierarchy Problem
2 Unification
3 Dark matter
4 Presence in string theory (often)
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Hierarchy: Two Aspects

1 Cancelation of quadratic divergences
2 Non-renormalization theorems (holomorphy of gauge

couplings and superpotential): if supersymmetry unbroken
classically, unbroken to all orders of perturbation theory,
but can be broken beyond: exponentially large hierarchies.
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But reasons for skepticism:
1 Little hierarchy
2 Unification: why generic (grand unified models; string

theory?)
3 Hierarchy: landscape (light higgs anthropic?)
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Reasons for (renewed) optimism:
1 The study of metastable susy breaking (ISS) has opened

rich possibilities for model building; no longer the
complexity of earlier models for dynamical supersymmetry
breaking.

2 Supersymmetry, even in a landscape, can account for
hierarchies, as in traditional thinking about naturalness

(e−
8π2

g2 )
3 Supersymmetry, in a landscape, accounts for stability – i.e.

the very existence of (metastable) states.
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Supersymmetry Review

Basic algebra:

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ.
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Superspace

It is convenient to introduce an enlargement of space-time,
known as superspace, to describe supersymmetric systems.
One does not have to attach an actual geometric interpretation
to this space (though this may be possible) but can view it as a
simple way to realize the supersymmetry algebra. The space
has four additional, anticommuting (Grassmann) coordinates,
θα, θ̄α̇. Fields (superfields) will be functions of θ, θ̄ and xµ.
Acting on this space of functions, the Q’s and Q̄’s can be
represented as differential operators:

Qα =
∂

∂θα
− iσµ

αα̇θ̄α̇∂µ; Q̄
α̇ =

∂

∂θ̄α̇
− iθασµ

αβ̇
�β̇α̇∂µ. (1)
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Infinitesimal supersymmetry transformations are generated by

δΦ = �Q + �̄Q̄. (2)

It is also convenient to introduce a set of covariant derivative

operators which anticommute with the Qα’s, Q̄α̇’s:

Dα =
∂

∂θα
+ iσµ

αα̇θ̄α̇∂µ; D̄
α̇ = − ∂

∂θ̄α̇
− iθασµ

αβ̇
�β̇α̇∂µ. (3)
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Chiral and Vector Superfields

There are two irreducible representations of the algebra which
are crucial to understanding field theories with N = 1
supersymmetry: chiral fields, Φ, which satisfy D̄α̇Φ = 0, and
vector fields, defined by the reality condition V = V †. Both of
these conditions are invariant under supersymmetry
transformations, the first because D̄ anticommutes with all of
the Q’s. In superspace a chiral superfield may be written as

Φ(x , θ) = A(x) +
√

2θψ(x) + θ2
F + . . . (4)

Here A is a complex scalar, ψ a (Weyl) fermion, and F is an
auxiliary field, and the dots denote terms containing derivatives.
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More precisely, Φ can be taken to be a function of θ and

y
µ = x

µ − iθσµθ̄. (5)

Under a supersymmetry transformation with anticommuting
parameter ζ, the component fields transform as

δA =
√

2ζψ, (6)

δψ =
√

2ζF +
√

2iσµζ̄∂µA, δF = −
√

2i∂µψσµζ̄. (7)
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Vector fields can be written, in superspace, as

V = iχ− iχ† + θσµλ̄Aµ + iθ2θ̄λ̄− i θ̄2θλ +
1
2
θ2θ̄2

D. (8)

Here χ is a chiral field.
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In order to write consistent theories of spin one fields, it is
necessary to enlarge the usual notion of gauge symmetry to a
transformation of V and the chiral fields Φ by superfields. In the
case of a U(1) symmetry, one has

Φi → e
qiΛΦi V → V − Λ− Λ†. (9)

Here Λ is a chiral field (so the transformed Φi is also chiral).
Note that this transformation is such as to keep

Φi†
e

qi V Φi (10)

invariant. In the non-abelian case, the gauge transformation for
Φi is as before, where Λ is now a matrix valued field.
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For the gauge fields, the physical content is most transparent in
a particular gauge (really a class of gauges) know as
Wess-Zumino gauge. This gauge is analogous to the Coulomb
gauge in QED. In that case, the gauge choice breaks manifest
Lorentz invariance (Lorentz transformations musts be
accompanied by gauge transformations), but Lorentz
invariance is still a property of physical amplitudes. Similarly,
the choice of Wess-Zumino gauge breaks supersymmetry, but
physical quantities obey the rules implied by the symmetry. In
this gauge, the vector superfield may be written as

V = −θσµλ̄Aµ + iθ2θ̄λ̄− i θ̄2θλ +
1
2
θ2θ̄2

D. (11)
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The analog of the gauge invariant field strength is a chiral field:

Wα = −1
4

D̄
2
DαV (12)

or, in terms of component fields:

Wα = −iλα + θαD − i

2
(σµσ̄νθ)αFµν + θ2σµ

αβ̇
∂µλ̄β̇ . (13)
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In the non-Abelian case, the fields V are matrix valued, and
transform under gauge transformations as

V → e
−Λ†

Ve
Λ (14)

Correspondingly, for a chiral field transforming as

Φ → e
ΛΦ (15)

the quantity

Φ†eV Φ (16)

is gauge invariant.
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The generalization of Wα of the Abelian case is the
matrix-valued field:

Wα = −1
4

D̄
2
e
−V

Dαe
V , (17)

which transforms, under gauge transformations, as

Wα → e
−Λ

Wαe
Λ. (18)
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Supersymmetric Actions

To construct an action with N = 1 supersymmetry, it is
convenient to consider integrals in superspace. The integration
rules are simple:

�
d

2θθ2 =

�
d

2θ̄θ̄2 = 1;

�
d

4θθ̄2θ2 = 1, (19)

all others vanishing. Integrals
�

d4xd4θF (θ, θ̄) are invariant, for
general functions θ, since the action of the supersymmetry
generators is either a derivative in θ or a derivative in x .
Integrals over half of superspace of chiral fields are invariant as
well, since, for example,

Q̄α̇ = D̄α̇ + 2iθασµ
αα̇∂µ (20)

so, acting on a chiral field (or any function of chiral fields, which
is necessarily chiral), one obtains a derivative in superspace.
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In order to build a supersymmetric lagrangian, one starts with a
set of chiral superfields, Φi , transforming in various
representations of some gauge group G. For each gauge
generator, there is a vector superfield, V a. The most general
renormalizable lagrangian, written in superspace, is

L =
�

i

�
d

4θΦ†
i
e

V Φi +
�

a

1
4g2

a

�
d

2θW
2
α (21)

+c.c. +

�
d

2θW (Φi) + c.c.

Here W (Φ) is a holomorphic function of chiral superfields
known as the superpotential.
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Component lagrangians

In terms of the component fields, the lagrangian includes kinetic
terms for the various fields (again in Wess-Zumino gauge):

Lkin =
�

i

�
|Dφi |2 + iψiσ

µ
Dµψ∗

i

�
−

�

a

1
4g2

a

�
F

a
µνF

aµν − iλaσµ
Dµλa∗� .(22)

There are also Yukawa couplings of “matter" fermions (fermions
in chiral multiplets) and scalars, as well as Yukawa couplings of
matter and gauge fields:

Lyuk = i
√

2
�

ia

(gaψi
T

a

ij
λaφ∗j + c.c.)+

�

ij

1
2

∂2W

∂φi∂φj
ψiψj . (23)

Michael Dine Supersymmetry and the LHC



We should note here that we will often use the same label for a
chiral superfield and its scalar component; this is common
practice, but we will try to modify the notation when it may be
confusing. The scalar potential is:

V = |Fi |2 +
1
2
(Da)2. (24)

The auxiliary fields Fi and Da are obtained by solving their
equations of motion:

F
†
i

= −∂W

∂φi

D
a = g

a
�

i

φ∗
i
T

a

ij
φj . (25)
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A Simple Free Theory

To illustrate this discussion, consider first a theory of a single
chiral field, with superpotential

W =
1
2

mφ2. (26)

Then the component Lagrangian is just

L = |∂φ|2 + iψσµ∂µψ +
1
2

mψψ + c.c. + m
2|φ|2. (27)

So this is a theory of a free massive complex boson and a free
massive Weyl fermion, each with mass m2. (I have treated here
m2 as real; in general, one can replace m2 by |m|2).
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An Interacting Theory – Supersymmetry
Cancelations

Now take

W =
1
3
λφ3. (28)

The interaction terms in L are:

LI = λφψψ + λ2|φ|4. (29)

The model has an R symmetry under which

φ → e
2iα/3φ; ψ → e

−2iα/3ψ; W → e
2iαW . (30)
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Aside: R Symmetries

Such symmetries will be important in our subsequent
discussions. They correspond to the transformation of chiral
fields:

Φi → e
iriαΦi ; θ → e

iαθ (31)

Then

Q → e
−iα

Q; W → e
2iαW (32)

and

φi → e
iriαφi ; ψi → e

(ri−1)αψi Fi → e
i(ri−2)α

Fi . (33)

The gauginos also transform:

λ → e
iαλ. (34)
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Supersymmetry Cancelation and Soft Breaking
(continued)

The symmetry means that there can be no correction to the
fermion mass, or to the superpotential. Let’s check, at one loop,
that there is no correction to the scalar mass. Two
contributions:

1 Boson loop:

δm
2
φ = 4λ2 d4k

(2π)4
1
k2 (35)

2 Fermion loop:

δm
2
φ = −2λ2 d4k

(2π)4
Tr(σµkµσ̄νkν)

k4 . (36)

In the first expression, the 4 is a combinatoric factor; in the
second, the minus sign arises from the fermion loop; the 2 is a
combinatoric factor.
These two terms, each separately quadratically divergent,
cancel.

Exercise: Check these formulas.
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Now add to the lagrangian a “soft", non-supersymmetric term,

δL = −m
2|φ|2. (37)

This changes the scalar propagator above, so

δm
2
φ = 4λ2

�
d4k

(2π)4

�
1

k2 + m2 −
1
k2

�
(38)

=

�
d4k

(2π)4
−m2

k2(k2 + m2)

≈ λ2m2

16π2 log(Λ2/m
2).

Here Λ is an ultraviolet cutoff. Note that these corrections
vanish as m2 → 0.
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More generally, possible soft terms are:
1 Scalar masses
2 Gaugino masses
3 Cubic scalar couplings.

All have dimension less than four.
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The MSSM and Soft Supersymmetry Breaking

MSSM:A supersymmetric generalization of the SM.
1 Gauge group SU(3)× SU(2)× U(1); corresponding (12)

vector multiplets.
2 Chiral field for each fermion of the SM: Qf , ūf , d̄f , Lf , ēf .
3 Two Higgs doublets, HU , HD.
4 Superpotential contains a generalization of the Standard

Model Yukawa couplings:

Wy = yUHUQŪ + yDHDQD̄ + yLHDĒ . (39)

yU and yD are 3× 3 matrices in the space of flavors.
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Soft Breaking Parameters

Need also breaking of supersymmetry, potential for quarks and
leptons. Introduce explicit soft breakings:

1 Soft mass terms for squarks, sleptons, and Higgs fields:

Lscalars = Q
∗
m

2
Q

Q + Ū
∗
m

2
U

Ū + D̄
∗
m

2
D

D̄ (40)

+L
∗
m

2
L
L + Ē

∗
mEĒ

+m
2
HU

|HU |2 + m
2
HU

|HU |2 + BµHUHD + c.c.

m2
Q

, m2
U

, etc., are matrices in the space of flavors.
2 Cubic couplings of the scalars:

LA = HUQ AU Ū + HDQ AD D̄ (41)

+HDL AEĒ + c.c.
The matrices AU , AD, AE are complex matrices

3 Mass terms for the U(1) (b), SU(2) (w), and SU(3) (λ)
gauginos:

m1bb + m2ww + m3 λλ (42)

So we would seem to have an additional 109 parameters.Michael Dine Supersymmetry and the LHC



Counting the Soft Breaking Parameters

1 φφ∗ mass matrices are 3× 3 Hermitian (45 parameters)
2 Cubic terms are described by 3 complex matrices (54

parameters
3 The soft Higgs mass terms add an additional 4 parameters.
4 The µ term adds two.
5 The gaugino masses add 6.

There appear to be 111 new parameters.
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But Higgs sector of SM has two parameters.
In addition, the supersymmetric part of the MSSM lagrangian
has symmetries which are broken by the general soft breaking
terms (including µ among the soft breakings):

1 Two of three separate lepton numbers
2 A “Peccei-Quinn" symmetry, under which HU and HD rotate

by the same phase, and the quarks and leptons transform
suitably.

3 A continuous "R" symmetry, which we will explain in more
detail below.

Redefining fields using these four transformations reduces the
number of parameters to 105.
If supersymmetry is discovered, determining these parameters,

and hopefully understanding them more microscopically, will be

the main business of particle physics for some time. The

phenomenology of these parameters has been the subject of

extensive study; we will focus on a limited set of issues.
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Constraints

Direct searches (LEP, Fermilab) severely constrain the
spectrum. E.g. squark, gluino masses > 100’s of GeV,
charginos of order 100 GeV. Spectrum must have special
features to explain

1 Absence of Flavor Changing Neutral Currents (suppression
of K ↔ K̄ , D ↔ D̄ mixing; B → s + γ, µ → e + γ, . . . )

2 Suppression of CP violation (dn; phases in K K̄ mixing).
Might be accounted for if spectrum highly degenerate, CP
violation in soft breaking suppressed.
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The little hierarchy: perhaps the greatest challenge for
Supersymmetry

Higgs mass and little hierarchy:
Biggest contribution to the Higgs mass from top quark loops.
Two graphs; cancel if supersymmetry is unbroken. Result of
simple computation is

δm
2
HU

= −6
y2

t

16π2 m̃
2
t ln(Λ2/m̃

2
t ) (43)

Even for modest values of the coupling, given the limits on
squark masses, this can be substantial.
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But another problem: mH > 114 GeV. At tree level mH ≤ mZ .
Loop corrections involving top quark: can substantially correct
Higgs quartic, and increase mass. But current limits typically
require m̃t > 800 GeV. Exacerbates tuning. Typically worse
than 1 %.

δλ ∼ 3
y4

t

16π2 log(m̃2
t /m

2
t ). (44)

Possible solution: additional physics, Higgs coupling corrected
by dimension five term in superpotential or dimension six in
Kahler potential.

δW =
1
M

HUHDHUHD δK = Z
†
ZH

†
U

HUH
†
U

HU . (45)
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Supergravity

Some basic features:
Theory specified (at level of terms with two derivatives) by three
functions:

1 Kahler potential, K (φi , φ
∗
i
).

2 Superpotential, W (φi) (holomorphic).
3 Gauge coupling functions, fA(φ) ( 1

g2
A

= �fA�).
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Potential (units with Mp = 1):

V = e
K

�
DiWg

iī
D

ī
W

∗ − 3|W |2
�

(46)

Here g
iī

= ∂2K

∂φi∂φ∗
ī

; giī is its inverse.

Diφ is order parameter for susy breaking:

DiW =
∂W

∂φi

+
∂K

∂φi

W . (47)
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If unbroken susy, space time is Minkowski (if W = 0), AdS
(W �= 0).

If flat space (�V � = 0), then

m3/2 = �eK/2
W �. (48)
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Mediating Supersymmetry Breaking

Generally assumed that supersymmetry is broken by dynamics of
additional fields, and some weak coupling of these fields to those of
the MSSM gives rise to soft breakings.

The classes of models called "gauge mediated" and “gravity
mediated" are distinguished principally by the scale at which
supersymmetry is broken. If terms in the supergravity lagrangian
(more generally, higher dimension operators suppressed by Mp) are
important at the weak (TeV) scale:

Fi = DiW ≈ (TeV )Mp ≡ M
2
int (49)

“gravity mediated". If lower, “gauge mediated"; Fi ≈ ∂iW .
In the low scale case, the soft breaking effects at low energies should
be calculable, without requiring an ultraviolet completion; the
intermediate scale case requires some theory like string theory.
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“Gravity Mediation"

Take, e.g., OR model and couple to supergravity. Add constant to W ,
W0, so that V ≈ 0 at minimum of (supergravity) potential,

3|W0|2 ≈ |FX |2. (50)

Suppose

K = X
†
X +

�
φ†

i
φi . (51)

Then all scalars (squarks and sleptons) gain mass from
����
∂W

∂φi

+
∂K

∂φi

W

����
2

≈ |W0|2|φi |2. (52)

Universal masses for all squarks and sleptons.
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A terms from, e.g.,

−3|W |2 ≈ −3W0yφφφ (53)

i.e. A term proportional to W .

Finally, gaugino masses from
�

d2θXW 2
α .
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“MSUGRA": 3 parameters, m2
o, m1/2, A.

Lsoft = m
2
0|φi |2 + m1/2

�
λAλA + A(W + W

∗). (54)

But: if simply complicate Kahler potential:

K = φ∗
i
φi + AijkXφ∗

i
φ∗

j
φ∗

k
+ c.c. + Γijklφiφjφ

∗
k
φ∗� . (55)

Generates the full set of soft breaking parameters.
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Minimal Gauge Mediation

Main premiss underlying gauge mediation: in the limit that the
gauge couplings vanish, the hidden and visible sectors
decouple.

Simple model:

�X � = x + θ2
F . (56)

X coupled to a vector-like set of fields, transforming as 5 and 5̄
of SU(5):

W = X (λ��̄� + λqq̄q). (57)
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For F < X , �, �̄, q, q̄ are massive, with supersymmetry breaking
splittings of order F . The fermion masses are given by:

mq = λqx m� = λ�x (58)

while the scalar splittings are

∆m
2
q = λqF ∆m

2
� = λ�F . (59)
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In such a model, masses for gauginos are generated at one
loop; for scalars at two loops. The gaugino mass computation
is quite simple. Even the two loop scalar masses turn out to be
rather easy, as one is working at zero momentum. The latter
calculation can be done quite efficiently using supergraph
techniques; an elegant alternative uses background field
arguments.

The result for the gaugino masses is:

mλi
=

αi

π
Λ, (60)
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For the squark and slepton masses:

�m2 = 2Λ2[C3

�α3
4π

�2
+ C2

�α2
4π

�2
(61)

+
5
3

�
Y

2

�2 �α1
4π

�2
],

where Λ = Fx/x . C3 = 4/3 for color triplets and zero for
singlets, C2 = 3/4 for weak doublets and zero for singlets.
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Features of MGM

1 One parameter describes the masses of the three
gauginos and the squarks and sleptons

2 Flavor-changing neutral currents are automatically
suppressed; each of the matrices m2

Q
, etc., is automatically

proportional to the unit matrix; the A terms are highly
suppressed (they receive no one contributions before three
loop order).

3 CP conservation is automatic
4 This model cannot generate a µ term; the term is protected

by symmetries. Some further structure is necessary.
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General Gauge Mediation

Much work has been devoted to understanding the properties
of this simple model, but it is natural to ask: just how general
are these features? It turns out that they are peculiar to our
assumption of a single set of messengers and just one singlet
responsible for supersymmetry breaking and R symmetry
breaking. Meade, Seiberg and Shih have formulated the
problem of gauge mediation in a general way, and dubbed this
formulation General Gauge Mediation (GGM). They study the
problem in terms of correlation functions of (gauge)
supercurrents. Analyzing the restrictions imposed by Lorentz
invariance and supersymmetry on these correlation functions,
they find that the general gauge-mediated spectrum is
described by three complex parameters and three real
parameters. Won’t have time to discuss all of the features here,
but the spectrum can be significantly different than that of
MGM. Still, masses functions only of gauge quantum numbers
of the particles, flavor problems still mitigated.
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Aside on Two Component Spinors
We have been using two component spinors up to now, but
these may be unfamiliar to some of you. So the following few
pages demonstrate how four component spinors are equivalent
to two component spinors, and how everything can be
described in terms such two component spinors.
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Writing a Relativistic Equation for Massless Fermions
If we were living in 1930, and wanted to write a relativistic wave
equation for massless fermions, we might proceed as follows.
Write:

σµ∂µχ = 0. (62)

We want χ to satisfy the Klein-Gordan equation. This will be the
case if we can find a set of matrices, σ̄µ, which satisfy

σ̄µσν + σ̄νσµ = 2g
µν . (63)

Unlike the massive case, we can satisfy this requirement with
2× 2 matrices:

σµ = (1,�σ); σ̄µ = (1,−�σ). (64)
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In momentum space, this equation is remarkably simple:

(E − �p · �σ)χ = 0. (65)

For positive energies, this says that the spin is aligned along
the momentum. For negative energy spinors, the spin is
aligned opposite to the momentum.

Exercise: Write the mode expansion for χ(x), and identify
suitable creation and destruction operators.
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Connecting to Four Component Spinors
Adopt the following basis for the γ matrices:

γµ =

�
0 σµ

σ̄µ 0

�
(66)

In this basis,

γ5 = iγoγ1γ2γ3 =

�
1 0
0 −1

�
, (67)

so the projectors

P± =
1
2
(1 ± γ5) (68)

are given by:

P+ =

�
1 0
0 0

�
P− =

�
0 0
0 1

�
. (69)
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We will adopt some notation, following the text by Wess and
Bagger:

ψ =

�
χα

φ∗α̇

�
. (70)

Correspondingly, we label the indices on the matrices σµ and
σ̄µ as

σµ = σµ
αα̇ σ̄µ = σ̄µββ̇. (71)

This allows us to match upstairs and downstairs indices, and
will prove quite useful. We define complex conjugation to
change dotted to undotted indices. So, for example,

φ∗α̇ = (φα)∗. (72)
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Then we define the anti-symmetric matrices �αβ and �αβ by:

�12 = 1 = −�21 �αβ = −�αβ. (73)

The matrices with dotted indices are defined identically. Note
that, with upstairs indices, � = iσ2, �αβ�βγ = δγ

α. We can use
these matrices to raise and lower indices on spinors. Define
φα = �αβφβ , and similarly for dotted indices. So

φα = �αβ(φ∗β̇)∗. (74)
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Finally, we will define complex conjugation of a product of
spinors to invert the order of factors, so, for example,
(χαφβ)∗ = φ∗

β̇
χ∗α̇.

With this in hand, the reader should check that the action for
our original four component spinor is:

S =

�
d

4
xL =

�
d

4
x

�
iχα̇σ̄µα̇α∂µχα + iφασµ

αα̇∂µφ∗α̇
�

(75)

=

�
d

4
xL =

�
d

4
x

�
iχασµ

αα̇∂µχ∗α̇ + iφασµ
αα̇∂µφ∗α̇

�
.
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At the level of Lorentz-invariant lagrangians or equations of
motion, there is only one irreducible representation of the
Lorentz algebra for massless fermions.
It is instructive to describe quantum electrodynamics with a
massive electron in two-component language. Write

ψ =

�
e

ē∗

�
. (76)

In the lagrangian, we need to replace ∂µ with the covariant
derivative, Dµ. e contains annihilation operators for the
left-handed electron, and creation operators for the
corresponding anti-particle. ē contains annihilation operators
for a particle with the opposite helicity and charge of e, and ē∗,
and creation operators for the corresponding antiparticle.

Michael Dine Supersymmetry and the LHC



The mass term, mψ̄ψ, becomes:

mψ̄ψ = me
α
ēα + me

∗
α̇ē

∗α̇. (77)

Again, note that both terms preserve electric charge. Note also
that the equations of motion now couple e and ē.
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It is helpful to introduce one last piece of notation. Call

ψχ = ψαχα = −ψαχα = χαψα = χψ. (78)

Similarly,

ψ∗χ∗ = ψ∗α̇χ∗α̇ = −ψ∗α̇χ∗α̇χ∗α̇ψ∗α̇ = χ∗ψ∗. (79)

Finally, note that with these definitions,

(χψ)∗ = χ∗ψ∗. (80)
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Exercise: Starting with the action for the four component
electron, with a mass term, work verify the lagrangian in two
component notation for the massive electron. Make sure to
work out the covariant derivatives.
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