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0 Reminder

This is written for a series of 4 lectures at ICTP Summer School 2011. The
choice of topics and the references are biased. This is not a review on the sub-
ject or a correct historical overview. The quotations I mention are incomplete
and chosen merely for further reading.

There are some good books and reviews on the market. Among others I
would mention [1, 2, 3, 4].

1 Introduction to grand unification

The (MS)SM has 3 gauge interactions described by the corresponding carriers

ga
μ (a = 1 . . . 8) , W i

μ (i = 1 . . . 3) , Bμ (1)

and 5 different matter representations (with a total of 15 Weyl fermions) for
each generation

Q , L , uc , dc , ec (2)

It has also three types of Ng × Ng (Ng is the number of generations, at
the moment believed to be 3) Yukawa matrices

LY = ucYUQH + dcYDQH∗ + ecYELH∗ + h.c. (3)

This notation is highly symbolic. It means actually

LY = ucT
αkiσ2 (YU)kl Q

αa
l εabH

b+dcT
αkiσ2 (YD)kl Q

αa
l H∗

a+ecT
k iσ2 (YE)kl L

a
l H

∗
a+h.c.

(4)
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where we denoted by a, b = 1, 2 the SU(2)L indices, by α, β = 1 . . . 3 the
SU(3)C indices, by k, l = 1, . . . Ng the generation indices, and where iσ2

provides Lorentz invariants between two spinors.
The SM at the renormalizable level predicts a massless neutrino (there is

no right-handed neutrino νc), while a massive neutrino can be incorporated
in a R-parity violating MSSM (we will not consider this option in these
lectures).

Finally, there is no real explanation of the quantization of the electric
charge. Although anomaly cancellation constraints do predict the electric
charge quantization in the SM, this does not have any further experimental
consequences. Also, any addition to it could involve non quantized charges.

The idea of grand unification theories (GUT) is to reduce all the gauge
interactions to one single gauge group and all the fermionic multiplets into
one or two different representations for each generation of matter. Of course
our SM gauge group should then be a subgroup of the grand unified gauge
group, and the SM fermions included in the GUT matter representations.
The electric charge operator is in a GUT made out of a linear combination
of non-abelian gauge algebra generators, and its eigenvalues are obviously
quantized. Finally, GUTs can be or not theories of neutrino mass. In some
cases - for example in SU(5) - one can adjust the theory to give a nonzero
neutrino mass (similarly as adding right-handed neutrinos in the SM), while
some other GUTs - typically SO(10) - can be more predictive, and connect
it to charged fermion Yukawas.

1.1 The renormalization group equations (RGE)

But what does unification really mean? That we put for example all SM
gauge fields together in a bigger adjoint representation of a simple group is
clear, but we know that the gauge couplings of the three SM gauge interac-
tions are numerically different. So in which sense they can unify? Here it is
crucial the notion of running coupling constants. We know that the gauge
(and other) couplings run with energy. So what we have to do, is to let them
run and check if they meet all three together [5]. And if they do, the scale at
which this happens will be the scale of (the spontaneous breaking of ) grand
unification. Fortunately this is easy to do at the 1-loop level, all we need is
to solve the renormalization group equations (RGEs):
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dgi

d log μ
= − bi

(4π)2
g3

i i = 1, 2, 3 (5)

The 1-loop beta coefficient bi can be straightforwardly calculated via
(G,F ,B stay for gauge bosons, fermions, bosons)

b =
11

3
TG − 2

3
TF − 1

3
TB . (6)

where at the scale μ one must take into account all the particles with mass
lower than μ. The Dynkin index

TRδab = Tr
(
T a

RT b
R

)
(7)

depends on the choice of the gauge group and on the representation R in-
volved. The indices a, b run over the generators of the group (N2 − 1 in
SU(N)). The normalization usually chosen is T = 1/2 for the fundamental
representation (quarks and leptons in SM). Then one has in the SU(N) group
for the adjoint T = N . To remember also that in SU(2) the generators in
the fundamental are the Pauli matrices T ij

a = τ ij
a /2, while in the adjoint

representation are the Levi-Civita antisymmetric tensor T ij
a = −iεaij.

For supersymmetric theories we know that for each fermion (boson) there
is a boson (fermion) in the same group representation, so (6) can be written
more compactly as

b = 3TG − T . (8)

The beta coefficients in the SM are bi = (−41/10, 19/6, 7) (positive coef-
ficients here mean asymptotic freedom). One knows the experimental values
of gi at MZ and can evolve them towards larger scales μ using (5). It is now
easy to check that there is no unification of couplings in the SM. Two loops
will not help so the only possibility for unification is to add new particles in
order to change the beta coefficients for energies above their mass. We will
see in the next sections two such examples.

2 The Georgi-Glashow SU(5) model

The Georgi-Glashow SU(5) grand unified model [6] includes the SM three
generations of fermions (the number of generations in GUTs are unfortu-
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nately not predicted, but put by hand, as in the SM) in the 10F and 5c
F

representations

10F =

⎛
⎜⎜⎜⎜⎜⎝

0 uc
3 −uc

2 u1 d1

−uc
3 0 uc

1 u2 d2

uc
2 −uc

1 0 u3 d3

−u1 −u2 −u3 0 ec

−d1 −d2 −d3 −ec 0

⎞
⎟⎟⎟⎟⎟⎠ , 5c

F =

⎛
⎜⎜⎜⎜⎜⎝

dc
1

dc
2

dc
3

e
−ν

⎞
⎟⎟⎟⎟⎟⎠ (9)

The Higgs sector is made of an adjoint 24H , which gets a vacuum expec-
tation value (vev) to spontaneously break SU(5)→SU(3)C×SU(2)W×U(1)Y :

〈24H〉 =
v√
30

⎛
⎜⎜⎜⎜⎜⎝

2 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 −3 0
0 0 0 0 −3

⎞
⎟⎟⎟⎟⎟⎠ (10)

and of one fundamental representation, which contains also the SM Higgs
doublet H = (H+, H0)T :

5H = (HC
1 , HC

2 , HC
3 , H+, H0)T (11)

Now we have the whole particle content. But how do we break SU(5)?
For it we need the Lagrangian for the adjoint.

2.1 The Higgs sector

The adjoint of SU(5) is Hermitian and transforms as

Σ → UΣU † (12)

Keeping in mind that it is traceless, the only invariants we can use up to
fourth order are

TrΣ2 TrΣ3 TrΣ4 (13)

The most general potential (with an additional Z2 symmetry Σ → −Σ
for simplicity) is thus
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V = −μ2

2
TrΣ2 +

λ

4
TrΣ4 +

λ′

4

(
TrΣ2

)2
(14)

The tracelessness is taken into account adding to the potential a Lagrange
multiplier

ξTrΣ (15)

The equations of motion are simply

∂V

∂Σji

= −μ2Σij + λ
(
Σ3
)

ij
+ λ′TrΣ2Σij + ξδij = 0 (16)

The Lagrange multiplier can be calculated by requiring the trace of this
equation (and of Σ as well) to vanish:

δij
∂V

∂Σji

= λTrΣ3 + 5ξ = 0 (17)

to give

−μ2Σij + λ
(
Σ3
)

ij
+ λ′TrΣ2Σij − λ

5
TrΣ3δij = 0 (18)

The Hermitian and traceless adjoint of SU(5) has 24 (real) degrees of
freedom. Due to the gauge freedom, we can however rotate away the non-
diagonal elements, since any Hermitian matrix Σ can be put in a diagonal
form Σd with a proper choice of a unitary matrix U:

UΣU † = Σd (19)

This is nothing else than a gauge transformation that we are free to choose
at will. From now on we will work with a diagonal

Σij = σiδij (20)

Eq. (18) becomes

σ3
i −

(
μ2

λ
− λ′

λ
TrΣ2

)
σi − 1

5
TrΣ3 = 0 (21)

For any fixed choice of the SU(5) invariants TrΣ2, TrΣ3 this equation is
third order and we can thus have at most three different solution.
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Accounting for the tracelessness and barring trivial renaming of indices
we can think of the following possibilities:

diag(a, a, a, b,−3a − b) (22)

diag(a, a, b, b,−2a − 2b) (23)

diag(a, a, a,−3a/2,−3a/2) (24)

diag(a, a, a, a,−4a) (25)

diag(0, 0, 0, 0, 0) (26)

The last three cases are actually special cases of the first two, which are
the only independent ones. Furthermore, the absence of the quadratic term
of σ2

i in eq. (21) tells us that the sum of the three solutions is zero. This
means that the above reduce to (we skip here the vev)

diag(1,−1, 0, 0, 0) (27)

diag(1, 1,−1,−1, 0) (28)

diag(2, 2, 2,−3,−3) (29)

diag(1, 1, 1, 1,−4) (30)

diag(0, 0, 0, 0, 0) (31)

The only case from the above that is not obviously unrealistic is case
(29) which breaks SU(5) into the SM SU(3)×SU(2)×U(1). Let us now find
the solution explicitly. Our ansatz will be (the normalization is only for
convenience)

〈Σ〉 =
v√
30

diag(2, 2, 2,−3,−3) (32)

The potential becomes

V (v) = −1

2
μ2v2 +

(
7λ

30
+ λ′

)
v4

4
(33)

and the equation of motion

∂V

∂v
= v

[
−μ2 +

(
7λ

30
+ λ′

)
v2

]
= 0 (34)
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The solution

v2 =
30μ2

7λ + 30λ′ (35)

is a minimum only if

7λ + 30λ′ > 0 , μ2 > 0 (36)

Let us now calculate the spectrum in this sector. In the breaking of SU(5),
the adjoint gets decomposed into pieces with SM quantum numbers. We get

24 → O(8, 1, 0) + T (1, 3, 0) + S(1, 1, 0) + X(3, 2,−5/6) + X̄(3̄, 2, 5/6) (37)

The adjoint can be imagined in blocks

Σ =
(

3 × 3 3 × 2
2 × 3 2 × 2

)
(38)

so the above fields live schematically in

Σ =
(

O X
X̄ T

)
+
(
1 +

S

v

)
〈Σ〉 (39)

We have to expand this matrix. In doing that we can take just one element
of each representation, the other elements need to have the same mass since
the SM symmetry is still preserved. Using a common normalization for all
the fields we get

Σ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2v+S√
30

+ O√
2

0 0 X 0

0 2v+S√
30

− O√
2

0 0 0

0 0 2v+S√
30

0 0

X̄ 0 0 −3v+S√
30

+ T√
2

0

0 0 0 0 −3v+S√
30

− T√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(40)

We also do not need to expand all these together. It is enough to do
separately for each of the fields O, T and S, while X and X̄ have a common
mass. We get
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m2
O =

λ

6
v2 (41)

m2
T =

2λ

3
v2 (42)

m2
XX̄ = 0 (43)

m2
S = 2μ2 (44)

Few comments:

• to have a stable solution λ must be non-negative.

• for λ = 0 we have 23 massless fields. This is a consequence of the
Nambu-Goldstone theorem: for this coupling the potential has more
symmetry, SO(24). When this is broken by the fundamental of SO(24)
(i.e. what we called the adjoint of SU(5)) to SO(23), we get

24 × 23

2
− 23 × 22

2
= 23 (45)

massless particles. The symmetry is not what we decide, but what the
potential tells us!

• for λ > 0, the usual Goldstones of the SU(5) breaking are X, X̄ , i.e
24 − 12 = 12.

2.2 The Yukawa sector

On top of the usual fermion representation (ε3 is the 3-D Levi-Civita tensor
and ε2 = iτ2 is the corresponding 2-D one)

10F =
(

ε3u
c Q

−QT ε2e
c

)
5c

F =
(

dc

ε2L

)
(46)

we introduce the Higgs representation

5H =
(

T
H

)
(47)
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There is an easy way to find invariants in SU(5): fundamental represen-
tations (and their products) are the ones with indices up

F i1i2...in (48)

and transform as

F i1i2...in → U i1
j1U

i2
j2 . . . U in

jnF j1j2...jn (49)

On the other way the antifundamentals

Fi1,i2...in (50)

transform under SU(5) as

Fi1i2...in → Fj1j2...jn

(
U †)j1

i1

(
U †)j2

i2
. . .
(
U †)jn

in
(51)

There can be also mixed representations

F i1i2...in
j1,j2...jm

(52)

that go like

F i1i2...in
j1,j2...jn

→ U i1
k1U

i2
k2 . . . U in

jnF k1k2...kn
l1,l2...lm

(
U †)l1

j1

(
U †)l2

j2
. . .
(
U †)lm

jm

(53)

Invariants are found as products of these fields so that upper indices
match with lower ones (an implicit summation over two equal - one upper
one lower - indices is assumed, as in general relativity), for example

MabcN
abKc (54)

On top of that one can use also the (5 index) Levi-Civita tensor

εi1i2...in or εi1i2...in (or mixed) (55)

Using this simple method, we find out that in our case of a single Higgs in
the fundamental representation there are two SU(5) (and Lorentz) invariants
for the renormalizable Yukawas (two fermions, one Higgs)

LY = 5c
F Y510F 5∗H +

1

8
ε510F Y1010F 5H (56)
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Y5 and Y10 are matrices in generation space. The factor 1/8 is taken
for convenience and is of course optional, since it just redefines the Yukawa
matrix Y10.

Here we are interested in the Yukawa terms with the light (SM) Higgs,
so the first term in (56) can be rewritten as

5c
F Y510F 5∗H = ( dc −Lε2 ) Y5

(
ε3u

c Q
−QT ε2e

c

)(
T ∗

H∗

)

→ dcY5QH∗ + LY5e
cH∗ (57)

The two terms are essentially similar, except for the fact that the SU(2)
doublet and singlet fields are interchanged. Rewriting the second term as

LY5e
cH∗ = ecY T

5 LH∗ (58)

it follows

YD = Y T
E (59)

i.e. the Yukawa (mass) matrix for down quarks is just the transpose of the
Yukawa (mass) matrix of the charged leptons. This surprising result is just a
consequence of SU(5) constraints. Unfortunately this simple relation is not
satisfied in nature (it is not obvious to see it though, since these relations
are valid at the GUT scale and one needs to run everything down by RGE
to the low scale where these numbers are measured), but it is remarkable in
any case.

The second term in (56) is a bit more tricky to calculate, since it contains
the 5-index Levi-Civita tensor, but it is already clear from the structure that
Y10 is symmetric. Let us see what it describes in the low energy theory.

ε510F Y1010F 5H = εijklm (10F )ij Y10 (10F )kl (5H)m (60)

Let us divide the indices

SU(5) : i, j, k, l, m = 1 . . . 5 (61)

into two groups as usual:

SU(3) : α, β, γ = 1 . . . 3 SU(2) : a, b = 1 . . . 2 (62)
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We are interested in 5H with a SU(2) index, and let us put the other
possible SU(2) index into the first or second 10F . (60) can be expanded then
to

(60) → 2εαβγab (10F )αβ Y10 (10F )γa (5H)b

+ 2εγaαβb (10F )γa Y10 (10F )αβ (5H)b

= 2εαβγab (10F )αβ
(
Y10 + Y T

10

)
(10F )γa (5H)b (63)

The factor of 2 comes from the two possibilities, (10F )γa and (10F )aγ.
Obviously

εαβγab = εαβγεab (64)

so we get further

2εαβγε
αβδuc

δ

(
Y10 + Y T

10

)
QγaεabH

b

= 4uc
δ

(
Y10 + Y T

10

)
QδaεabH

b

Finally we have (again in a compact notation)

1

8
ε510F Y1010F 5H =

1

2
uc
(
Y10 + Y T

10

)
QH (65)

and thus the Yukawa (mass) matrix for the up quarks is symmetric:

YU = Y T
U (66)

Let’s summarize the relevant lesson we learned for the SM Yukawa cou-
plings: the charged lepton mass matrix is proportional to the down quark
mass matrix at the GUT scale, and the neutrinos are massless. How do we
cure these shortcomings?

The first part, a correct description of the charged lepton and down quark
masses, is relatively easy. One has essentially two choices in SU(5): either
add a new Higgs representation, in this case for example a 45αβ

γ, which
contains also the standard model Higgs doublet, or allow non-renormalizable
operators using the same minimal field content. To show the point we will
consider now the second option. Let us add to (56) the following terms
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LY = 5c
F Y

(1)
5 10F

(
Σ

Λ
5H

)∗
+ 5c

F Y
(2)
5

(
Σ

Λ
10F

)
5∗H

+
1

8
ε510F Y

(1)
10 10F

(
Σ

Λ
5H

)
+

1

8
ε510F Y

(2)
10

(
Σ

Λ
10F

)
5H (67)

where Λ is a UV cutoff.
Defining the SM Yukawa couplings through (3) we arrive at

YU =
1

2

(
Y10 + Y T

10

)
− 3

2

v√
30Λ

(
Y

(1)
10 + Y

(1)T
10

)
− 1

4

v√
30Λ

(
Y

(2)
10 − 2Y

(2)T
10

)

YD = Y5 − 3
v√
30Λ

Y
(1)
5 + 2

v√
30Λ

Y
(2)
5 (68)

Y T
E = Y5 − 3

v√
30Λ

Y
(1)
5 − 3

v√
30Λ

Y
(2)
5

We have now enough freedom to fit the charged lepton and down quark
masses. Of course, at the expense of predictiveness. Remember that all these
relations are valid at the GUT scale.

2.3 The gauge boson mass

We will write the adjont’s vev in a shorthand notation as

〈Σ〉 =
v√
30

(
23×3 03×2

02×3 −32×2

)
→ v√

30

(
2 0
0 −3

)
(69)

with

Aμ = Aa
μT

a (70)

summed over all 24 generators of SU(5). Gauge boson’s mass can be calcu-
lated as in any Higgs mechanism through the kinetic terms of the Higgs in
question, i.e. through the covariant derivative

DμΣ = ∂μΣ + i
g

2
[Aμ, Σ] (71)

That this is the right combination for the covariant derivative can be seen
from
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Σ → UΣU † , Aμ → UAμU
† +

2

ig
U∂μU

† (72)

The Hermitian conjugate of (69) is

(DμΣ)† = ∂μΣ + i
g

2
[Aμ, Σ] (73)

where we took into account that the matrices Aμ and Σ are Hermitian.
We are interested into the masses of the X − X̄, all other vanishing, so

in the compact notation introduced before Xμ (X̄μ) is a 3× 2 (2× 3) matrix:

Aμ =
(

0 Xμ

X̄μ 0

)
(74)

The commutator becomes

[Aμ, Σ] = − 5v√
30

(
0 Xμ

X̄μ 0

)
(75)

and the mass term in the Lagrangian is just

L = Tr
[
(DμΣ)† DμΣ

]
→ −g2

4

(
25v2

30

)
Tr

(
0 Xμ

X̄μ 0

)(
0 Xμ

X̄μ 0

)

→ 5g2v2

12
XμX̄

μ (76)

so that the mass is

M2
X =

5

12
g2v2 (77)

We will call it also MGUT , i.e. the scale at which the three SM gauge
couplings get unified.

2.4 The violation of baryon and lepton numbers

Baryon and lepton number conservation are peculiar to the SM: it is simply
impossible in the SM to write down a baryon and/or lepton number violating
term at tree level. We say that baryon and lepton numbers are an accidental

13



symmetries of the SM, they do not need to be imposed, but they follow
from the field content and the requirement of gauge and Lorentz invariance.
Thus, apart from anomalies (that give however a far too small contribution,
proportional to exp (−4π/α2) ≈ 10−150) baryon and lepton numbers remain
conserved, and thus loops cannot generate a nonzero nucleon decay rate or
neutrino mass. Of course higher dimensional operators can violate baryon
and lepton numbers, but the SM itself cannot tell at which scale this has
to happen. In short, the SM is not a theory of baryon and lepton number
violation.

In GUTs different SM representations lie in same multiplets so baryon
(and lepton) number is not conserved, not even at tree level, so there is
nothing that prevents protons from decaying. Since in the limit of the GUT
scale to infinity proton must become stable, it is clear that the decay lifetime
must be proportional to some positive power of MGUT . To get it a bit more
precisely, remember that the heavy GUT gauge bosons have mass MGUT , and
that their interaction violates B and L. So a B and L violating amplitude
between four fermions gets a contribution from the exchange of such a gauge
boson. The amplitude is (similar as the W exchange in muon decay, where
the amplitude goes as 1/M2

W )

A(qq → q̄l̄) ≈ 1

M2
GUT

(78)

and thus the decay rate

Γ(p = qqq → qq̄l̄ = π0e+) ≈ m5
p

M4
GUT

(79)

One can thus estimate that the experimental lifetime τp = 1/Γp of 1034

yrs or so constrains

MGUT ∼> 1016 GeV (80)

which, as we will see, is relatively close (in logarithmic scale) to the unification
point.

Now it is time to derive these operators more precisely in the Georgi-
Glashow model. The main contribution comes from gauge interaction, i.e.
from the kinetic term of the fermions. Using the usual transformation rule

T̂ a5c = −T aT 5c (81)
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where T a on the right are the SU(5) generators in fundamental representation
(the Gell-Mann matrices), while 10F and 5c

F are written in the matrix form
(46), we get

i5c
F γμDμ5c

F → i ( dc ε2L ) γμ g

2
(−i)

(
0 Xμ

X̄μ 0

)T ( dc

ε2L

)

=
g

2
Tr

(
dcγμX̄T

μ ε2L + ε2LγμXT
μ dc

)
(82)

=
g

2

[(
dc
)β

γμ
(
X̄μ

)b

β
εbaL

a +
(
L̄
)

a
εabγμ(Xμ)β

b (dc)β

]

For the two index antisymmetric 10 the transformation rule is

T̂ a10 = T a10 − 10T T aT (83)

Due to antisymmetry of 10 this gives

1

2
Tr

(
10T̂ a10

)
= Tr

(
10T a10

)
(84)

i.e. it is enough to transform just the first index in 10. We continue thus

i

2
Tr

[
10F γμDμ10F

]
→

iT r
[(

ε3uc −Q̄T

Q̄ ε2ec

)
γμ g

2
i
(

0 Xμ

X̄μ 0

)(
ε3u

c Q
−QT ε2e

c

)]

=
g

2
Tr

[
ε3ucγμXμQ

T + Q̄T γμX̄με3u
c − Q̄γμXμε2e

c − ε2ecγμX̄μQ
]

=
g

2

(
εαβδ (uc)α γμQδb +

(
Q̄
)

aβ
εabγμec

)
(Xμ)β

b

− g

2

(
εαβδ

(
Q̄
)

bα
γμ (uc)δ + ecγμεbaQ

βa
) (

X̄μ

)b

β
(85)

To this we have to add the gauge boson mass term (76):

M2
X

2
Tr

(
X̄μX

μ
)

=
M2

X

2

(
X̄μ

)b

β
(Xμ)β

b (86)

These heavy fields we want to integrate out to get the effective 4-fermion
(dimension 6) interaction. We thus sum up (82), (85) and (86), take the

derivative first over
(
X̄μ

)b

β
to get
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(Xμ)β
b =

g

M2
X

[
εαβδ

(
Q̄
)

bα
γμ (uc)δ + ecγμεbaQ

βa +
(
dc
)β

γμεabL
a
]

(87)

then over (Xμ)β
b to obtain

(
X̄μ

)b

β
=

−g

M2
X

[
εαβδ (uc)α γμQ

δb +
(
Q̄
)

aβ
εabγμe

c +
(
L̄
)

a
εabγμ (dc)β

]
(88)

The original Lagrangian thus becomes (only the B and L violating terms)

Ld=6 =
g2

2M2
X

εαβδ (uc)α γμQ
δb
(
ecγμεbaQ

βa +
(
dc
)β

γμεabL
a
)

+ h.c. (89)

2.5 Magnetic monopoles ↔ charge quantization

One of the great mysteries of electrodynamics is the quantization of the
electric charge. Since the non-Abelian generators have quantized eigenvalues,
this then mean that in the SM what is quantized is the hypercharge. This
connection obviously reminds us of a possible explanation. If the SM gauge
group derives from a non-Abelian common group, all the diagonal generators
of it have quantized eigenvalues and thus the hypercharge and electric charge
that follows from them are quantized as well.

One can get to a similar conclusion in an apparently completely different
way. Imagine that there is a magnetic monopole with magnetic charge qM .
Dirac showed that due to quantum mechanical arguments (the wave-function
must be single-valued) all the electric charges qE must be quantized as

qEqM = n2π n ∈ Z (90)

But it turns out that a non-Abelian gauge group that gets broken into a
final one with at least one Abelian factor actually has as a classical solution
to the equation of motion a magnetic monopole. So the two explanations are
connected.

GUT magnetic monopoles are heavy, order MGUT , or even a bit more.
Their magnetic field is quantized, and their eventual presence from the sky
has been searched at the Gran Sasso National Laboratories. The experiment
MACRO has put the best limit on their abundance in the universe [7].

Due to time constraints I will unfortunately not pursue this very fasci-
nating subject in the following.
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2.6 The doublet-triplet splitting

Before going into description of particular realistic models, I would like to
mention another peculiar characteristic of grand unified theories. The SM
Higgs doublet, when embedded in a GUT representation, typically has as
partners color triplets which mediate proton decay. For example, in Georgi-
Glashow SU(5) the Higgs stays in the fundamental, and the triplet partner
T has Yukawa couplings that can be derived from (56) and look like

LY (T ) = T ∗ (LY5Q − dcY5u
c) −

(
1

2
QY10Q + ucY10e

c
)

T (91)

This triplet is heavy and its exchange leads to the Fermi interaction

Ld=6 =
1

2M2
T

(QY10Q)
(
QY T

5 L
)

+
1

M2
T

(dcY5u
c) (ucY10e

c) (92)

Since nucleons are made of first generation quarks, the corresponding
Yukawas are typically of that order, so that

yuyd

M2
T

∼<
1

M2
GUT

(93)

and so

MT ∼> 1012GeV (94)

On the other side, our Higgs doubet, the SU(5) partner of this heavy
singlet, has a (negative) mass term of order −M2

Z , i.e. practically massless.
The two requirement, a heavy color triplet and a light weak doublet from the
same multiplet, are difficult to achieve in a natural way. This is called the
doublet-triplet splitting problem. Although formally one can satisfy these
constraints, a light doublet and a heavy tripelt from the same multiplet, this
will need fine-tuning of the model parameters, unless one works in compli-
cated and non-minimal set-ups. Let us see this a bit more precisely. The
interaction between the Higgs responsible for SU(5) breaking (the 24H) and
the Higgs responsible for the electro-weak breaking (the 5H) looks like

5∗H (a24H + b) 5H (95)

Once the heavy Higgs gets a vev (10) the masses of the two parts of the
fundamenal multiplets split as
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(
2a

v√
30

+ b

)
|T |2 +

(
−3a

v√
30

+ b

)
|H|2 = M2

T |T |2 + M2
H |H|2 (96)

From here it follows that

b = M2
H + 3a

v√
30

=
3

5
M2

T + O(M2
H) (97)

Due to (35) we need a fine-tuning of the parameters of the Lagrangian
of order O(M2

H/M2
T ) ≈ 10−20. This is called the doublet-triplet splitting

problem.
There are various ways of solving this problem, but unfortunately no min-

imal model has such solutions. So the solution of it, at least at the state of
the art, needs non-minimal generalizations, and supersymmetry on top of
that to stabilize it. Such solutions typically do not have particular predic-
tions, i.e. they cannot be experimentally differentiated at low-energies from
the minimal, fine-tuned, models. The issue, although probably important,
seems thus at the moment a bit philosophical. For this reason I will not
pursue the subject any longer.

3 Two realistic SU(5) models

As we have just seen, the Georgi-Glashow model is ruled out, because it
predicts wrong gauge couplings at the scale MZ (another way of saying is that
the 3 gauge couplings of the SM do not unify). On top of that, this model
suffers from the same problem as the SM: it predicts massless neutrinos. It is
actually even worse than the SM: there we could at least phenomenologically
write down an effective Weinberg operator

LWeinberg SM = ySM
ij

(LiH)(HLj)

M
+ h.c. (98)

With properly chosen values of ySM/M we could fit the experimental
numbers, since M can be essentially anything. This is not allowed anymore
in SU(5). Although we can write down a similar effective operator

LWeinberg SU(5) = y
SU(5)
ij

(5c
F i5H)(5H5c

Fj)

M
+ h.c. (99)
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the cutoff M cannot be lower than MGUT if we want this theory to make
sense at the unification scale. Due to proton decay constraints MGUT ∼> 1016

GeV the resulting neutrino masses turn out too small (y ∼< 1 because of
perturbativity assumption).

I will show now two examples of realistic models that can overcome
these problems, the missing unification and the practically vanishing neu-
trino mass.

3.1 Minimal non-supersymmetric SU(5)

As we mentioned in the previous chapter, the idea is to include new degrees
of freedom. For this purpose I will add to this model a fermionic adjoint [8],
[9]. Under the SM it decomposes into

24F = S(1, 1, 0)+T (1, 3, 0)+O(8, 1, 0)+X(3, 2,−5/6)+X(3̄, 2, 5/6) (100)

Exercise: Derive (100). Hint: 24 ∼ 5̄ × 5.
The Higgs 24H obviously decomposes in a similar way. We have thus the

following possibility for light states (the gauge singlets do not contribute to
the beta function, while the XH , XH get eaten by the longitudinal compo-
nents of the SU(5) heavy gauge bosons via the Higgs mechanism):

spin = 0 : TH(1, 3, 0) , OH(8, 1, 1) , HC(3, 1,−1/3) (101)

spin = 1/2 : T (1, 3, 0) , O(8, 1, 1) , X(3, 2,−5/6) , X̄(3̄, 2, 5/6)

Although apparently a lot of freedom, there is not much choice for their
masses, if we want unification. An important point is that in order to get
lighter triplets and octets in 24F , higher dimensional operators has to be
used, and so the maximum mass for the leptoquark is mX ≈ M2

GUT /Λ,
where Λ is the cutoff of the SU(5) model, at least 100MGUT or so, to make
it perturbative. For this reason one can show that

mT ≈ 1 TeV (102)

a neat prediction of the model. One can also show, that higher is the triplet
mass, lower turns out to be the GUT scale, which means faster is the proton
decay. So if we do not find it at the LHC, we should definitely find soon the
proton decay, or discard the model.
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Exercise: Derive (102) at 1-loop.
It is interesting that part of the spectrum is determined by the require-

ment of the SM being embedded in a GUT. And, even more exciting, the
fermionic triplet lies in the range of the LHC.

We have now to solve the neutrino mass issue yet. We have two candidates
for mediators of the see-saw mechanism, the fermionic singlet S (type I see-
saw) and the fermionic triplet T (type III see-saw). They are coupled to the
SM leptons as

LY uk = yi
T LiTH + yi

SLiSH (103)

to give the neutrino mass matrix (MT,S are the triplet and singlet masses)

mij
ν =

v2

2

(
yi

T yj
T

MT

+
yi

Syj
S

MS

)
(104)

with rank two, so the model predicts one massless neutrino.
The fermionic weak triplet T = (T+, T 0, T−) decays through weak inter-

actions mainly into a lepton and a gauge boson:

T± → W±ν or Z0e± (105)

T 0 → W±e∓ or Z0ν (106)

with a decay width estimate

ΓT ≈ |yT |2mT (107)

The decay rate depends on the same Yukawa couplings that are respon-
sible for the neutrino mass. LHC could thus give us information on the yet
unmeasured parameters of the neutrino sector.

To summarize, the minimal non-supersymmetric SU(5) model predicts

• a weak fermionic triplet with mass mT ≈ 1 TeV;

• one neutrino massless;

• neutrino mass matrix a mixture of type I and type III see-saw;

• triplet decays constrained by neutrino masses and mixings.
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3.2 Supersymmetric SU(5) version

In the MSSM the beta coefficients are bi = (−33/5,−1, 3). If we put all
the superpartners at TeV, the three couplings unify in a single point at
μ ≈ 1016 GeV [15] 1. To appreciate this fact one should remember that
this unification fails badly in the nonsupersymmetric case (compare the two
runnings on Fig. 1). So, if we have supersymmetric partners at MZ or close
to 1 TeV as required by naturalness (hierarchy problem), then we have the
unification of gauge couplings for free. This is one of the (main) motivations
for supersymmetry with low scale (TeV) superpartners (and of unification
in supersymmetric theories). Let us now construct a supersymmetric SU(5)
GUT.
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Figure 1: The running of the gauge couplings in SM (left) and low energy
MSSM (right).

3.2.1 The Yukawa sector

The Yukawa structure does not change, except that we have now two Higgs
fundamental representations, call them 5u

H and 5d
H . They are needed for two

reasons: anomaly cancellation and nonzero Yukawa couplings for both up
and down sectors. Both requirements are just GUT generalizations of the
well known reason for two Higgs doublets in MSSM. So we get the Yukawa

1In order to get unification from low energy susy, the authors of [15] predicted sin2 θW

to be higher than known at that time and the top mass to be around 200 GeV instead of the
ten times lighter believed at that time, both predictions confirmed by later experiments.
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(56) with 5H and 5∗H replaced by 5u
H and 5d

H from the following superpotential
(now all the fields are actually chiral superfield)

WY = 5c
F Y510F 5d

H + ε510F Y1010F 5u
H (108)

The subscript F denotes matter (fermionic) multiplets. Regarding group
theory, supersymmetry does not change the conclusions of symmetric YU

and equality of YD = Y T
E . Although running from MMSSM to MGUT changes

with respect to the SM case, it does not get substantially closer to these
relations. In practice we can make such model realistic as in the ordinary
- non-supersymmetric case: either by adding a new Higgs superfield, for
example a 45H (and a 45H), or allowing non-renormalizable terms. Let’s
stick for definiteness to the second possibility in the following.

3.2.2 The Higgs sector

Now what about the Higgs potential? The 24H is now a complex field. Its
superpotential is given at the renormalizable level as

WH =
μ

2
Tr242

H +
λ

3
Tr243

H (109)

As in the non-supersymmetric case will consider SM-like vacua, in which

〈24H〉 =
v√
30

diag(2, 2, 2,−3,−3) (110)

with now v = μ/λ.
Exercise: Show that other (degenerate) vacua are possible.
It is easy to show that in such renormalizable superpotential all the SM

decomposed fields are at the same scale MGUT . This is not necessarily true
anymore if one includes also higher, non-renormalizable terms in the super-
potential (109). Since we are forced to use non-renormalzible terms to cure
bad mass relations in the Yukawa sector, we should allow for such possibility.
Let’s add thus

δWH =
c1

4Λ
Tr244

H +
c2

4Λ

(
Tr242

H

)2
(111)

where we leave for the moment the cut-off scale Λ free. It is now straightfor-
ward to find out in the limit λ → 0 the following relation
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m3 = 4m8 ≈ c
v2

Λ
(112)

Exercise: Calculate the Higgs spectrum in the general case and verify
(112) in the λ → 0 limit. Explain why the X and X̄ are massless if only the
superpotential is considered.

3.2.3 Running in the non-renormalizable case

What we just found out is very important, because we have now new states
below the GUT scale v. For this reason we have to redo the renormalization
group analysis for the gauge couplings:

2π
(
α−1

1 (MZ) − α−1
U

)
= −5

2
log

MSUSY

MZ

+
33

5
log

MGUT

MZ

+
2

5
log

MGUT

mT

2π
(
α−1

2 (MZ) − α−1
U

)
= −25

6
log

MSUSY

MZ

+ log
MGUT

MZ

+ 2 log
MGUT

m3

2π
(
α−1

3 (MZ) − α−1
U

)
= −4 log

MSUSY

MZ

− 3 log
m8

MZ

+ log
MGUT

mT

(113)

Taking two linear combinations we can get rid of the experimentally un-
known gauge coupling at the unification scale

2π
(
3α−1

2 − 2α−1
3 − α−1

1

)
= −2 log

MSUSY

MZ

+
12

5
log

mT

MZ

+ 6 log
m8

m3

2π
(
5α−1

1 − 3α−1
2 − 2α−1

3

)
= 8 log

MSUSY

MZ

+ 12 log

√
m3m8M

2
GUT

M3
Z

(114)

Denoting with m0
T and M0

GUT the values for the renormalizable case in
which m3 = m8 = M0

GUT we get first

mT = m0
T

(
m3

m8

)5/2

(115)

MGUT = M0
GUT

(
M0

GUT√
m3m8

)1/2

(116)

and then, since m3 = 4m8 ≈ M2
GUT /Λ
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mT = 32m0
T (117)

MGUT ≈
[(

M0
GUT

)3
Λ
]1/4

(118)

i.e. the GUT scale and the color triplet mass get increased. This is very
important, and we will use it in the next section when considering proton
decay.

3.2.4 Dimension 5 proton decay

In supersymmetry we have on top of the usual (dimension 6) heavy gauge
boson (and gaugino) mediated proton decay modes also another, potentially
much more dangerous decay mode coming from the exchange of the heavy
color triplet Higgs from 5u,d

H . Using (46) and the corresponding

5d
H =

(
T c

Hd

)
5u

H =
(

T
Hu

)
(119)

one can easily derive in the renormalizable case (108) the coupling of these
triplets to the SM chiral fermions

WY (T ) = T c (LY5Q − dcY5ε3u
c) +

(
1

2
QY10Q − ucY10e

c
)

T (120)

These triplets are heavy, with mass term

−MT T cT (121)

so they can be integrated out by solving the equations of motion, getting

Wd=5 =
1

2MT

ε3 (QY10Q)
(
QY T

5 L
)

+
1

MT

(dcY5u
c) (ucY10e

c) (122)

By itself this does not yet produce a proton decay 4-fermion operator at
tree level, but only a baryon and lepton number violating term among two
fermions and two sfermions, for example between two quarks, and a slepton
and a squark. This is a dimension 5 operator. It can be however closed in
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Figure 2: The d = 5 proton decay operator closed by a gluino exchange loop.

a loop by for example exchange of a gaugino (gluino or wino) or Higgsino,
giving rise to the usual 4-fermion interaction. An example of such diagrams
is given on fig. 2. For a complete analysis of such processes and formulae
involved see for example [10, 11].

Assuming the sfermion masses are bigger than the gluino one, this gives
rise to an operator of the form (schematically)

(
Y10Y5

MT

)(
α3

4π

)(
mg̃

m2
q̃

)
qqql (123)

What is however peculiar here, is that such an operator is suppressed only
by one inverse power of the heavy triplet mass, instead of the two powers of
the heavy gauge boson mass in the usual d = 6 operator. In principle this
could give rise to a huge enhancement of the decay rate [12, 13]. There are
however several reasons that make the proton lifetime long enough though
[14]:

• the proton is made from first generation quarks, so at least some of the
Yukawas involved are typically small.

• due to Yukawa higher dimensional operators needed to cure the wrong
mass relations, the corresponding Yukawas appearing in the d = 5
operator do not need to be connected to the fermion masses and can
thus conspire to cancel the dangerous decay modes.

• a similar uncertainty is present in the squark sector: the mixing angles
need not be related to the fermion ones, even if one takes into account
the stringent constraints from flavor violating transitions
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• most important, due to non-renormalizable operators in the Higgs sec-
tor the color octet and weak triplets can be, as shown in the previous
section, lighter than the GUT scale, and thus can change the running.
It is thus easy to accommodate a higher GUT scale and color triplet
mass, thus suppressing further (123).

Due to all these uncertainties, proton decay is not yet a problem in
the minimal supersymmetric SU(5). What is however a problem, or bet-
ter, a shortcoming of this model, is the description of neutrinos. The non-
supersymmetric model described previously was an exception: due to its
minimality and simplicity the model was predictive, but this is no longer
true in the supersymmetric version. In general cases the first (and proba-
bly last) non-trivial GUT model of neutrino mass is SO(10), which we will
consider now.

4 SO(10) grand unification

SO(10) models are richer than SU(5) and there are more choices for the
possible representations that can embed the SM. We will insist as so far
to have the gauge symmetry as our only guidance and not include any more
global continuous or discrete symmetries. This is not the only possible choice
and much work has been done considering for example family (horizontal)
and other symmetries on top of the gauge one.

We will go through SO(10) describing a specific supersymmetric model
that has been first proposed 30 years ago [16, 17] but has been studied in
detail only in the last decade.

4.1 Representations

There are two types of representations in SO(10) (and SO(N) in general):
tensorial and spinorial. The first type is a bit what we were using in SU(5),
although now there are no differences between upper and lower indices. For
example the combination

MijkNijPk (124)

where repeated indices automatically run from 1 to 10 (N in SO(N)), is an
SO(10) invariant. All this follows from the transformation rule of a funda-
mental index:
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M ′
i = OijMj (125)

which is easily generalized for more indeces:

R′
i1...iN

= Oi1j1 . . . OiN jN
Rj1...jN

(126)

where the transformation matrix

Oij = exp (iαklTkl)ij (127)

Tkl are the anti-symmetric generators (10 × 10 matrices, 45 of them in-
dependent) of SO(10), that satisfy the commutation relations

[Tij, Tkl] = i (δikTjl + δjlTik − δilTjk − δjkTil) (128)

All this is completely analogous to the well known SO(3) case of ordinary
rotations in 3D space.

The different tensorial representations have one or more fundamental in-
dices, and usually some extra constraint on them, for example symmetry,
antisymmetry, tracelessness, and, as we will see later, (anti)self-duality. We
will consider obviously only the lower dimensional ones, although in SO(10)
very few representations are really low dimensional. The building block
among tensorial representations is the fundamental 1-index 10i. With two
indices we can construct either an antisymmetric 45ij = −45ji or a symmetric
54ij = 54ji combinations

10 × 10 = 45 + 54 + 1 (129)

We may use in the following also the 3 indices completely antisymmetric
120 (= 10 × 9 × 8/3!), a 4 indices completely antisymmetric 210 (= 10 ×
9 × 8 × 7/4!) and 5-indices completely antisymmetric with an extra self (or
anti-self) duality relation

126ijklm = ± i

5
εijklmnopqr126nopqr (130)

In fact, 126 = (1/2)10 × 9 × 8 × 7 × 6/5!.
The spinorial representations are a bit more tricky. They follow from a

different type of generators that satisfy (128). You obtain it by first generat-
ing the 10 (N) different 25 = 32-dimensional (in a general SO(N) the power
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is N/2 for N even and (N − 1)/2 for N odd) Γ matrices that satisfy the
anticommutation relation

{Γi, Γj} = 2δij (131)

Then the 45 matrices 32 × 32

Σij =
1

4i
[Γi, Γj] (132)

satisfy the SO(10) commutation relations (128). The explicit form of the Γ
and thus Σ matrices can be found in [18, 19].

One can think that the spinorial representation is 32-dimensional, but ac-
tually this is reducible. One can in fact define the analogue of γ5 in Minkowski
spacetime as

ΓFIV E = iΓ2Γ4 . . . Γ10 (133)

and project the left 16 and right 16 states as

16 =
1

2
(1 + Γ5) 32 16 =

1

2
(1 − Γ5) 32 (134)

Now we have enough knowledge to see better into the useful representa-
tions of SO(10).

4.2 Our choice of representations

First, the matter fields of one generation live in a single 16 dimensional
(spinorial) representation of SO(10). It is great that all SM fermions are
unified, and the 16th element is a singlet, the right-handed neutrino:

16F = (Q, uc, dc, L, νc, ec) (135)

This obviously calls for the see-saw mechanism [20, 21]. Also, it is not
strange that different Yukawas will be connected now. So one can derive in
SO(10) various constraints among SM Yukawa couplings (quarks and leptons,
neutrino included).

Second, only three types of Yukawas are possible, i.e. only 10, 120 and
126 dimensional Higgses of SO(10) can couple to spinorial bilinears

16 × 16 = 10 + 120 + 126 (136)
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We will keep just of them, 10 and 126 only, with the SM Higgs doublets
(remember that in MSSM there must be two Higgs doublets) living in both
10 and 126 (i.e. linear combinations of doublets there) [22, 23]. Schematically

WY ukawa SO(10) = 16F (Y1010H + Y126126H)16F (137)

SO(10) constraints the Yukawa matrices in generation space Y10 and Y126

to be symmetric (Y120 turns out to be antisymmetric).
Third, SO(10) has rank 5, the SM rank 4. So to break the rank one

needs to give a vev to the SM singlet in 126 (another, non-minimal option
is to add a new Higgs in a 16 dimensional representation). But since we
are in supersymmetry, another superfield, the 126, must be introduced to
cancel the nonzero D-terms (or, better, to allow the rank breaking). Notice
that here the situation is different from the introduction of the second Higgs
doublet in MSSM: SO(10) is anomaly free by construction, no matter what
representation one chooses.

This same (126) vev is the one that gives mass to the right-handed neu-
trino. Notice that this means that its mass matrix has the same Yukawa
Y126 that is used for other fermion masses, a powerful consequence of SO(10)
gauge invariance.

Finally, the renormalizable Higgs sector needed to break SO(10) into SM
can be constructed with 54 and 45 or 210 only, on top of the above-mentioned
126 − 126 pair. Since only the second choice allow in supersymmetry weak
doublet mixing in 10 and 126, we will stick to this choice.

Finally, an adjoint 45 dimensional vector multiplet will describe the gauge
part of SO(10).

To summarize: we will work with

3 × 16F , 10H , 126H , 126H , 210H , 45V (138)

The index F means that our light fermions are living there, H that sooner
or later some of the fields are getting a nonzero vev, and V refers to the vector
superfield.

4.3 The Pati-Salam subgroup

Here it is perhaps time to introduce the Pati-Salam (PS) subgroup of SO(10).
It is a left-right symmetric model with 4 colors, i.e. the product group
SU(2)L×SU(2)R×SU(4)C . The matter fields under it are
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16 = (2, 1, 4) + (1, 2, 4̄) (139)

where the left and right handed doublets are in

(2, 1, 4) =
(

u1 u2 u3 ν
d1 d2 d3 e

)
, (1, 2, 4̄) =

(
uc

1 uc
2 uc

3 νc

dc
1 dc

2 dc
3 ec

)
(140)

Notice that leptons are just the 4th color.
The 10 and 126 dimensional Higgses get decomposed under the PS sub-

group (not the SM anymore!) as (for this and most other group theory results
the reader should consult the famous review of Slansky [24])

10 = (2, 2, 1) + (1, 1, 6) (141)

126 = (2, 2, 15) + (3, 1, 10) + (1, 3, 10) + (1, 1, 6) (142)

126 = (2, 2, 15) + (1, 3, 10) + (3, 1, 10) + (1, 1, 6) (143)

210 = (1, 1, 1) + (2, 2, 6) + (3, 1, 15) + (1, 3, 15)

+ (2, 2, 10) + (2, 2, 10) + (1, 1, 15) (144)

45 = (3, 1, 1) + (1, 3, 1) + (2, 2, 6) + (1, 1, 15) (145)

I derived the above in the following way. Remember that the PS theory
is locally equivalent to SO(4)×SO(6), since locally SO(4)∼SU(2)L×SU(2)R

and SO(6)∼SU(4)C .
10i has one index of SO(10), i, which runs from 1 to 10. The elements

in 10 with index i from 1 to 4 represent a 4 of SO(4), i.e. a (2,2,1) under
Pati-Salam. The remaining elements 10i with i = 5, . . . 10 are a 6 of SO(6),
thus a (1,1,6) of PS.

On the other side 126 is a 5-index completely antisymmetric matrix with
a self-dual relation that modes out half of the degrees of freedom. We can just
repeat the previous case of 10, but now with 5 indeces. For example, taking
all 5 indices running from 5 to 10 and antisymmetrizing them we get just a 6
of SO(6) (in 6 dimensions a 1-form is dual to a 5-form, i.e. in d-dimensions
an object with p completely antisymmetric indices has the same number of
components as an object with d-p completely antisymmetric indices), i.e. a
(1,1,6) of PS. We continue then with 4 indices of SO(6) and one index of
SO(4) to get a (2,2,15) of PS, etc.

Exercise: Derive the decompositions in (141)-(145).
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One last thing will be useful in future: the electric charge can be written
with the following symmetric combination of SO(10) generators:

Qem = T3L + T3R +
B − L

2
(146)

Here T3L,R are the eigenvalues of the third generator in SU(2)L,R, in fun-
damental representation for example from the usual Pauli matrix τ3/2:

T3 =
1

2

(
1 0
0 −1

)
(147)

while B − L is proportional to the last, 15th generator of SU(4)C , in funda-
mental representation for example by

B − L

2
=

1

3

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3

⎞
⎟⎟⎟⎠ (148)

4.4 The Higgs sector

We have now most of the ingredients needed to describe the SO(10) breaking
into the SM. First of all, which of the HIggs involved contain SM singlets?
After a look to their Pati-Salam decomposition we find these candidates in
Φ(210), Σ(126) and Σ(126). We denote their vevs as

p = 〈Φ(1, 1, 1)〉 , a = 〈Φ(1, 1, 15)〉 , ω = 〈Φ(1, 3, 15)〉
σ = 〈Σ(1, 3, 10)〉 , σ̄ = 〈ΣH(1, 3, 10)〉 (149)

The most general renormalizable SO(10) invariant superpotential with
fields Φ, Σ and Σ can be written ([25])

WHiggs =
mΦ

4!
ΦijklΦijkl +

mΣ

5!
ΣijklmΣijklm (150)

+
λ

4!
ΦijklΦklmnΦmnij +

η

4!
ΦijklΣijmnoΣklmno
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The next step is to rewrite this same superpotential (150) in terms of SM
singlets (149). To do that we need to localize the SM, i.e. find out in which
components of representations Φ, Σ and Σ they live (i.e. to calculate the
Clebsch-Gordan coefficients).

The fundamental representation of SO(10) satisfies (128), and is given by

(Tij)kl = −i (δikδjl − δilδjk) (151)

The Cartan subalgebra of SO(10) (the maximal Abelian subgroup of
SO(10)) is 5-dimensional, and is composed of

T12, T34, T56, T78, T90 (152)

The SM generators and B − L are linear combinations of these Cartan
generators. Let’s see it.

Remember that indices from 1 to 4 mean the left-right SU(2)L×SU(2)R

subgroup, while those from 5 to 10 (this last denoted for simplicity just by
0) live in SU(4)C . Let’s consider the first case. It boils down to the known
way of writing SU(2)×SU(2) generators T 1,2,3

L,R from the SO(4) generators Tij

(i < j and running from 1 to 4).
Take one index as particular, and define (a, b, c now run from 1 to 3):

Ta4 = Ka Tab = εabcJc (153)

Since Tij satisfy (128), the new generators satisfy

[Ka, Kb] = iεabcJc [Ja, Kb] = iεabcKc [Ja, Jb] = iεabcJc (154)

Just one step more and define

T a
L =

1

2
(Ja + Ka) T a

R =
1

2
(Ja − Ka) (155)

with the SU(2)L×SU(2)R commutation relations

[
T a

L,R, T b
L,R

]
= iεabcT

c
L,R

[
T a

L,R, T b
R,L

]
= 0 (156)

In components one has in terms of the original generators
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T 1
L =

1

2
(T23 + T14) T 1

R =
1

2
(T23 − T14)

T 2
L =

1

2
(T31 + T24) T 2

R =
1

2
(T31 − T24) (157)

T 3
L =

1

2
(T12 + T34) T 3

R =
1

2
(T12 − T34)

Similarly we find the SU(4)C generators explicitly from the SO(6) ones:

T3L ∝ T12 + T34

T3R ∝ T12 − T34

B − L ∝ T56 + T78 + T90 (158)

T3C ∝ T56 − T78

T8C ∝ T56 + T78 − 2T90

Exercise: Find out the proportionality factors in (158).
Let’s come back to our original problem, i.e. finding where the SM singlets

live. Imagine the generator T12. It acts on a one index object as

(
T̂12X

)
k

= (T12)kl Xl = −i (δ1kX2 − δ2kX1) (159)

Since for Xk1k2...kN
the transformation rule is as usual

(
T̂ijX

)
k1k2...kN

= (Tij)k1l Xlk2...kN
+ (Tij)k2l Xk1l...kN

+ . . . + (Tij)kN l Xk1k2...l

(160)
we can immediately find out that

T2i−1,2iX2k−1,2k = 0 (161)

for any i, k = 1, 5. This is a necessary constraint for a SM singlet, but not
sufficient. For example a 15 of SU(4)C has 3 such objects with the eigenvalues
of all Cartan generators (U(1) quantum numbers) zero. The fundamental of
SU(4) get decomposed into SU(3)×U(1) as

4 = (3,−1/3) + (1, 1) (162)
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so that the adjoint becomes

15 = (4 × 4̄) − 1 = [(3̄, 1/3) + (1,−1)] × [(3,−1/3) + (1, 1)] − 1

= (8, 0) + (1, 0) + (3,−4/3) + (3̄, 4/3) (163)

In the octet of SU(3) there are two elements with zero T3 and T8, i.e. the
neutral pion and eta. These should not be counted.

So which are the SM singlet states in 210? The easiest one is the PS
singlet (all 4 SO(4) indices) which is

p = 〈Φ1234〉 (164)

All the possible permutations are also possible (remember that Φ is com-
pletely antisymmetric in its 4 indices).

Next comes the (1, 1, 15), which is made from all 4 SO(6) indices:

a = 〈Φ5678〉 = 〈Φ5690〉 = 〈Φ7890〉 (165)

Finally we have the mixed (1, 3, 15), so that

ω = 〈Φ1256〉 = 〈Φ1278〉 = 〈Φ1290〉 = 〈Φ3456〉 = 〈Φ3478〉 = 〈Φ3490〉 (166)

We will not go through the whole derivation for the Σ, which is a bit
more complicated, but one can have a look for example to [26]. Plugging
this directions into the superpotential we get

WHiggs = mΦ

(
p2 + 3a2 + 6ω2

)
+ 2λ

(
a3 + 3pω2 + 6aω2

)
+ mΣσ̄σ + ησ̄σ (p + 3a − 6ω) (167)

The minimization of this superpotential leads to non-zero values of the
vevs p, a, ω and σ = σ̄. This last equality follows from D-terms.

Exercise: Analize the possible minima of (167). Check the results in
[26].
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4.5 The Yukawa sector

From (137) and the above decomposition it is easy to get the SM Yukawas.
For example

16F 10H16F → (2, 1, 4)F (2, 2, 1)H(1, 2, 4)F

16F 126H16F → (2, 1, 4)F (2, 2, 15)H(1, 2, 4)F + (1, 2, 4)F (1, 3, 10)H(1, 2, 4)F

+ (2, 1, 4)F (3, 1, 10)H(2, 1, 4)F + . . . (168)

The SM doublets live in (2, 2, 1)H and (2, 2, 15)H , the SM singlet that
break the rank of SO(10) is in (1, 3, 10)H , while the SU(2)W triplet Higgs
that gives rise to a type II see-saw is in (3, 1, 10). Remember again that now
the decomposition is under Pati-Salam, not the SM!

It is now relatively simple to guess the SM fermion masses for down
quarks (D), up quarks (U), charged leptons (E) and neutrinos (N), valid for
any number of generations:

MD = vd
10Y10 + vd

126Y126 (169)

MU = vu
10Y10 + vu

126Y126 (170)

ME = vd
10Y10 − 3vd

126Y126 (171)

MN = −MνD
M−1

νR
MνD

+ MνL
(172)

where we defined the Dirac (νD), left Majorana (νL) and right Majorana (νR)
neutrino masses as

MνD
= vu

10Y10 − 3vu
126Y126 (173)

MνL
= vLY126 (174)

MνR
= vRY126 (175)

and the vevs are

vu,d
10 = 〈(2, 2, 1)u,d

H 〉 , vu,d
126 = 〈(2, 2, 15)u,d

H 〉 (176)

vR = 〈(1, 3, 10)H〉 , vL = 〈(3, 1, 10)H〉 (177)
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The only thing that has to be still understood is the factor of −3 in front
of Y126 in ME and MνD

. It is due to the vev of the (traceless) adjoint 15 of
SU(4)C in (2,2,15)H :

〈15C〉 ∝ diag(1, 1, 1,−3) (178)

and thus give an extra factor −3 to leptons with respect to quarks.
Remember also that every left-right bidoublet (2,2) is (as any chiral super-

field spin 0 component) complex in supersymmetry, so there are two possible
vevs, which we denoted with indices u and d.

Finally, we have still to specify how SO(10) gets broken to the SM, i.e.
the Higgs sector. It turns out that on top of the fields I have mentioned
so far (the matter 16F and the Higgses 10H and 126H) we need two other
representations, the 5 indices antisymmetric and anti-self-adjoint 126H and
the 4 indices antisymmetric 210.

Just to taste the predictiveness of this model, consider the case of 2
generations (let us talk about the heaviest two, the second and the third
generation of the SM) and limit ourselves to the real case. We can always go
into the basis in which Y10 for example is diagonal:

vd
10Y10 =

(
a 0
0 b

)
, vd

126Y126 =
(

c d
d e

)
(179)

Then the number of free parameters in the charged fermion sector is 7:

a , b , c , d , e , vu
10/v

d
10 , vu

126/v
d
126 (180)

They can be determined by fitting 7 experimental data:

ms , mb , mc , mt , mμ , mτ , Vcb (181)

With one single new parameter,

vR/vL (182)

we can now calculate two measurable quantities from the neutrino sector (we
assume here a normal hierarchy in the neutrino sector)

m3/m2 =
√
|Δm2

31/Δm2
21| , θ23 = θATM (183)

so we have in total one prediction.
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Exercise: Show that by increasing the number of generations one gets
more predictions, assuming all parameters real.

Now let’s see this fit in detail. Rewrite (169)-(171) as

MU = D + S (184)

MD = r1D + r2S (185)

ME = r1D − 3r2S (186)

Since all the matrices involved are symmetric we can invert them, i.e.
calculate MU,D in terms of S,D

(
D
S

)
=

1

r2 − r1

(
r2 −1
−r1 1

)(
MU

MD

)
(187)

and plug the expressions in the last equation to get

ME =
4r1r2

r2 − r1

MU − 3r2 + r1

r2 − r1

MD (188)

From it we find two useful equations taking its trace, or trace its square:

TrME =
4r1r2

r2 − r1

TrMU − 3r2 + r1

r2 − r1

TrMD (189)

TrM2
E =

(
4r1r2

r2 − r1

)2

TrM2
U +

(
3r2 + r1

r2 − r1

)2

TrM2
D

− 2
(

4r1r2

r2 − r1

)(
3r2 + r1

r2 − r1

)
TrMUMD (190)

We know all the above traces, the last one being

TrMUMD = (mtmb + mcms) − (mt − mc)(mb − ms)V
2
cb (191)

where we used the fact that in the MU = Md
U basis

MD = V T
CKMMd

DVCKM (192)

Let’s simplify the neutrino sector assuming that type II seesaw dominates.
In this case
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MN = cS =
c

r2 − r1

(−r1MU + MD) (193)

Two other invariant combinations can be found. The first one is

TrM2
N

(TrMN)2 =
r2
1TrM2

U + TrM2
D − 2r1TrMUMD

(−r1TrMU + TrMD)2 (194)

where the left-hand-side equals

1 +
(

m3

m2

)2

(
1 + m3

m2

)2 (195)

must be compared to the experimental value (assuming a hierarchical neu-
trino spectrum 2)

(
m3

m2

)2

=

∣∣∣∣∣Δm2
ATM

Δm2
SOL

∣∣∣∣∣ = 32 ± 2 (196)

Here and in the following we are using for the neutrino fit the values from
[27, 28].

The second useful invariant is

TrMNME

TrMN

=
1

−r1TrMU + TrMD

(197)

×
[−4r1r

2

r2 − r1

TrM2
U − 3r2 + r1

r2 − r1

TrM2
D +

r2
1 + 7r1r2

r2 − r1

TrMUMD

]

where the left-hand-side is

(
m3

m2
mτ + mμ

)
−
(

m3

m2
− 1

)
(mτ − mμ)V 2

23

m3

m2
+ 1

(198)

with the experimental value

V 2
23 = sin2 θATM = 0.51 ± 0.06 (199)

2In the case of inverse hierarchy the two generation analysis is probably not a good
approximation, since we would neglect a large mass.
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We have thus 4 equations (189), (190), (194) and (197) for two unknowns,
r1 and r2, clearly an overconstrained system. The idea is to consider a χ2

analysis for all the observable involves (except the charged lepton masses,
which are known too well). Remember that all these quantities must be
evaluated at the GUT scale, which has been fortunately already done. We
can use for example [29] for the masses, while the neutrino parameters and
the value Vcb ≈ 0.04±0.001 at MZ do not change significantly, see for example
[30] for a discussion on this point. Remember also that all the masses can
have arbitrary sign, so there are all together 25 = 32 possibilities, since one
mass can be fixed.

Exercise: Find numerically the minimal χ2 for the above case.
Instead of doing this numerical fit, let me mention an argument for why

we may hope it will work. One of the main problems is to get a large
atmospheric mixing angle and a small corresponding quark angle. Assuming
as above that type II seesaw dominates, we have

MN ∝ S ∝ MD − ME (200)

i.e. explicitly in the basis ME = Md
E (θD is the angle between MD and ME)

MN ∝ V (θD)
(

ms 0
0 mb

)
V T (θD) −

(
mμ 0
0 mτ

)
(201)

Small off-diagonal entries automatically gives small Vcb, so we see that the
only way to get a large atmospheric angle is to cancel as much as possible
the 33 entry, which we obtain if mb ≈ mτ . This, so called b− τ unification is
however a well-known phenomenon occuring in MSSM. Although not exact,
it is typically correct up to 20-30%. So a large atmospheric angle can be
connected to b − τ unification, assuming type II seesaw dominates [31].

The realistic case of three generations and complex parameters is of course
much more involved. Allowing an arbitrary Higgs sector several fits are
possible and summarized for example in [32, 33, 34].

It is possible to fit all the data also in the minimal model with the Higgs
superpotential described above, providing the gaugini and higgsini of MSSM
lie at about 10-100 TeV, while the sfermions and the second Higgs are much
heavier (1013 GeV or so), which does not spoil one-step unification (one ver-
sion of the so-called split supersymmetry scenario). Such a model determines
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all the parameters, among others predicts all proton decay rates and a rela-
tively large value of the yet unmeasured neutrino mixing angle θ13 (see [35]
and references therein).

Another possibility (for those who do not like the split susy scenario and
almost nothing to find at LHC) is to include another multiplet, the 120. This
has been recently done successfully. For details and references see [36] and
the latest [37].

4.6 Proton decay in susy SO(10)

One last word regarding proton decay. It is similar to the SU(5) case, the
dimension 5 decay dominating the rate unless the sfermions are too heavy.
There are though more color triplets mediating it. They live in 10H , 126H ,
126H and 210H . They mix, so that their mass matrix is certainly not diago-
nal. But only some elements are coupled to the SM fermions, and thus only
some entries of the inverse mass matrix are important for the proton decay
rate. It is thus at least in principle possible to arrange cancellations if the
rate becomes dangerously large. For detailed studies see for example [38, 39].

5 Conclusion

There were many aspects of grand unification not considered in these lectures.
Let me just mention the groups SU(6) and E6, the SO(10) models with 16H

instead of 126H , non-supersymmetric SO(10), etc. They would need more
time, and each of these models has its advantages but also drawbacks. It
is correct to say that at the moment there is no really satisfactory model of
grand unification. What prevents to be such are the successful solution to the
doublet-triplet splitting problem, the origin of supersymmetry breaking and
a better understanding of the hierarchies in general. But these are problems
present in any physics beyond the standard model as well in the standard
model itself. What grand unified theories do is what any physical theory
should do: connect different phenomena. And GUTs provide links between
proton decay, fermion masses and gauge symmetries.
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Melfo, Miha Nemevšek, Andrija Rašin, Francesco Vissani, Yue Zhang and
especially Goran Senjanović.
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Grand Unified Theories,” Phys. Rev. D 25 (1982) 3092.

[16] C. S. Aulakh and R. N. Mohapatra, “Implications of Supersymmetric
SO(10) Grand Unification,” Phys. Rev. D 28 (1983) 217.

[17] T. E. Clark, T. K. Kuo and N. Nakagawa, “A SO(10) Supersymmetric
Grand Unified Theory,” Phys. Lett. B 115 (1982) 26.

[18] F. Wilczek and A. Zee, “Families from Spinors,” Phys. Rev. D 25 (1982)
553.

[19] C. S. Aulakh and A. Girdhar, “SO(10) a La Pati-Salam,” Int. J. Mod.
Phys. A 20 (2005) 865 [arXiv:hep-ph/0204097].

[20] R. N. Mohapatra and G. Senjanović, “Neutrino Mass and Spontaneous
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