

2245-10

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems

13 - 18 June 2011

The Production of Hydrogen with Nuclear Energy Part 3: Nuclear Process Heat Reactors

Karl Verfondern

Research Center Juelich Institute for Energy and Climate Research Julich Germany

k.verfondern@fz-juelich.de

The Production of Hydrogen with Nuclear Energy Part 3: Nuclear Process Heat Reactors

Karl Verfondern Research Center Jülich, Institute for Energy and Climate Research (IEK-6)

Joint IAEA – ICTP Advanced School on "Development and characterization of materials for hydrogen-based energy systems: Role of nuclear technology" June 13-18, 2011, Trieste, Italy

Contents

Part I

- Hydrogen Economy and the Role of Nuclear Power
 Part II
- Hydrogen Production Systems

Part III

- Gen-IV Reactor
- High Temperature Gas-Cooled Reactor
- Process Heat HTGR
- Intermediate Heat Exchanger

JÜLICH Improvements for Future Nuclear Reactors

- Safety improvements by innovative technologies
- Competitive cost
- New approaches for waste minimization & disposal
- Reduction of proliferation risk
- Improvement of public acceptance
- Extension of applications (electricity, heat, hydrogen)
- Conservation and extension of expertise & competence

Gen-IV Nuclear Reactor Systems

Karl Verfondern

Trieste, Italy, June 13-18, 2011

- Nearest-term option of a Gen-IV system;
- To deliver electricity, process heat & steam for CHP & H₂ (or other fuels) production;
- Demonstration plant to be operational by about 2015-2020.

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

GenIV Nuclear Reactor: VHTR

- 400-600 MWt for electricity and process heat production;
- Helium-cooled, graphite-moderated, thermal neutron spectrum;
- Gas outlet temperature of 900-1000 °C;
- IHX for heat transfer to H₂ production plant or gas turbine.

IEK-6 Reactor Safety Karl Verfondern

Temperature Ranges Provided and Required

Nuclear Process Heat Applications

Nuclear process heat (PNP)

Steam Cycle HTR with Pebble Bed Core

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

200 MWt HTR-Modul by INTERATOM

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

HTGR Fuel Element Designs

IEK-6 Reactor Safety Karl Verfondern

Reactors Operated with CP Fuel

Reactor	Country	Year	Thermal Power (MW)
Dragon	Great Britain	1964-77	30
Peach Bottom	U.S.	1966-74	115
UHTREX	U.S.	1967-70	3
AVR	Germany	1966-89	46
Fort St. Vrain (FSV)	U.S.	1967-89	840
Thorium High Temperature Reactor (THTR)	Germany	1983-89	750
High Temperature Engineering Test Reactor (HTTR)	Japan	1998-	30
HTR-10	China	2002	10
Coated particle fuel with >45,000 kg heavy metal produced for these reactors			

HTTR in Japan

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

HTR-10 in China

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

Requirements to a Process Heat HTGR System

- Guaranteed reliable supply of process heat;
- Flexible in operating conditions, i.e., easily adjustable to the wide field of applications and customer's requirements;
- Small-size (modular-type) HTGR for economic process plant operation (170 – 250 MW_{th});
- Safety concept
 - Leak criteria between primary and secondary circuit
 - Thermodynamic interaction between nuclear and chemical facility
 - Explosion hazards
 - Licensing and emergency plans.

- Identify suitable coal gasification processes on lab scale
- Test selected processes on semi-technical scale
- Construct and operate pilot plants for selected processes
- Design large-scale nuclear plant for process heat prod.
- Construct and operate prototype nuclear coal gasification plant
- Construct and operate commercial nuclear coal gasification plant

Prototype Plant PNP-500

Hot Gas Duct

coaxial double-tube horizontal pressure vessel to provide connection between RPV and IHX and also between IHX and PHX

PNP hot gas duct designed for 950°C and 4-5 MPa with flow velocities of ~60 m/s

Inner insulation made of metallic foils or solid fibers, or carbon ceramics

Project PBMR (South Africa)

Block-Type HTGR (USA)

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

Nuclear H₂ R&D Projects (Rep. of Korea)

Nuclear Hydrogen Development and Demonstration (NHDD) project

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

Nuclear H₂ R&D Projects (Russia)

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

Nuclear H₂ R&D Projects (USA)

- H2-MHR

based on 600 MW GT-MHR, H₂ production by HTE,

 STAR-H2 (Secure Transportable Autonomous Reactor Hydrogen) 400 MW heavy liquid metal cooled fast reactor, sec. coolant "FLiBe" to produce, apart from H₂, electricity and potable water

- AHTR (Advanced High Temperature Reactor)

- up to 4000 MWt
- coolant is liquid fluoride salt
 @ 700-1000°C
- H₂ via S-I at lower temp. using membrane techn.

EU-FP6: HYTHEC Project 2004-2007

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011

Generic Reference Configuration

System with HTGR includes use of an IHX (Intermediate Heat Exchanger)

- no primary helium in process plant
- no process gases in reactor building
- conventional design of process plant components
- repair works under non-nuclear conditions

Intermediate Heat Exchanger

Thank You for Your Attention

k.verfondern@fz-juelich.de

IEK-6 Reactor Safety Karl Verfondern Production of Hydrogen with Nuclear Energy Trieste, Italy, June 13-18, 2011