

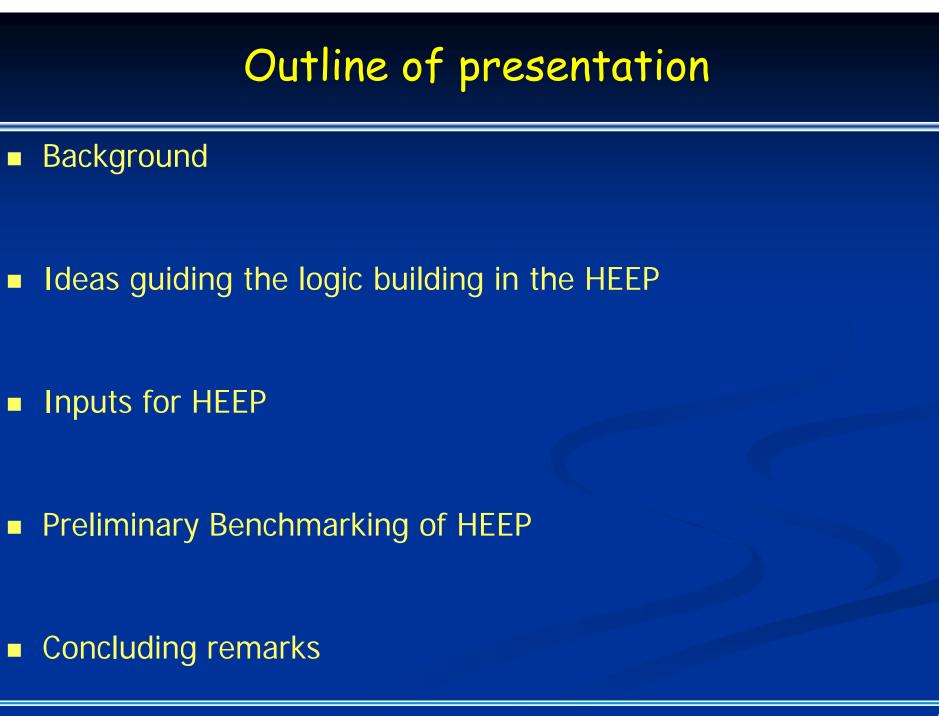
2245-12

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems

13 - 18 June 2011

HEEP: The tool for Comprehensive Cost Assessment of Hydrogen from Nuclear Energy- A brief introduction

U.D. Malshe


Reactor Design and Development Group Bhabha Atomic Research Centre Mumbai India

udmalshe@barc.gov.in

HEEP: The tool for Comprehensive Cost Assessment of Hydrogen from Nuclear Energy- A brief introduction

I.V. Dulera, <u>U.D. Malshe</u>, P.P. Kelkar, A. Antony, A. Basak

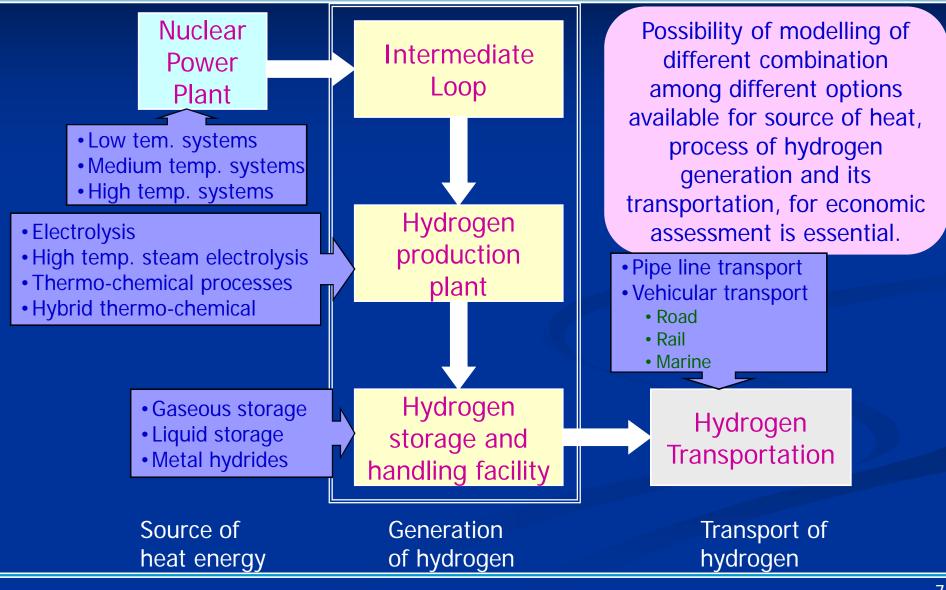
Reactor Design and Development Group Bhabha Atomic Research Centre Trombay, Mumbai-400 085, INDIA

Background

Pathways for hydrogen production-Conventional methods and nuclear route

- Selection of pathways
 - National policy
 - Availability of resources
 - Effects of utilisation of resources for hydrogen production

Competitive economics


- IAEA initiated development of comprehensive cost assessment software 'HEEP'
- BARC developed HEEP under Contractual Service Agreement with IAEA

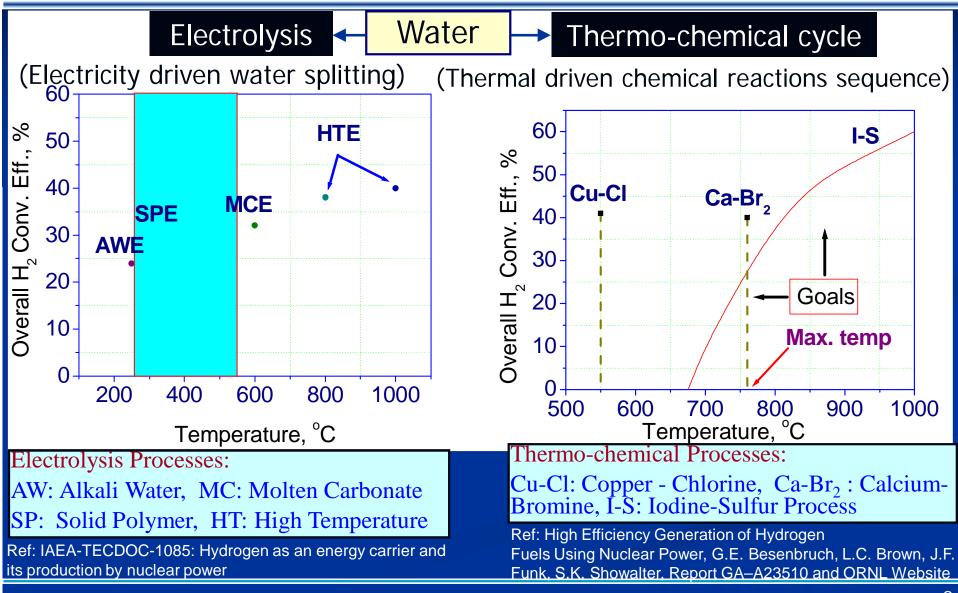
Members of HEEP development team

Name	Contribution to HEEP development
I.V. Dulera	Technical studies
U.D. Malshe	Pre-processor and co-ordination with IAEA
P.P. Kelkar	Mathematical formulation
A. Antony	Execution module
A. Basak	Post processing module

Ideas guiding the logic building of HEEP

Wide range of options being developed globally for hydrogen production using nuclear power 1/2

Wide range of options being developed globally for hydrogen production using nuclear power 2/2


Vigorous R&D is underway to minimise technical hurdles in nuclear hydrogen production

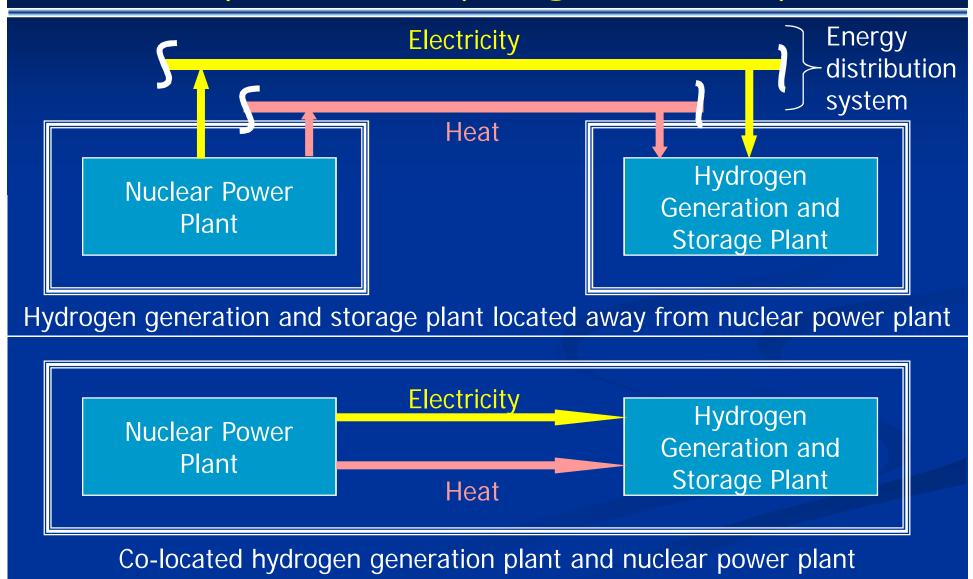
Nuclear reactors

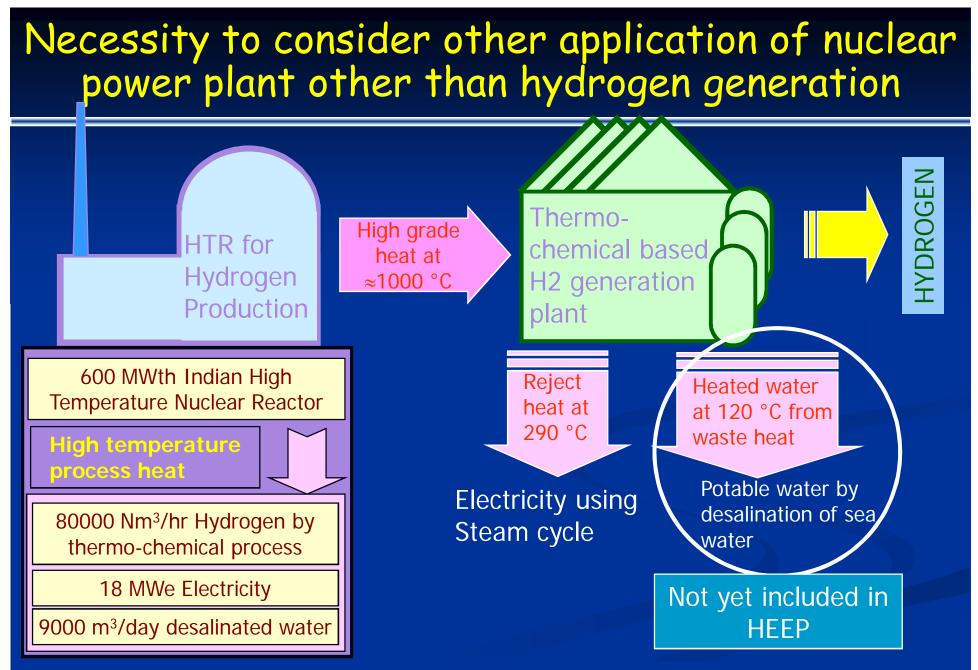
Hydrogen generating process

Needs expandable database so that a desired combination among different options available for source of heat, process of hydrogen generation and its transportation can be modelled.

Efficiency of different processes

Economics of hydrogen production will depend strongly on plant availability factor as well as process efficiency (Some interesting cases needed to be modelled)

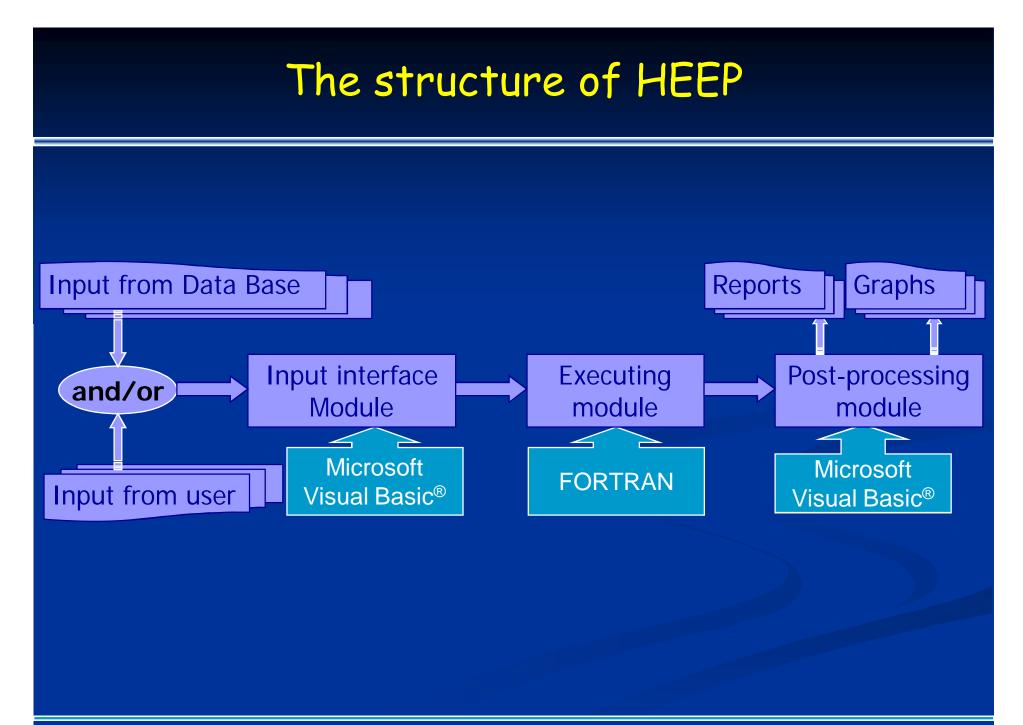

- High and medium temperature processes Higher efficiency but lower availability factor
 - Multiple redundant systems and components with
 - Increased capital costs


 Electrolysis based system – Lower efficiency but higher availability factor
 Little or no redundant system and components

Lower overall costs

Necessity of accounting efficiency and availability of plant for assessment of hydrogen economy

Location of hydrogen production plant is also important in hydrogen economy


In a long-term time frame Indian HTRs aims to satisfy total energy needs of a region in the form of hydrogen, electricity and potable water

Some important features of HEEP

- "Single" window based tool considering source to end user
- Models different combination among different options available for source of heat, process of hydrogen generation and its transportation

Expandable database/library

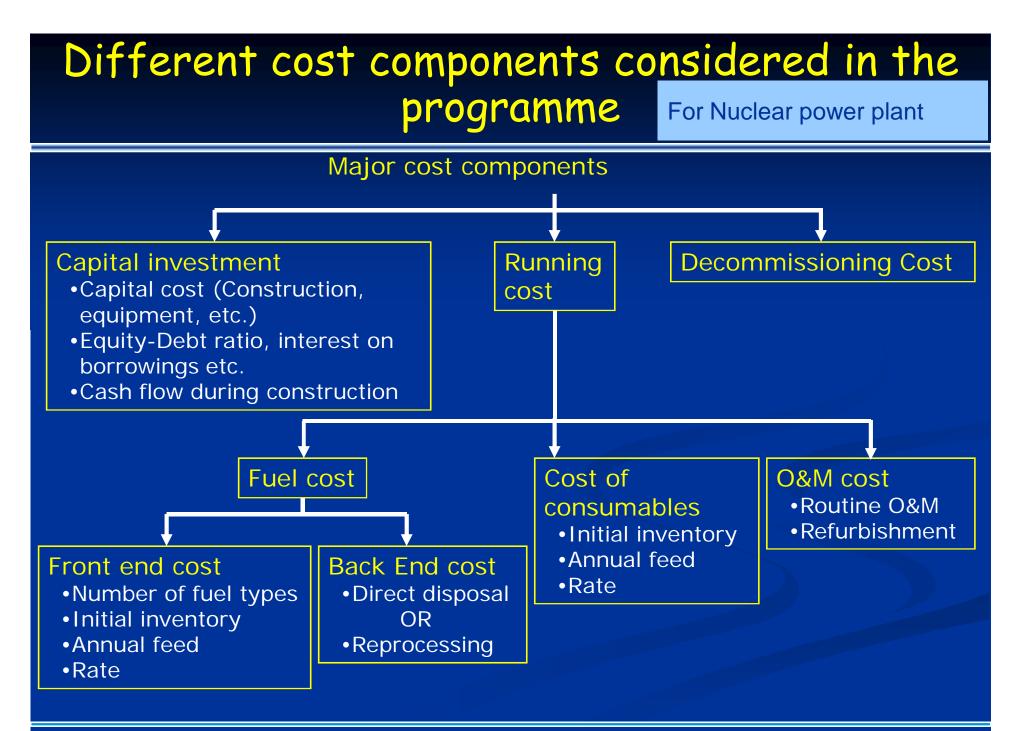
- To build new cases using library files as a starting point
- Input from existing case files
- Models effect of location of hydrogen generation plant with respect to nuclear power plant
- Models electricity generation and supply along with heat

Inputs for HEEP

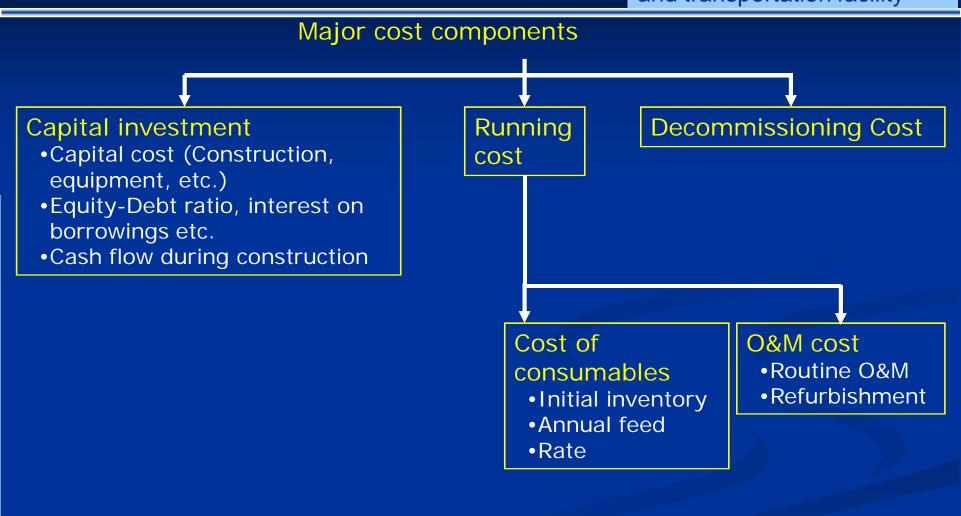
Categorisation of input information for HEEP

Facilties	Categories of input parameters		
Nuclear power plant	Technical parameters		
	Chronological data		
	Cost elements		
Hydrogen generation and	Technical parameters		
storage plant	Chronological data		
	Cost elements		
Hydrogen transportation facility	Technical parameters		
	Chronological data		
	Cost elements		

Technical details affecting the cost estimation


- Nuclear power plant
 - Number of units
 - Installed capacity per unit (MWth)
 - Capacity and availability factor of unit
 - Thermal power available for H2 generation (MWth)
 - Thermal efficiency of unit (if electricity is generated)

For quick estimates of hydrogen storage and transportation components, programming is based on formulation described in the following reference: "Costs of Storing and Transporting Hydrogen", Wade A. Amos, NREL/TP-570-25106, November 1998, NREL


- Hydrogen generation plant
 - Number of units
 - Thermal power required for installed capacity (MWth)
 - Capacity and availability factor of unit
 - Process efficiency
 - Hydrogen generation rate (kg/yr)
- Hydrogen storage facility
 - Type of hydrogen storage (Gaseous/Liquid/Hydride)
 - Capacities, power and auxiliary requirements of storage devices
- Hydrogen transportation
 - Pipeline transportation (distance, pipe size, etc.)
 - Vehicular transportation (mileage, capacity, driver's wages, etc.

Time periods of various events affecting the cost estimation

	Nuclear power plant	Hydrogen generation and storage facility	Hydrogen transportation facility
Construction period	\checkmark	\checkmark	\checkmark
Operating period	\checkmark	\checkmark	\checkmark
Cooling before de- commissioning	\checkmark	\checkmark	\checkmark
Decommissioning period	\checkmark		
Number of refurbishments	\checkmark		
Refurbishment period	\checkmark	\checkmark	
Spent fuel cooling period	\checkmark	X	X
Waste cooling period	\checkmark	X	X

Different cost components considered in the programme For H2 generation, storage and transportation facility

Calculation of cost of hydrogen

Hydrogen cost is estimated in two steps.

 First step: calculation of levelised cost of energy (thermal and electrical, if generated)delivered by nuclear power plant.

Second step: Uses nuclear power plant results as input along with other user specified information to calculate levelised cost of hydrogen generation

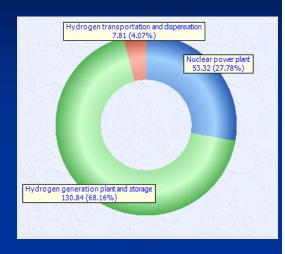
Mathematical formulation

The programme estimates "Levelised Cost of Hydrogen Generation"

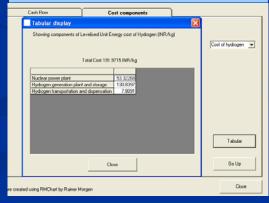
Uses discount rate to work out present value of money required over the entire life period

Levelised Cost of Nuclear Hydrogen (LCHG)

$$LCHG = \frac{E_{npp} (t_{0}) + E_{H2GP} (t_{0}) + E_{H2T} (t_{0})}{G_{H2} (t_{0})}$$


Where,

E_{npp}(t₀) - Present value of expenditures of nuclear power plant
 E_{H2GP}(t₀) - Present value of expenditures of Hydrogen Plant
 E_{H2T}(t₀) - Present value of expenditures of Hydrogen Transport
 G_{H2}(t₀) - Present value of gross generation of hydrogen


Post-processing of HEEP results

- Multi-level display of results in the pie-chart form
 - First level: Contribution of each plant and facility
 - Nuclear power plant
 - Hydrogen generation and storage plant
 - Hydrogen transportation
 - Second level: Contribution of various cost elements for each facility
 - Capital cost
 - Fuel cost in case of nuclear power plant
 - O&M cost
 - Decommissioning cost
 - Report generation

Reports are generated in "html" format

Features provided to view results in tabular form also

Preliminary Benchmarking of HEEP

Korean study to estimate cost of hydrogen generation

- The Korean Atomic Energy Research Institute (KAERI) carried out study on the estimation of cost of hydrogen production by S-I thermo-chemical based plant coupled to high temperature reactors.
 - "Preliminary Cost Estimates for Massive Hydrogen Production using SI Process", K.J. Yang, K.Y. Lee and T.H. Lee, HTR2008-58142, 4th Intl. Topical Meeting on High Temperature Reactor technology, 2008, Washington, USA

G4-ECONS methodology was appropriately modified to evaluate levelized cost of hydrogen.

General description of the reference cases for preliminary benchmarking of HEEP

Reference cases of Korean study:

- Two-different nuclear core types viz. prismatic core (PMR) and pebble bed core (PBR) supplying heat for hydrogen generating plant based on S-I process.
- Four different cases resulting from four different configurations of nuclear plants with S-I thermo-chemical process analysed
 - 4 units of 600 MW(th) PMR supplying thermal energy to produce 216000 tonnes of hydrogen annually
 - 4 units of 200 MW(th) PMR supplying thermal energy to produce 72000 tonnes of hydrogen annually
 - I0 units of 600 MW(th) PBR supplying thermal energy to produce 225000 tonnes of hydrogen annually
 - 4 units of 200 MW(th) PBR supplying thermal energy to produce 72000 tonnes of hydrogen annually
- Electricity for hydrogen generation (non-process electricity) taken from the distribution grid at market rate of 0.06 US\$/kWh

Reference case description for preliminary benchmarking of HEEP (Nuclear power plant)

CASES	CASE-I	CASE-II	CASE-III	CASE-IV
Nuclear reactor capacity	600 MWth	200 MWth	250 MWth	200 MWth
NPP configuration	4 units (PMR)	4 units (PMR)	10 units (PBR)	4 units (PBR)
Capacity factor	90%	90%	90%	90%
Availability factor	100%	100%	100%	100%
Construction period	3 years	3 years	3 years	3 years
Operating life	60 years	60 years	60 years	60 years
Cooling before decommissioning	1 year	1 year	1 year	1 year
Decommissioning period	9 years	9 years	9 years	9 years
Spent fuel cooling period	2 year	2 year 🦳	2 year	2 year
Waste cooling period	2 year	2 year	2 year	2 year
Capital cost	1835.8 M\$	867.575 M\$	2944.45 M\$	1088.75 M\$
Annual fuel cost	120.6 M\$	40.2 M\$	112.5 M\$	36 M\$
O&M Cost	38 M\$	16.8 M\$	56.4 M\$	19.5 M\$
Decommissioning cost	N///	N///	NII	N///

Reference case description for preliminary benchmarking of HEEP (Hydrogen generation)

CASES	CASE-I	CASE-II	CASE-III	CASE-IV
Rated hydrogen generation	216000 te/yr	72000 te/ yr	225000 te/yr	72000 te/yr
Non-process electricity*	815 MWe	272 MWe	849 MWe	272 MWe
Construction period	3 years	3 years	3 years	3 years
Operating life	60 years	60 years	60 years	60 years
Cooling before decommissioning	1 year	1 year	1 year	1 year
Decommissioning period	9 years	9 years	9 years	9 years
Capacity factor	90%	90%	90%	90%
Availability factor	100%	100%	100%	100%
Capital cost	1410 M\$	673.325 M\$	1564.75 M\$	693.15 M\$
O&M cost	77 M\$	37 M\$	77 M\$	37 M\$

*: derived based on total non-process electricity charges indicated in the report

Reference case description for preliminary benchmarking of HEEP (Hydrogen storage)

The reference case did not consider hydrogen storage.

- Hydrogen storage in compressed gas form considered with storage period of "0" hrs giving the storage capacity to be "0". Additionally, storage pressure considered to be atmospheric pressure.
- Programme thus calculates other relevant cost elements that depend on the storage period and compressor pressure as 'nil'

Reference case description for preliminary benchmarking of HEEP (Hydrogen transport)

PARAMETER	VALUE
Vehicle capacity	180 kg
Average speed of vehicle	40 km/hr
Mileage of vehicle	2.5 km/lit
Loading-unloading time per trip	2 hours
Procurement period of vehicle	3 years
Life of vehicle	15 years
Refurbishment cost	100%
Number of refurbishments	4 nos.
Capital cost per vehicle	100000 \$
Annual salary of driver	5000 \$
Price of fuel	0.75 \$/lit
Routine maintenance of vehicle	1% of total cost

The reference case did not consider hydrogen transportation, but for completion above parameters are assumed.

Results for CASE-I (Level-1)

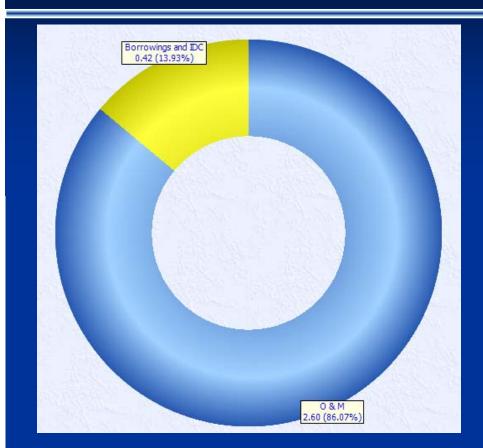
Hydrogen tr	ansportation 0.83 (16.27%	and dispensatio %)	n		
1					Nuclear power plant 1.23 (24.19%)
				S.S.	

Tabular display

Showing components of Levelised Unit Energy cost of Hydrogen (USD/kg)

Total Cost 5.072855 USD/kg

Nuclear power plant	1.227063
Hydrogen generation plant and storage	3.020346
Hydrogen transportation and dispensation	0.8254465

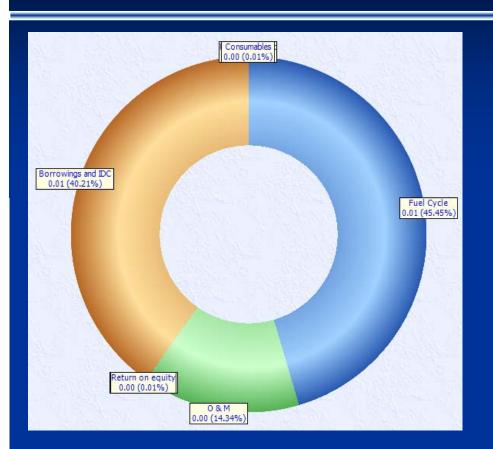

Close

Pie-chart form showing contribution of each unit

Tabular form showing contribution of each unit

X

Results for CASE-I (Level-2)



Tabular display	×			
Showing components of Hydrogen generation plant and storage (USD/kg)				
Total Cost 3.020346 USD/kg				
0 & M 2.599537				
Decomm. 0				
Return on equity 0				
Borrowings and IDC 0.4208092				
Refurbishment 0 Consumable 0				
Close				

Pie-chart form showing cost component of hydrogen generation and storage unit Tabular form showing cost component of hydrogen generation and storage unit

Results for CASE-I (Thermal energy cost)

Refurbishment Consumables

Tabular display Showing components of Levelised Unit Energy Cost of Thermal Energy from NPP (USD/kWth) Total Cost 1.400037E-02 USD/kWth Total Cost 1.400037E-02 USD/kWth Fuel Cycle 6.363036E-03 D & M 2.008344E-03 Decommissioning 0 Return on equity 0 Borrowings and IDC 5.628987E-03

Close

Pie-chart form showing cost component of thermal energy from nuclear power plant Tabular form showing cost component of thermal energy from nuclear power plant

Comparison of results- Contribution of units (NPP, hydrogen generation and transportation)

	Levelised cost of Hydrogen (\$/kg)							
	Total levelised cost of hydrogen	Nuclear power plant component	Hydrogen generation & storage component	Hydrogen transpor- tation cost component	Nuclear power plant + hydrogen generation & storage	KAERI results		
CASE-I	5.07	1.23	3.02	0.83	4.25	4.06		
CASE-II	5.82	1.62	3.38	0.83	5.00	5.56		
CASE-III	5.36	1.50	3.03	0.83	4.53	4.48		
CASE-IV	6.02	1.79	3.40	0.83	5.19	5.86		

Comparison of results- Cost components

Cost	CASE-I		CASE-II		CASE-III		CASE-IV	
comp- onent	HEEP	KAERI	HEEP	KAERI	HEEP	KAERI	HEEP	KAERI
NPP capital	12%	10%	15%	10%	17%	19%	19%	9%
NPP fuel	13%	16%	12%	11%	11%	12%	10%	15%
NPP O&M	4%	5%	5%	5%	5%	6%	6%	5%
SI plant capital	10%	8%	12%	8%	10%	9%	12%	8%
SI plant O&M	61%	62%	56%	66%	57%	54%	54%	63%

Concluding remarks

Concluding remarks

HEEP- consider large number of input variables affecting cost of hydrogen production

Results of HEEP- encouraging and in good agreement with earlier studies.

First version- available for download from IAEA's website.

Software is evolving to reach a mature state

Concluding remarks

Scope for further updating

- To develop/modify input interface for different levels of users and usage
 - Beginners and advanced users
 - Quick estimates and detailed estimates

Building intelligence to avoid/warn erroneous inputs

Thank you