

2245-5

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems

13 - 18 June 2011

Basics of metal hydrides

J. Huot Universite du Quebec a Trois-Rivieres Canada & Institute for Energy Technology Norway

The Abdus Salam **International Centre for Theoretical Physics**

Basics of metal hydrides

J. Huot Université du Québec à Trois-Rivières

Université du Québec

Present address: Institute for Energy Technology, Norway

Institute for Energy Technology

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems Trieste – Italy, 13 – 18 June 2011

History

- T. Graham (1866)
 - Metal palladium absorbs hydrogen
 - Hydrogen can permeate Pd-membranes
- Reilly and Wiswall (1968)
 Mg₂Ni, FeTi
- Van Vucht, Kuijpers and Bruning (1970)
 LaNi₅

Applications of MH

- Hydrogen storage
- Purification/separation
- Isotope separation
- Hydrogen getters
- Hydrogen compression
- Heat storage
- Heat pumps and refrigerators
- Temperature sensors and actuators
- Liquid H₂ (boil-off losses)
- Batteries electrodes
- Permanent magnet production
- Neutron moderators
- Switchable Mirrors

Hydrogen storage

System	Hydrogen	Hydrogen
	mol H ₂ dm ⁻³	wt.%
Gas (273K, 1 bar)	0.045	100
pressure (150 bar)	6.7	1.2
LH ₂ (20K)	35	100
MgH ₂	55	7.7
LaNi ₅ H ₆	52	1.4

HYDROGEN DENSITY

Ref: A. Züttel, "Materials for hydrogen storage", materialstoday, Septemper (2003), pp. 18-27

Metal Hydrides

- Advantages
 - High volumetric density
 - Low pressure
 - Endothermic reaction (desorption)

Disavantages

- Temperature of operation
- Hydrogen sorption kinetic
- ➢ Cost
- > Pyrophoricity

Classes of hydrides

lonic or saline hydrides

- Formed by alkali and alkaline earth metals.
- hydrogen is a negatively charged ion (H-)
- Typical binary ionic hydrides are sodium hydride NaH and calcium hydride CaH₂.
- high conductivities just below or at the melting point.
- Complex ionic hydrides LiAlH₄, NaAlH₄

Covalent hydrides

- compounds of hydrogen and nonmetals.
- atoms of similar electronegativities share electron pairs.
- low melting and boiling points. (most of them are liquid or gaseous at room temperature)
- weak van der Waals forces.
- water (H2O), hydrogen sulfide (H2S), silane (SiH4), aluminum borohydride Al(BH4)3, methane (CH4) and other hydrocarbons.
- Complex chemical reactions should be used to synthesize them

Classes of hydrides

Metallic hydrides

- Formed by transition metals including rare earth and actinide series.
- hydrogen acts as a metal and forms a metallic bond.
- wide variety stoichiometric and nonstoichiometric compounds.
- formed by direct reaction of hydrogen with the metal or by electrochemical reaction.
- TiH_2 and ThH_2 .
- $LaNi_5H_6$, $FeTiH_2$

<u>Note</u>

this division should not be taken too literally. Most hydrides are a mixture of different bonding.

Example: LiH mainly ionic but partly covalent.

BINARY HYDRIDES

1	2											13	14	15	16	17	18
н																	He
2.20		Ailreo	I-Rocho	w Electro	negativity	Ref. Hu	iheey, J.	E. Inorg	anic Ch	emistry ;	Harper	& Row: N	New York	k, 1983			
LiH	BeH ₂		lonio	c hydrides	5							BH3	CH4	NH ₃	H ₂ 0	HF	Ne
0.97	1.47		Cov	alent poly	meric hy	drides						2.01	2.50	3.07	3.50	4.10	
NaH	MgH ₁		Meta	allic hydri	des							AlH1	SiHa	PH ₃	H ₂ S	HCI	Ar
1.01	1.23	3	4	5	- 6	7	8	9	10	11	12	1.47	1.74	2.06	2.44	2.83	
КН	CaH ₂	ScH ₂	Title	VH VH ₂	CrHs)	Mn	Fe	Co	NHH	CuH	ZnH1	(GaH ₃)	GeH ₄	AsH;	H ₂ Se	HBr	Kr
0.91	1.04		1.52	1.45	1.56	1.60	1.64	1.70	5.75	175	1.66	1.82	2.02	2.20	2.48	2.74	
RPH	SrHz	YH: YH:	ZiHi	(NDH ₂)	Мо	Tc	Ru	Rh	PdH	Ag	(CdH _z)	((nH ₃)	SnH ₄	SbH ₃	HzTc	HI	Xe
0.89	0.99	1.11	1.72	1.23	1.30	1.36	1.42	1.45	1.35	1.42	1.46	1,49	1.72	1.82	2.01	2.21	
Сан	BaH ₂	LaH ₂ LaH ₂	Hitty	Tall	w	Re	Os	Ir	Pt	(AuH ₃)	(HgH ₂)	(TIH ₅)	PbH₄	BiHa	H ₂ Po	HAt	Rn
n or	0.97	1.138	1.23	1.32	1.40	1.46	1.52	1.55	1.44	1.42	1.44	1.44	1.55	1.67	1.76	1.90	-

Chemie Weinheim New York

CeH	PrH ₂ PrH ₃	NdH ₂ NdH ₅	Pm	SmH ₂ SmH ₃	EuHa	GdH ₁ GdH ₁	TbH ₂ TbH ₅	DyH ₂ DyH ₃	HoH ₂ HoH ₃	ErH ₁ ErH ₂	TmH, TmH,	(АРН ³) (АРН ³)	LuH ₂ LuH ₃
1.06	1.07	1.07		1.02	1.01	0.01	1.10	1.10	1,10	1.11	1.11	1.06	1,14
ThH:	PaH,	UHs	NpH ₂ NpH ₃	PuH _a PuH _a	AmH ₃ AmH ₃	Cm	Bk	Cf	Es	Fm	Md	No	Lr
1.11	1.14	1.22	1.22	1.22	1.2	÷							

A. Züttel (2004)

Schematic of formation

Formation

- $H_2 \rightarrow 2H$
- Oxide layer
- Solid solution
- $P_{H2}^{\uparrow} \Rightarrow H \text{ concentration } \uparrow$
- Nucleation of β phase (hydride)
- H on octahedral or tetrahedral site
- Lattice expansion
- Symmetry reduction

Int. J. Energy Res. 2007; 31:637-663

Thermodynamics

Reaction

$$M + \frac{x}{2}H_2 \Leftrightarrow MH_x + Q$$

Q is the heat of reaction

Low concentration (*x*<<1) : α phase

Hydride : β phase

Thermodynamics

```
Phase rule (Gibbs)
```

F = C - P + 2

Components = 2 (H + Metal)

Phases: $(x << 1) \Rightarrow 2 (\alpha, H_2)$

when nucleation of $\beta \Rightarrow 3 (\alpha, \beta, H_2)$

Degree of freedom:

 $(x << 1) \Rightarrow F = 2$ (P and c varies) when nucleation of $\beta \Rightarrow F = 1$ (plateau)

Pressure-Composition Isotherm (PCT)

Low concentration

- hydrogen randomly distributed in the metal host lattice
- concentration varies slowly with temperature.

Condition for thermodynamic equilibrium.

$$\frac{1}{2}\boldsymbol{\mu}_{H_2}(\boldsymbol{p},\boldsymbol{T}) = \boldsymbol{\mu}_{H}(\boldsymbol{p},\boldsymbol{T},\boldsymbol{c}_{H})$$

Ideal gas:

$$\boldsymbol{\mu}_{\boldsymbol{H}_{2}} = \boldsymbol{H}_{\boldsymbol{H}_{2}}^{0} - \boldsymbol{T}\boldsymbol{S}_{\boldsymbol{H}_{2}}^{0} + \boldsymbol{R}\boldsymbol{T}\ln\boldsymbol{p}_{\boldsymbol{H}_{2}}$$

Chemical potential of a dissolved H atom:

$$\boldsymbol{\mu}_{H} = \boldsymbol{H}_{H} - \boldsymbol{T}\boldsymbol{S}_{H}^{id} + \boldsymbol{R}\boldsymbol{T}\ln\left(\frac{\boldsymbol{c}}{\boldsymbol{b}-\boldsymbol{c}}\right)$$

H_H : enthalpy

S_h^{id} : non-configurational part of entropy

b: number of interstitial sites per atom

Ln(c/b-c): configurational part of entropy

Low concentration ⇒ Seivert law

$$p_{H_2}^{1/2} = K_s$$

• H₂ is an ideal gas

• H₂ is dissociated

- Higher concentration
 - $\alpha \rightarrow \beta$ transition
 - ΔH : enthalpy
 - ΔS : entropy \approx constant

HYDROGEN ABSORPTION IN METALS

Fig. 6 Van't Hoff plots of some selected hydrides. The stabilization of the hydride of LaNi₅ by the partial substitution of Ni with Al in LaNi₅ is shown, as well as the substitution of La with mischmetal (e.g. 51% La, 33% Ce, 12% Nd, 4% Pr).

Züttel, A., Materials for hydrogen storage. Materials Today, 2003. 6(9): p. 24-33.

Dependence of ΔH on concentration

H-H interactions

Elastic contribution

$$\left(\frac{\partial \Delta H}{\partial V}\right)_{x} \frac{\partial V}{\partial x} \approx -K_{0} \frac{v_{H}^{2}}{v_{0}} \equiv -u_{els}$$

 \mathcal{V}_{O} : Atomic volume

 v_H^2 : Volume increases/H

 $K_{\rm O}$: Bulk modulus \approx constant

 \Rightarrow Elastic contribution \approx constant

- Elastic contributions ≈ electronic contribution
- Elastic = attractive
- Energy ~ few hundredths of eV
- long range

Electronic contribution

Expansion of lattice \Rightarrow modification of the symmetry of electronic states and reduction of the width of the bands

Appearance of a metal-hydrogen bonding band below the metal d-band.

New attributes in the lower portion of the density of states due to H-H interaction.

Palladium

Fig.5 Crystal structure of a) fcc-Pd, b) fcc-PdH and c) hcp-PdH₂

http://arxiv.org/ftp/cond-mat/papers/0304/0304307.pdf

Fig.V.25: Schematic representation of the changes in the electronic structure of a metal M induced by the introduction of hydrogen in M to form a metal-hydride MH.

http://www.nat.vu.nl/CondMat/griessen/

Hydrogen in alloys

Practical applications ⇒ specific properties Intermetallic hydrides have a wider range of hydride stability

Alloys of:

A: hydride forming

– B: non-hydride forming

<u>Types</u>

 $AB_5 (LaNi_5, CaNi_5), AB_2 (ZrMn_2, ZrV_2), AB (FeTi)$ and $A_2B (Mg_2Ni)$. Stability $A + (x/2)H_2 \leftrightarrow AH_x$ $(P', \Delta G_A)$ The alloy AB_n reacts with hydrogen as

$$AB_{n} + (x/2)H_{2} \leftrightarrow AH_{x} + nE$$
$$P = P' \exp\left(\frac{-2\Delta G_{A}}{xRT}\right)$$

P>P' Destabilization

Stability

Heat of formation

 $\Delta H(AB_nH_{2x}) = \Delta H(AH_x) + \Delta H(B_nH_x) - \Delta H(AB_n)$

Miedema's rule of reversed stability

Less stable alloys form more stable hydrides

Figure 5 Atomic cells in an intermetallic compound of two metals, A and B, with and without hydrogen present. The atomic cells of hydrogen are indicated by broken lines. Upon hydrogen absorption the lattice is increased, which is not shown here [22].

Crystal structure

Formation of hydride

- Expansion of the lattice (2-3 Å³)
- Volume expansion (30vol.%)
- Reduction of symmetry
- Hydrogen occupy specific sites
- Octahedral (O), Tetrahedral (T)
- fcc low concentration O site
- hcp T and O sites distorted
- bcc T and O sites greatly distorted

Crystal structure

Hydrogenation

- Lattice expansion, distortion
- Same crystal structure

Structure	Туре
Cubic	Ti ₂ Ni, MgCu ₂ , CaF ₂ , Th ₆ Mn ₂₃ , CsCl, Cr ₃ Si
Hexagonal	CaCu ₅ , MgZn ₂ , Mg ₂ Ni, AlB ₂ , PuNi ₃ , Pd ₁₅ P ₂
Tetragonal	TiCu, CuAl ₂ , MoSi ₂ , Nd ₂ Fe ₁₄ B
Orthorhombic	CrB, Fe ₃ C
Monoclinic	Pd ₆ P

TiFe

Geometry

- Minimum hole size: 0.4Å
- Minimum bond distance: 2.1Å

Stability of hydride increases with size of interstice.

Amorphous material

- Produced by:
 - Rapid quenching
 - Sputtering
 - Ball milling
- Hydrogen sites presents a distribution of energy states
- Hydrogen enters successively higher energy sites
- Hydrogen occupies distorted tetrahedral on fourfold coordinated sites

Amorphous material

Dynamics

- Proton vibrating on interstitial site (10¹⁴Hz)
- Jump to neighbour site (10⁹Hz)
- Rapid diffusion
- Diffuse faster in open structures (BCC) than in closed packed structures (FCC)
- Low activation energy (Arrhenius)

$$\boldsymbol{D} = \boldsymbol{D}_0 \exp(-\boldsymbol{E}_a / \boldsymbol{k}\boldsymbol{T})$$

Fig. I.8: Diffusion coefficients of H (Schaumann et al.⁵), N and O (Powers and Doyle⁶) in Nb and C in α -Fe (Lord and Beshers⁷) after Völkl and Alefeld⁸.

- Effect of structure PdCu alloy
- Reverse isotope effect for Pd

http://www.nat.vu.nl/CondMat/griessen/

Kinetics

Must take into account nucleation and growth process.

 \Rightarrow Johnson-Mehl-Avrami -ln{ln(1-f)} = ln(B) + m ln(t)

f : reacted fraction

m : constant (rate-limiting step)

B = parameter that depends only on T and P

Rate-limiting step	Growth dimensionality	<i>m</i> constant nuclei sites	<i>m</i> constant nucleation rate
	1	1/2	3/2
Diffusion	2	1	2
	3	3/2	5/2
	1	1	2
Interface transformation	2	2	3
	3	3	4

MgH₂ + TiVMN bcc alloy Hydrogen desorption 573 K

Rate limiting step

Destabilization

- Chemical
 - Formation of a new compound
- Size effect
- Excess enthalpy and strain at the grain boundary
- Recrystallization

Bond strength

Int. J. Energy Res. 2007; 31:637-663

Chemical destabilization

Int. J. Energy Res. 2007; 31:637-663

Effect of cluster size

Figure 3. Energies for Mg and MgH₂ clusters as a function of cluster size, calculated with the DFT method (B97 functional). The energies are scaled to the Mg or MgH₂ cluster and normalized per Mg atom.

16678 J. AM. CHEM. SOC. = VOL. 127, NO. 47, 2005

Figure 4. Calculated desorption energies for MgH₂ clusters with both the HF method and DFT method (B97 functional). The energies are normalized per mole of H₂ released.

J. AM. CHEM. SOC. VOL. 127, NO. 47, 2005

Conclusion

MH have many practical applications and may be the solution for hydrogen storage problems

MH are also ideal systems for fundamental understanding of:

- Physics
- •Chemistry
- Metallurgy
- •Surface science
- Nanotechnology
- •Clusters