



2245-14

#### Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems

13 - 18 June 2011

Hydrogen in metals: impacts on thestructural, mechanical & magnetic properties

> Daniel Fruchart Institut Neel, CNRS Grenoble France







# impacts on the

# structural, mechanical

# & magnetic properties



Daniel FRUCHART Institut Néel, CNRS, Grenoble, France

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen Based Energy Systems

# **Main interests**

## **Magnetic Materials**

C.E.F., Magnets, Magnetocalorics,...

## Metal Hydrides

Reversible Storage, Structures & Mechanisms, HD et HDDR processes

## **Computation &**

## Numerical Simulation

#### Nano et Porous Materials

Layer deposits (MOCVD, Plasma) Very High Hydrogen Pressures Zircaloys

# Phase Transitions & Electronic Properties

Thermoelectrics, Super Cond. Memory Shape Alloys...

# Hydrogen reversible storage as metal hydrides

# → Hydrogen

- Storage of electrical and chemical energies (electrolysis, thermochemistry)
- FC (high efficiency, no polluant)
- ICE (pollution réduite)
- High mass energetic density

#### Production-distribution-storage-use

 $\rightarrow$  Reversible Metal Hydrides

Safe storage, high vol. density, pure  $H_2$  (FC)

|                         | kg H <sub>2</sub> / m <sup>3</sup> | % massique |
|-------------------------|------------------------------------|------------|
| H <sub>2</sub> gaz 700b | 62                                 | 100        |
| H <sub>2</sub> Liq.     | 70                                 | 100        |
| LaNi₅H <sub>6</sub>     | 123                                | 1.4        |
| Ti-V-Cr                 | 205                                | 3.5        |
| AlNaH <sub>4</sub>      | 96                                 | 7.5        |
| MgH <sub>2</sub>        | 106                                | 7.6        |

# Metal hydrides - BCC type alloys







So called difficulties with Mg H-reaction kinetic are said low, but... Temperature of reaction is high, but...

# Mg is the best ?

Mg is the 7<sup>th</sup> most abundant element on earth Mg has ~ same cost as Al Mg metallurgy is easy Mg is bio-compatible Mg is re-cyclable MgH<sub>2</sub> is monometal hydride system: no demixtion MgH<sub>2</sub> uptake is 7.6 w%



# **Connection of a 2 kg MgH<sub>2</sub> tank to applications**



Connection to the «EPICEA» PEM-FC of CEA, Grenoble (4 kW, effic. ~ 50%, 2 kW electric) here powering for ~ 1 h. a ancillary heater

Direct H<sub>2</sub> gas fuelling a lawnmower from the MgH<sub>2</sub> tank powering as well the PEM-FC



Autonomous tank under development

# Porous Membranes bi - catalytists

# Nanostructures built under high hydrogen pressure (5 GPa) via demixtion of a Pd (Pt, Rh) + 2% Ce (Zr, Al) alloy



Also

Hard Magnetics (fundamental and applications)

**Magnetocaloric materials** 

**Magnetostrictives** 

**Soft magnetics** 

**Shape memory materials** 

**Thermoelectrics** 

**Thin layers** 

**Zircaloys** 

# **European Collaborations**



# **International Collaborations**



Hydrogen in metals, impacts on the structural, mechanical & magnetic properties

Main principles

Structure and mechanical aspects Electronic (Magnetic) aspects **Experimental analysis** Neutron scattering (and X-rays) Spectroscopy techniques **Theoretical approaches** Intrinsic effects at microstructure and structural scale Impacts on fundamental properties

**Extrinsic properties** 

# METALIC HYDRIDES

#### HYDROGEN INTERCALATION IN METALHYDRIDES

#### HYDROGEN ON TETRAHEDRAL SITES

#### HYDROGEN ON OCTAHEDRAL SITES









Figure 1. Periodic system of binary hydrides (the figures in the table are the Allred-Rochow electronegativities) Hydrides in parentheses are unstable at ambient temperaIONIC

Covalent polymeric hydrides

Cov

Covalent hydrides

# MULTINARY METAL HYDRIDES ?

ture.

Metallic hydrides

# PHASE TRANSITION

$$\mathbf{R} \cdot \mathbf{T} \cdot \ln\left(\frac{\mathbf{p}}{\mathbf{p}_0}\right) = \Delta \mathbf{H} - \mathbf{T} \cdot \Delta \mathbf{S}$$

 $\mathcal{D}_{\mathcal{M}}$ 

 $\mathcal{A}^{(1)}$ 



# VAN'T HOFF PLOT OF METAL HYDRIDES



# **Figures of merit**



 $\Delta V/V$ : from few % up to 30 %

compare to relative volume expansion at a magnetic transition !;

1.0

12

a few % to ~1%

## **Structural to mechanical microstructure transformations**









p(n) isotherms of Pd(H) with bulk palladium at different temperatures

#### **Displacive vs distortive transformations**





## **Structure changes**

1- RE (hcp)  $\leftrightarrow$  REH<sub>2</sub> (fcc)  $\leftrightarrow$  REH<sub>3</sub> (hcp)

2- TiCr<sub>2</sub> – C15 (fcc)  $\leftrightarrow$  TiCr<sub>2</sub>H<sub>5</sub> – C14 (hcp)

## **Microstructural effects**



## $\textbf{3-}\beta\textbf{-}\textbf{NbH}_{0,89} \rightarrow \alpha\textbf{'}\textbf{-}\textbf{NbH}_{\textbf{<}0,89} \rightarrow \alpha\textbf{-}\textbf{NbH}_{\textbf{~}0,2}$

OrthorhombicDisordered PhaseSuperstructureMobile H (vacancies)Non mobile H



Can affect all components of a composite alloy and more particularly its physical intrinsic and extrinsic characteristics

# **BCC type alloys (compound)**



## **BCC type alloys (composite)**



# **Mechanical and micro-structure modifications**

# **Decrepitation:**

In principle no change of formula, no transport of elements (HD)

Intergranular decrepitation

Intragranular decrepitation

# **Disproportionation:**

Hydrogen Disproportionation Dehydrogenation Recombination (HDDR)

(magnet materials, hydrogen electrode materials)

# **Amorphisation:**

Hydrogen Induced Amorphisation (HIA)

(shape memory materials, soft nanocrystallized materials)

# Magnetic properties: intrinsic/extrinsic fundamentals

Atomic scale Valence & conduction bands... involved in M-H

Spin (self rotation of electron) S<sub>i</sub>

Orbit (orbital rotation of electron)  $L_i$   $J_i = L_i \pm S_i$ 

Magnetocrystalline anisotropy (Electric Field Gradient : EFG) ~ charge density of neighbour atoms coupling with the hyperfine field

Exchange force  $E \sim J_{exch}$   $T_{C} \sim S_{i} \cdot J_{exch} \cdot S_{j}$ .

<u>nm to µm scale</u>

Dipolar field

demagnetizing field / domain walls

**Pinning by interstitials** 

Superparamagnetic / domain walls

**Pinning by interstitials** 

# **Transition metal magnetism (alloys)**

weak to strong ferromagnetic character

the first one type being more particularly volume (d-d distance) sensitive



# **Rare earth metal magnetism**

Localized magnetism : discrete levels, not bands

J = L ± S spin and orbit components

exchange interaction via conduction electron density (s,d): metal-insulator trans.

**RKKY mechanism** :  $E_{exch} \sim M_i \cdot J_{RKKY} \cdot M_j$ 

rather to very low T<sub>C</sub>, very complex magnetic structures very sensitive to M-H(s) bonds

otherwise magnetic to non magnetic transitions or metal to insulator transitions are induced at hydride formation

# **External pressure vs negative pressure effects**





## Superabundant vacancies (SAV) in Pd, Ni, Mn... a new metal state...?





Diagramme d'état Composition-Pression à différentes températures du système palladiumhydrogène. La courbe de décomposition spinodale est clairement préfigurée par l'ensemble des isothermes.



#### **DIMENSIONS** :

H:7 mm;  $\phi$ :7 mm épaisseur des parois de NaCl:1 mm épaisseur disque de métal:0.1-0.2 mm épaisseur disque BN:0.1 0.2 mm

# Structure, properties and DOS calculations on SAV systems

# Experiments at ESRF using the same set-up









## Structure, properties and DOS calculations on SAV systems

Pd - nearly ferromagnet PdH<sub>0.8</sub> – superconductor 11 K Pd(Vac)H<sub>2</sub> – AF correlations









Densité d'états totale sur l'atome de palladium, calculée avec le code FLAPW a. pour le palladium métal (en bas). b. le palladium hydruré « classique »  $Pd_{HecL}$  (au milieu), c. le palladium lacunaire hydruré ( $Pd_3(C+H_4)$ ), (en haut).

Susceptibilité magnétique et susceptibilité inverse du palladium lacunaire hydruré (Pd<sub>3</sub>(□-H<sub>w</sub>)).

### **Porous metal membranes - SAXS**







Vacancies coalesce along the defect pathes to forme pores Behaviour of the pore size and distribution versus annealing temperature



SAXS curves obtained for Ni submitted to a HHP of 3.5 GPa at 800  $^{\circ}$ C for 5 h, and subsequently heat treated at 600  $^{\circ}$ C for 20 and 40 min.



Size distribution of nanopores in Ni submitted to a HHP of 3.5 GPa at 800  $^{\circ}$ C for 5 h, and subsequently heat treated at 600  $^{\circ}$ C for 20 and 40 min.

# Expitaxial interfaces of mixed catalysts from SAV assisted demixtion as seen by HREM & EXAFS

Very high H<sub>2</sub> pressure demixtion of alloys then controlled oxidization:  $(Pd_{0.8}Rh_{0.2})_{0.97}Ce_{0.03}, Pd_{0.97}Al_{0.03}$  and  $(Pd_{0.9}Pt_{0.1})_{0.97}Al_{0.03})$ 



# **Ageing functional steels**

Special steels for very deep off-shore oil diging

C : 0,41 - Cr : 25,5 - Ni : 34,9 - Mn : 1,03 Si : 1,91 - Nb : 0,78 - Ti : 0,04 - Fe : balance



Typical micrograph of the HP 45 stainless steel with Nb and Ti additions in the as-cast condition



Microstructure of the HP 45 stainless steel after treatment with a low hydrogen pressure of 0.1 Pa for 100 h at 1200 K.



. Microstructure of the HP 45 stainless steel after treatment with a high-hydrogen pressure of 5 GPa for 1 h at 873 K.

100 to 1000 hours treatment at ~ 1200 K under 0,1 Pa  $H_2$ to simulate 2 years of steel ageing. Grain boundaries precipitates of the same ageed fragile phase were prompted within 1 h under 5 GPa  $H_2$ at T < 900 K

# **Microwave assisted plasma deposits and implants**









# H2 HP SAV 2



# Porous foil e.g. Ni









