

2245-15

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems

13 - 18 June 2011

Interaction Neutron/Matter

Daniel Fruchart Institut Neel, CNRS Grenoble France

Daniel FRUCHART

Interaction of a Monochromatic Beam with Matter

As the beam passes through a matter, radiation is removed from the direct beam by a variety of processes summarized below.

1-X-ray / Matter Interaction processes

2- Neutron / Matter Interaction processes

Remark : the scattering effects contribute to the absorption of the incoming beam : the total absorption coefficients take into account the true absorption and the scattering process.(The absorption cross-section).

• Neutrons interact with atomic nuclei via very short range (~fm) forces.

• Neutrons also interact with unpaired electrons via a magnetic dipole interaction.

A Typical Neutron Scattering Experiment

Momentum = hk; Energy = $h^2k^2/2m_n$

- Measure the number of scattered neutrons as a function of Q and ω
- The result is the scattering function S(Q,ω) that depends only on the properties of the sample

What we Measure in an Experiment: the Total or Differential Cross Sections

Φ-1	amber of incident neutrons per cm ² per second
σ = to	tal number of neutrons scattered per second (Φ
do _	number of mentrons scattered per second into $d\Omega$
ďΩ	Φ άΩ
$d^2\sigma$	number of neutrons scattered per second into $\mathrm{d}\Omega$ & $\mathrm{d}\Xi$
anae	ΦdΩdE

Attenuation = exp(-NOt) N = # of atoma/unit volume t = thickness

F = r/r. dV/dr, the diffusion cross section σ is defined from the particle flux j as j_f . $r/r = j_i \sigma/r^2$

Quantum point of view

$$E_i = \frac{1}{2} m v^2 (class.) \rightarrow p^2/2m = -i + V (quant.)$$

 $E_i = -h^2/2m \nabla^2 \psi_i$ in vacuum

 $E_i = (-h^2/2m \overline{\nabla}^2 + V) \psi$ in matter

The incident wave is solved as $\psi_i = \exp i\mathbf{k}_i \cdot \mathbf{r}$ with energy $E_i = (\frac{h}{k_i})^2/2m$ In case of elastic scattering $k_f = k_i$

scattering corresponds to ψ , interference state between ψ_i and ψ_f the scattered wave

Far from the scattering centres (in sample), waves should be considered as plane waves

Born Approximation

One considers V(r) as a small perturbation, so $\psi(r) = \exp i kr + \partial \psi$ with $\partial \psi << 1$

Using the Green function formalism (that is given by $G_{k0}(\mathbf{r})$ (e i \mathbf{k}_0 .r)/4 π **r**)

when *r* goes to large values, on obtains :

```
\partial \psi \rightarrow m/2\pi h^2 \int V(\mathbf{r}) \exp i(\mathbf{k} - \mathbf{k}') \cdot \mathbf{r}' d\mathbf{r}' (\exp i \mathbf{k} \cdot \mathbf{r})/r \text{ where } \mathbf{k}' = \mathbf{k} \mathbf{r}/r
\partial \psi \rightarrow (\exp i \mathbf{k} \mathbf{r})/r f(\mathbf{k}, \mathbf{k}') = \exp i \mathbf{k} \mathbf{r})/r f(\theta)
```

The scattered wave amplitude is proportional to V(Q), the Fourier transform of the interaction potential, and besides:

$$\sigma(\theta) = f(\theta)^2$$

 $_{0}^{1}$ n : spin $\frac{1}{2}$, no electrical charge \leftrightarrow wave function

Atom

nucleus : nuclear spin I electron : electronic spin s_e) interaction potentials V cross sections

 $\Psi = \Psi_i + \Psi_f \rightarrow \text{spherical scattered wave } \Psi_f = \exp i k r / r f(k_f, k_i)$ \searrow plane incident wave $\Psi_i = \exp i k_i r$

 $f(k_f,k_i)$ has dimension of length

~ scattered amplitude ≈ cross section

Comparisons

electron diffraction V is a coulombian potential XRD V is electromagnetic (Maxwellian) neutron V are dipolar (I, s_e) no coulombian interaction

very short range nuclear forces = strong penetration

Amplitudes

- $V_N(r) \rightarrow ?$ the nuclear potential has a strongly short efficiency distance. $V_N(r) = 2\pi h^2 / m \, \delta(r)$ so, $\int \delta(r) \exp i \mathbf{q} \, \mathbf{r} \, d\mathbf{r} = 1$ then $f_N(\mathbf{k}, \mathbf{k}') = \text{constant} = \mathbf{b}$
- $V_{\rm M}(\mathbf{r}) \rightarrow ?$ the magnetic dipole dipole interaction : \mathbf{n} . e- for which potential is $V_{\rm M}(\mathbf{r}) = (\mathbf{M}_{\rm n} \times \mathbf{V}) \cdot (\mathbf{M}_{\rm e} \times \mathbf{V}) \cdot (1/r)$ leads to 0

 $f_N(k, k') = 2m/h^2 (M_n \times e) \cdot (M_e \times e)$ with e = Q/Q

Since the magnetic electron density is far to be punctual, so it must be F.T.

 $f_e(\boldsymbol{q})$, depends on the scattering vector (Bragg angle)

Remark 1: If M_e is // to e there is no magnetic scattering ! Remark 2: $M_e = Me_{\perp} + Me_{//}$ leads to $(M_n \times e) \cdot (M_e \times e) = Mn \cdot Me_{\perp}$.

 $f_N(\boldsymbol{k}, \boldsymbol{k}') = e^2 m_0 \cdot c^2 \gamma \sigma_n \cdot \sigma_e \perp \cdot f_e(\boldsymbol{Q})$

 $e^2m_0.c^2\gamma = 0.538 \ 10^{-12} \ cm = 5.38 \ f$ (Fermi)

Penetration Depth

Coherent / Incoherent

If, two waves are coherent, amplitudes add, If two waves are incoherent, intensities add. e.g. A_1 and A_2 with a phase difference $\Delta \Phi$ (whatsoever) $I = (A_1 + A_2 + \cos \Phi)^2 = A_1^2 + 2 A_1 A_2 \cos \Delta \Phi + A_2^2 \cos \Delta \Phi^2$ $<\cos \Delta \Phi > = 0; <\cos^2 \Delta \Phi > = 1/2$ and $<I> = I_{inc} = A_1^2 + 1/2 A_2^2$ Suppose $A_1 = 1$ and $A_2 = \varepsilon$ and $\Delta \Phi =$ either 0 or π ; (= control of coherence), one defines $I^+ = I(0) = 1 + \varepsilon + \varepsilon^2$ and $I^- = I(\pi) = 1 - \varepsilon + \varepsilon^2$ $\Delta I = I^+ + I^- = 4\varepsilon$, exemple for $\varepsilon = 0.05$, ΔI leads to compare 1.25 10⁻³ to 2 10⁻¹

Nuclear coherency

 $F_{N}(H) = b_{1} \exp 2\pi i H.r_{1} + b_{2} \exp 2\pi i H.r_{2}$ A₁ and A₂ are not correlated, so : $(F(H)^{2}) = b_{1} \cosh^{2} \exp 2\pi i H.r_{1} + b_{2} \cosh^{2} \exp 2\pi i H.r_{2} + b_{1inc.}^{2} I_{1}(I_{1}+1) + b_{1inc.}^{2} I_{1}(I_{1}+1)$

The incoherent scattering does not depend on any scattering vector \boldsymbol{H} (at elastic collision for nuclear scattering processes)

Magnetic coherency

Considering the polarisation of a neutron beam before and after scattering, 4 states can be found for the scattered amplitudes:

$$\begin{array}{ll} \mathsf{U}^{++} = \mathsf{b}_{\mathrm{coh}} + p \,\mu_{\perp_{z}} + \mathsf{b}_{\mathrm{inc}} \,\mathbf{I}_{z} & \mathsf{U}^{--} = \mathsf{b}_{\mathrm{coh}} + p \,\mu_{\perp_{x}} - \mathsf{b}_{\mathrm{inc}} \,\mathbf{I}_{z} \\ \mathsf{U}^{+-} = p \,(\mu_{\perp_{x}} - \mu_{\perp_{y}}) + \mathsf{b}_{\mathrm{inc}} \,(\mathsf{I}_{x} + \mathsf{I}_{y}) & \mathsf{U}^{-+} = p \,(\mu_{\perp_{x}} + \mu_{\perp_{y}}) + \mathsf{b}_{\mathrm{inc}} \,(\mathsf{I}_{x} - \mathsf{I}_{y}) \end{array}$$

where *p* is the amplitude for magnetic scattering

 \rightarrow coherent magnetic scattering is always non spin-flip

 \rightarrow scattering by electronic moment μ may be spin-flip or non spin-flip depending on the relative orientation of μ , of polarisation $I (\rightarrow oz)$ and scattering vector Q.

 \rightarrow polarised neutron allows polarisation analysis

 \rightarrow separation between coherent and nuclear spin incoherent scatterings \rightarrow magnetic structures :

 \rightarrow *I* // *Q* – separation of nuclear and magnetic lines

- $\rightarrow I^{\perp}Q$ reveals spin flip contributions (non collinear systems)
- \rightarrow incoherent paramagnetic scattering

Incoherent D Casi

Comparaison des sections efficaces de diffusion cohérente et incohérente des neutrons avec celles de diffusion cohérente des rayons X pour une sélection d'atomes.

On some scattering neutron cross sections

Nuclear Scattering Amplitude

Irregular variation of neutron scattering amplitude with atomic weight due to superposition of 'resonance scattering' on the slowly increasing 'potential scattering'; for comparison the regular increase for X-rays is shown. (From *Research* (London) 7, 257 (1954).)

Inelastic

Neutrons can Gain or Lose Energy in the (Inelastic) Scattering Process

What we can lean from Inelastic Scattering ?

- Neutron energies ~ meV 1 meV^{*} 8 cm^{4*} 240 GHz^{*} 12 K^{*} 0.1 kJ/mol ~ ps
- Comparable to the time scales of atomic motions in materials
- Significant fractional changes in neutron energy result from exchanging energy with moving atoms in a material
- Compare:
 - Light: $E \sim eV's$; $\lambda \sim 100's nm$ so $Q \sim 0$; also selection rules
 - X-rays: E ~ keV's; $\lambda \sim 0.1$ mm
- Note that cold neutrons (E < 5 meV; λ > 0.4 nm) allow one to observe *both* longer length scales and slower dynamics

Inelastic Neutron Scattering measures Atomic Motions

The concept of a pair correlation function can be generalized: G(r,t) = probability of finding a nucleus at (r,t) given that there is one at r=0 at t=0 $<math>G_{s}(r,t) = probability of finding a nucleus at (r,t) if the same nucleus was at r=0 at t=0.$ Then one finds:

$$\begin{pmatrix} \frac{d^2 g}{d\Omega d\Sigma} \\ \frac{d^2 g}{d\Omega d\Sigma} \\ \end{pmatrix}_{tot} = b_{itot}^{\pm} \frac{k'}{k} N \mathcal{I}_{itot}(\hat{Q}, \omega)$$
 hQ & host are the momentum & energy transformed to the neutron during the scattering process scattering process where
$$S_{cold}(\hat{Q}, \omega) = \frac{1}{2\pi\hbar} \iint G(\hat{r}, t) e^{i(\hat{Q} d - \omega)} d\hat{r} dt \text{ and } S_{col}(\hat{Q}, \omega) = \frac{1}{2\pi\hbar} \iint G_{i}(\hat{r}, t) e^{i(\hat{Q} d - \omega)} d\hat{r} dt$$

Inelastic coherent scattering measures *correlated* motions of atoms Inelastic incoherent scattering measures *salf-correlations* e.g. diffusion

Examples of $S(Q,\omega)$ and $S_s(Q,\omega)$

- Expressions for S(Q,ω) and S_p(Q,ω) can be worked out for a number of cases e.g.
 - Excitation or absorption of one quantum of lattice vibrational energy (phonon)
 - Various models for atomic motions in liquids and glasses
 - Various models of atomic & molecular translational & rotational diffusion
 - Rotational tunneling of molecules
 - Single particle motions at high momentum transfers
 - Transitions between crystal field levels
 - Magnons and other magnetic excitations such as spinons
- Inelastic neutron scattering reveals details of the shapes of interaction potentials in materials

Quasielastic Neutron Scattering

 For a single diffusing particle, the probability, p, of finding it within a sphere around its starting position looks like....

Quasielastic Neutron Scattering

 If there is a finite probability that a particle occupies its initial position as t -> 8 the scattering will include an elastic component

Recall, other interesting techniques as:

SANS (Small Angle Neutron Scattering): size of agregates, grains, particles, domains at µm to nm

Diffuse Scattering: ponctual to extended defects, static or dynamic characters

Reflectometry: thin layer analysis

Neutronography: absorption contrasts

etc...

