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Interaction of a Monochromatic Beam with Matter

1- X-ray / Matter Interaction processes



2- Neutron / Matter Interaction processes









Scattering ?

V

V



In case of elastic scattering
kf = ki

scattering corresponds to , interference
state between i and f the scattered wave

1 is a spherical wave:
1 = exp i k.r/r f(kf,ki)

So Q = kf - ki = 2 H,   f( ),

Far from the scattering centres
(in sample), waves should be
considered as plane waves



Born Approximation

One considers V(r) as a small perturbation, so (r) = exp i kr + with << 1

Using the Green function formalism (that is given by Gk0(r) (e ik0.r)/4 r)

when r goes to large values, on obtains :

m/2 h2 V(r ) exp i (k - k’).r’ dr’ (exp i k.r)/r  where k’ = k r/r
(exp i kr)/r f(k, k’) = exp i kr)/r f( ) 

The scattered wave amplitude is proportional to V(Q), the Fourier transform of
the interaction potential, and besides:

(( ) = f() = f( ))22



1
0
nn : spin ½, no electrical charge    wave function

AtomAtom
nucleus : nuclear spin I interaction potentials V
electron : electronic spin se cross sections

= i + f spherical scattered wave f = expikr/r f(kf,ki)
plane incident wave i = expikir

f(kf,ki) has dimension of length
~ scattered amplitude cross section

Comparisons
electron diffraction V is a coulombian potential
XRD V is electromagnetic (Maxwellian)
neutron V are dipolar (I, se)

no coulombian interaction
very short range nuclear forces = strong penetration



Amplitudes
VN(r)  ?  - the nuclear potential has a strongly short efficiency distance.

VN(r) = 2 h2 / m (r) so,  (r)  expi q r dr = 1     then fN(k, k’) = constant = b

1
VM(r)  ?  - the magnetic dipole – dipole interaction :   n .  e- for which potential is

VM(r) = (Mn x V) . (Me x V) . (1/r)  leads to 0

fN(k, k’) = 2m/h2 (Mn x e) . (Me x e)   with e = Q/Q 

Since the magnetic electron density is far to be punctual, so it must be F.T.

fe(q),  depends on the scattering vector (Bragg angle)

Remark 1:  If  Me is // to e there is no magnetic scattering !
Remark 2: Me = Me + Me// leads to (Mn x e) . (Me x e) = Mn . Me . 

fN(k, k’)  = e2m0.c2
n . e . fe(Q)

e2m0.c2 = 0.538 10-12 cm = 5.38 f (Fermi)



Penetration Depth
Note for neutrons:

• H/D difference

• Cd, B, Sm…

• no systematic A
dependence



Coherent / Incoherent
If, two waves are coherent,   amplitudes add,
If two waves are incoherent,  intensities add.

e.g. A1 and A2 with a phase difference (whatsoever)
I = (A1 + A2 + cos )2 = A1

2 + 2 A1.A2 cos + A2
2cos 2

<cos > = 0; <cos2 > = 1/2 and <I> = Iinc. = A1
2 + 1/2 A2

2

Suppose A1 = 1 and A2 = and = either 0 or ( = control of coherence),
one defines I+ = I(0) = 1 + + 2 and I- = I( ) = 1 - + 2

I = I+ + I- = 4 , exemple for = 0.05, I leads to compare 1.25 10-3 to 2 10-1

Nuclear coherency
I 2n+1 states

0 I + 1/2 b+

n - IN : the total angular momentum has only 2 states
1 I – 1/2 b-

So b = bcoh. + binc. I . sN,     then bcoh. = b+ (I+1)/(2I+1) + b- I/(2I+1)
binc.  = (b+ - b-)/(2I+1)

<I . sN> = 0; <(I . sN)2> = I(I+1)

So, coh. = 4 (p+b+ + p-b-)2 and sinc. = 4p p+p- (b+ - b-)2

with p+ = (I+1)/(2I+1)    and p- = I/(2I+1)



Magnetic coherency
Considering the polarisation of a neutron beam before and after scattering,
4 states can be found for the scattered amplitudes:

U++ = bcoh. + p μ z + binc. Iz U-- = bcoh. + p μ x – binc. Iz
U+- = p (μ x - μ y) + binc. (Ix + Iy) U-+ = p (μ x + μ y) + binc. (Ix - Iy)

where p is the amplitude for magnetic scattering

coherent magnetic scattering is always non spin-flip
scattering by electronic moment μ may be spin-flip or non spin-flip depending on

the relative orientation of μ, of polarisation l ( oz) and scattering vector Q.
polarised neutron allows polarisation analysis
separation between coherent and nuclear spin incoherent scatterings

magnetic structures :
l // Q – separation of nuclear and magnetic lines
l Q – reveals spin flip contributions (non collinear systems)
incoherent paramagnetic scattering

FN (H) = b1 exp 2 i H.r1 + b2 exp 2 i H.r2 A1 and A2 are not correlated, so :
<F(H)2> = b1coh.2 exp 2 i H.r1 + b2coh.2 exp 2 i H.r2 + b1inc.

2 I1(I1+1) + b1inc.2 I1(I1+1)

The incoherent scattering does not depend on any scattering vector H (at elastic
collision for nuclear scattering processes)



On some scattering neutron cross sections

Incoherent



Nuclear Scattering Amplitude

Coherent



Neutrons can
Gain or Lose Energy
in the (Inelastic)
Scattering Process

Inelastic



What we can lean from Inelastic Scattering ?



Inelastic Neutron Scattering
measures Atomic Motions



Examples of S(Q, ) and Ss(Q, )



Quasielastic Neutron Scattering



Quasielastic Neutron Scattering



Recall, other interesting techniques as:

SANS (Small Angle Neutron Scattering): size of
agregates, grains, particles, domains at μm to nm

Diffuse Scattering: ponctual to extended defects,
static or dynamic characters

Reflectometry: thin layer analysis

Neutronography: absorption contrasts

etc…



ESRF (Synchrotron)ESRF (Synchrotron)
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