

2245-22

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems

13 - 18 June 2011

Scanning photoemission microscope: A powerful tool for studies on Fuel cells and catalysis supporting material

> Majid Kazemian Abyaneh Sincrotrone Trieste SpA Trieste

Scanning photoemission microscope: A powerful tool for studies on Fuel cells and catalysis supporting material

Majid Kazemian Abyaneh

Sincrotrone Trieste SCpA

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems (June-2011)

The Microscopy Section at Elettra

Trieste

Elettra Synchrotron Light Source laboratory

•ESCAmicroscopy: 400-1200 eV XPS spectro-microscopy •SPECTROmicroscopy: 20-90 eV XPS, ARUPS spectro-microscopy •NANOspectroscopy: LEEM, X-PEEM spectro-microscopy

•TwinMic: X-ray transmission and absorption spectro-microscopy

•SISSY: infrared spectro-microscopy

SPEM layout and performance

Energy resolution

SPEM experiments: main topics

Nanostructures/devices characterization

- MWCNTs mass transport and reactivity
- e-noses
- Size dependent electronic properties of semiconductors

Electrochemistry/SOFC

- Electrochemical stability of materials
- Challenging experiments: high temps, biasing, low concentrations

Catalysis

- 'Material' gap: from model crystalline materials to metal nano-particles on metal oxide.
- In situ PLD particle deposition

A. Barinov et al. Phys. Rev. Lett. 99, 046803 (2007)

Gas phase oxidation of MCNT

Effects on size and surface chemistry on the conductivity of MBEgrown GaAs nanowires (in collaboration with S. Rubini – TASC Laboratory - Italy)

•Increasing surface-to-volume ratio

•Size dependence of the depletion width, band gap widths, recombination barriers, etc.

•i.e. Debye length comparable to the radius of NW

Chemical and electronic characterization of nanosensors

(in collaboration with A. Kolmakov – Souther Illinois Uni. - USA)

•Chemical & electronic characterization under working conditions \circ SnO₂, VO_x, ...

•Sensing properties vs oxygen, hydrogen, ...

) | 1993

•Addressing the electron transport in a workin device (temperature, close biasing, etc.) •Surface stoichiometry, coordination, oxidation state, etc.

A. Kolmakov et al. ACSNano 2 (2008) 1993

elettra Spectromicroscopy and photoluminescence analysis of ZnO nanostructures

M. Kazemian Abyaneh et al. J Nanopart Res 13(2010)1311

Ti6Al4V-SiC_f composite produced by HIP for aeronautical applications

(in collaboration with S. Kaciulis – ISMN-CNR, Rome, Italy)

S. Kaciulis et al. Surf. Interface Anal. 2010, 42, 707–711

Compositional and electronic study of TCO nano and microtubes (in collaboration with A. Cremades - UCM - Spain)

•Catalyst free growth of TCO structures (Sn_xO_y/In_xO_y/In_xN_y,Ge_xO_y,etc.)

•SPEM characterization of morphological complex structures difficult with other PEM

SPEM images

D. A. Magdas et al. Superlat. and Microstr. 45 (2009) 429-434 D. Maestre et al. Journ. of Appl. Phys. 103, 093531 (2008) D. Maestre et al. J. Phys. Chem. C, 2010, 114 (27), pp 11748–11752

Electronic behaviour of a single structure

•Charging due to differences in the electronic structure •Mapping of the charging with the multichannel acquisition

Local chemical composition of the structures

•Heterogeneous elemental distribution locally defined •Fine chemical analysis

Degradation of light emitting diodes: a SPEM analysis

(in collaboration with P. Melpignano CRP, R. Zamboni CNR-ISMN)

Operating SOFC: mass transport

(in collaboration with M. Backhaus- Corning Inc. - USA)

Strongly constraining experimental setup

•Real samples
•High T = 650-700℃
•pO₂=1x10⁻⁶ mbar
•Applied potentials

-2V<U<+2V

•Surface sensitive

technique
•High lateral resolution

Elemental distribution at electrolyte/LSM interface

Surface composition change with bias

1-Mn 3p USM YSZ YSZ USM

bias in V

Observation and explanation of electrochemical cathode activation

Strong current increase under negative bias when Mn spreads on electrolyte

GUD STATE IONI

- •Mn2+ electrolyte surface enrichment→electrolyte surface conductivity → direct oxygen incorporation into electrolyte
- Oxygen incorporation extends under bias from TPB to the entire electrolyte surface
- M. Backhaus et al. Solid State Ionics 179 (2008) 891-895, M. Backhaus et al. Advances in Solid Oxide Fuel Cells III 28 (4), 2007

B. Bozzini et al. PCCP in press

'Material' gap: from model crystalline materials to metal nanoparticles on metal oxide. In situ PLD particle deposition

•Reducing rate: Micro-part.> Nano-crystalline film > Nano-particles

•Micro-particles of similar sizes show variation in the reactive properties: different structure, local environ.

P. Dudin et al. J. Phys. Chem. C 2008, 112, 9040-9044

M. Dalmiglio et al. J. Phys. Chem. C http://dx.doi.org/10.1021/jp910370r

M. Dalmiglio et al. J. Phys. Chem. C, 114(2010) 16885

Thank You

Follow us on:

Web link: <u>www.elettra.trieste.it</u> Profile on linkedin: <u>www.linkedin.com/companies/sincrotrone-trieste-s.c.p.a</u> YouTube Channel: <u>www.youtube.com/Sincrotronetrieste</u>