

2245-4

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems

13 - 18 June 2011

Hydrogen storage research programs in Canada and North America

J. Huot Universite du Quebec a Trois-Rivieres Canada & Institute for Energy Technology Norway

The Abdus Salam International Centre for Theoretical Physics

Hydrogen storage research programs in Canada and North America.

J. Huot

Université du Québec à Trois-Rivières

Université du Québec à Trois-Rivières

Present address: Institute for Energy Technology, Norway

Institute for Energy Technology

Joint ICTP-IAEA Advanced School on the Role of Nuclear Technology in Hydrogen-Based Energy Systems Trieste – Italy, 13 – 18 June 2011

Content

Global perspective

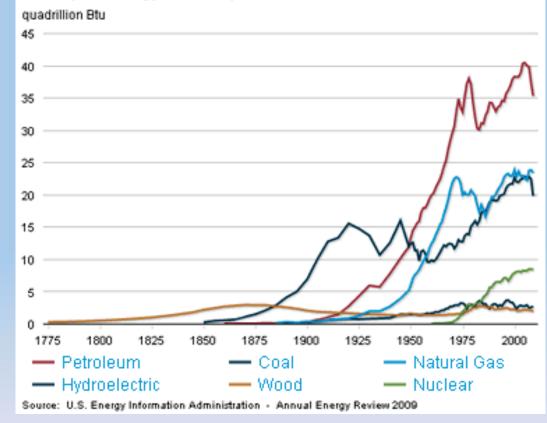
Hydrogen in Canada

- Sector profile
- H2Can network
- Industry

United States

- Metal hydrides center of excellence
- Hydrogen storage engineering center of excellence

Global perspective


- Hydrogen vs other fuels
- Hydrogen vs batteries
- Hydrogen storage

Energy consumption

History of energy consumption in the United States, 1775-2009

http://geology.com/articles/history-of-energy-use/

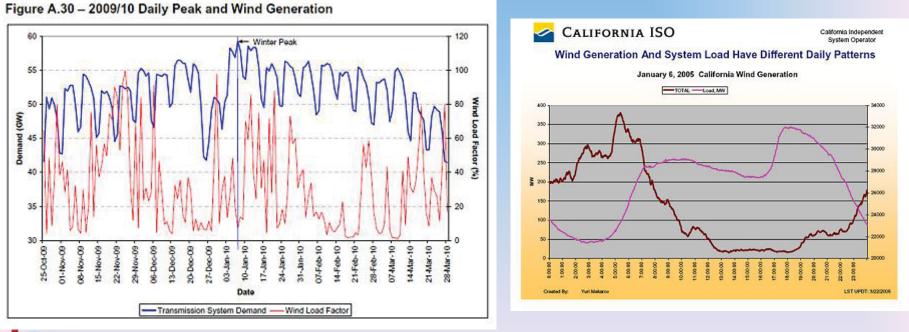
New sources of energy

- Wind
- Sun (photovoltaic and thermal)
- Hydro
- Biomass
- Geothermal
- Tide
- Wave

But all these should be coupled to existing grid and means of production

The energy production technologies

Technology **Issues and concerns** Nuclear •Spent fuel, safety •Emissions Coal Hydro Environmental impact Photovoltaic •Cost, intermittency Wind Low density Biomass •Very low density Geothermal •Limited sites Gas turbines/Fuel cells Needs hydrogen source

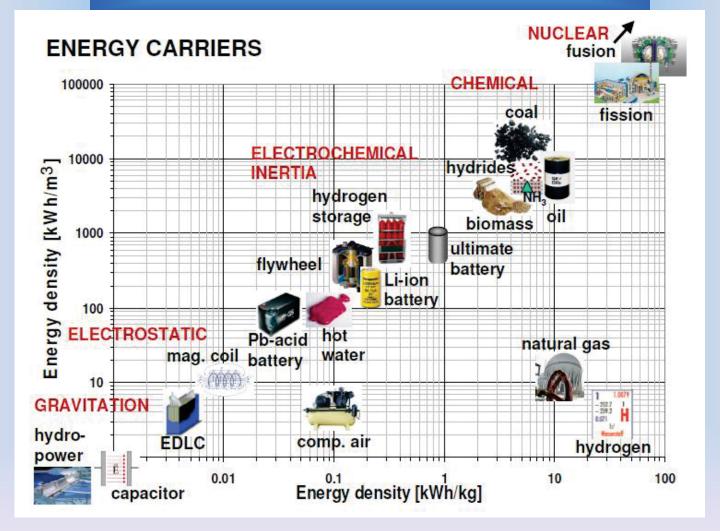


http://www.windbyte.co.uk/windpower.html

Problems

Most of these new sources are intermittent.
⇒ Difficult to integrate to base power (about 20%)

http://www.windbyte.co.uk/windpower.html


Energy vectors

We need an energy vector which will transport energy from the production site to the user. Electricity is a good energy vector but it could not be stored in large quantity. Thus, we need another type of energy vector.

Energy vectors

A. Zuttel, International Hydrogen Showcase, April 2011

Energy vectors

	Petrol	Electricity	Hydrogen
Synthesis	No (but need millions of years!)	Yes	Yes
CO ₂ release	Yes	Depends on production	Depends on production
Stockable	Yes	Batteries (low energy)	Yes
Could be transformed to the other two	Yes	Only with Hydrogen	Yes
Electronic	No	Yes	No (but micro fuel cells could replace batteries)
Chemistry	Yes	No	Yes

Energy densities

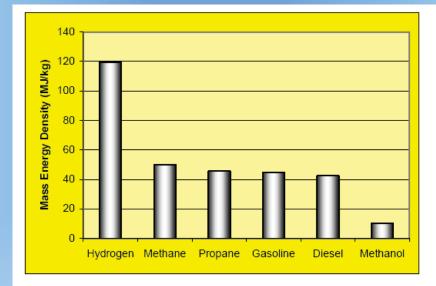


Figure 7 - Mass energy density of fuels (LHV)

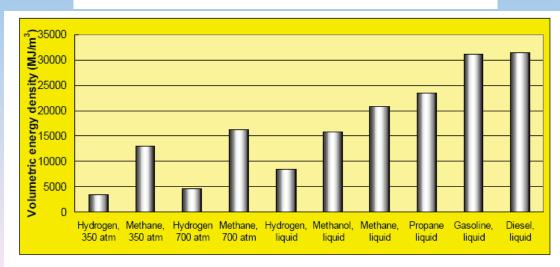
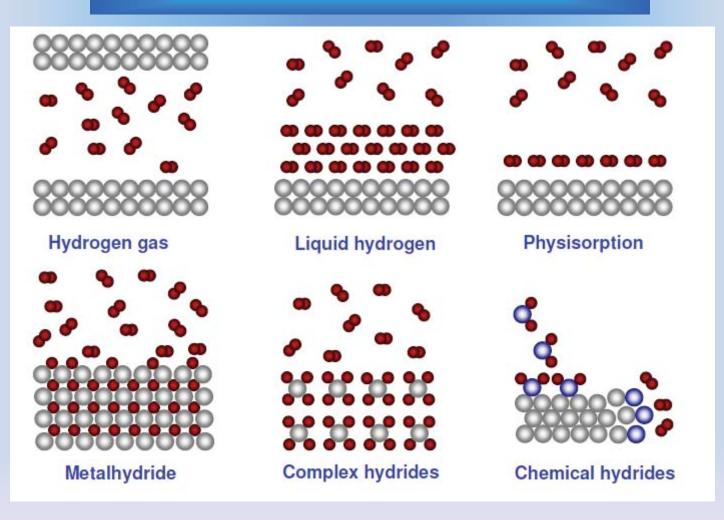
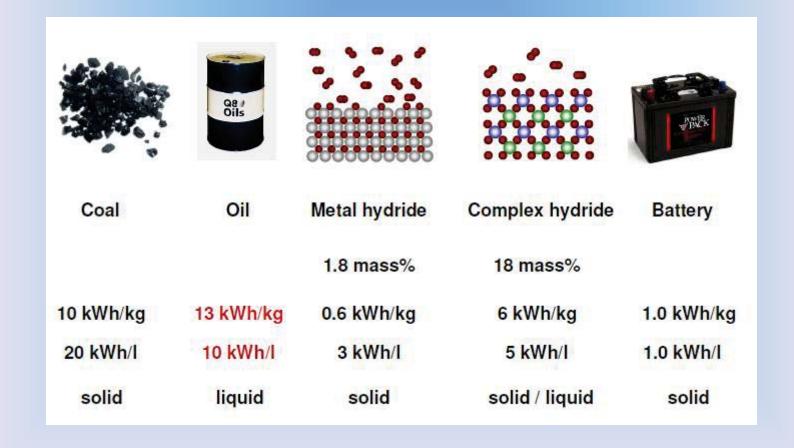


Figure 8 - Volumetric energy density of typical types of fuel (LHV)


Hydrogen storage

A big problem with hydrogen is its low volumetric density. For practical applications this density has to be increased.

Types of hydrogen storage



A. Zuttel, International Hydrogen Showcase, April 2011

Comparison

A. Zuttel, International Hydrogen Showcase, April 2011

Hydrogen for vehicles

Hydrogen could be used directly in Internal combustion engine (ICE) or with a fuel cell (FC).

ICE:

- Low cost
- •Well known engine
- Production of NOX
- Low efficiency
- •Noise

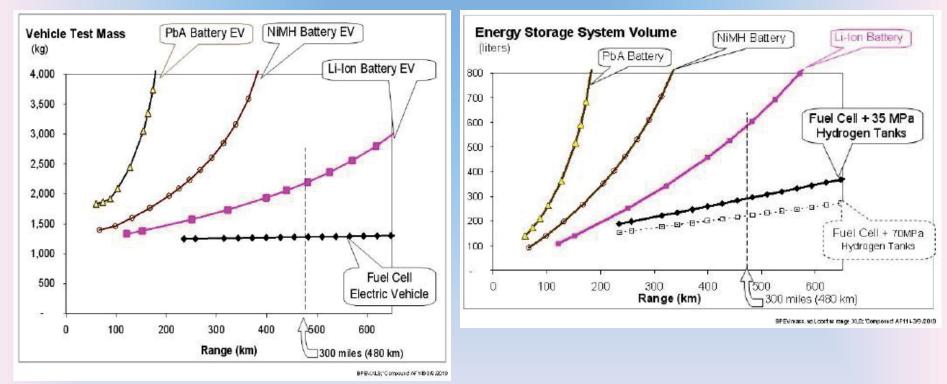
FC:

•High cost

- •New type of engine
- Pollution free
- •High efficiency
- •Silent

Electric vs FC cars

Nissan Leaf Range: 117 km (EPA) Engine : 80 kW Battery pack: Energy: 24 kW-h Weight: 300 kg Cost : 18,000\$US


ġ

Daimler B-class F-Cell Range: 385 km (manufacturer) Engine : 100 kW H₂ storage: 3 tanks 700 bar Energy: ≈ 120 kW-h Weight: ≈50 -100 kg Cost : ??

Mass

Volume

http://www.azocleantech.com/article.aspx?ArticleID=214

Characteristic	Batteries	Fuel cells
Nominal range (km)	128	400
True range (km)	90	270
Worst (km)	50	160
Filling time (min)	400	3

From kevin kendall: k.kendall@bham.ac.uk

EV use between 10 and 20 kW-h/100 km

Range of 400 km \Rightarrow 40 kW-h of energy

Electrical outlet 240V, 14 A = 3.3 kW = 12 hours

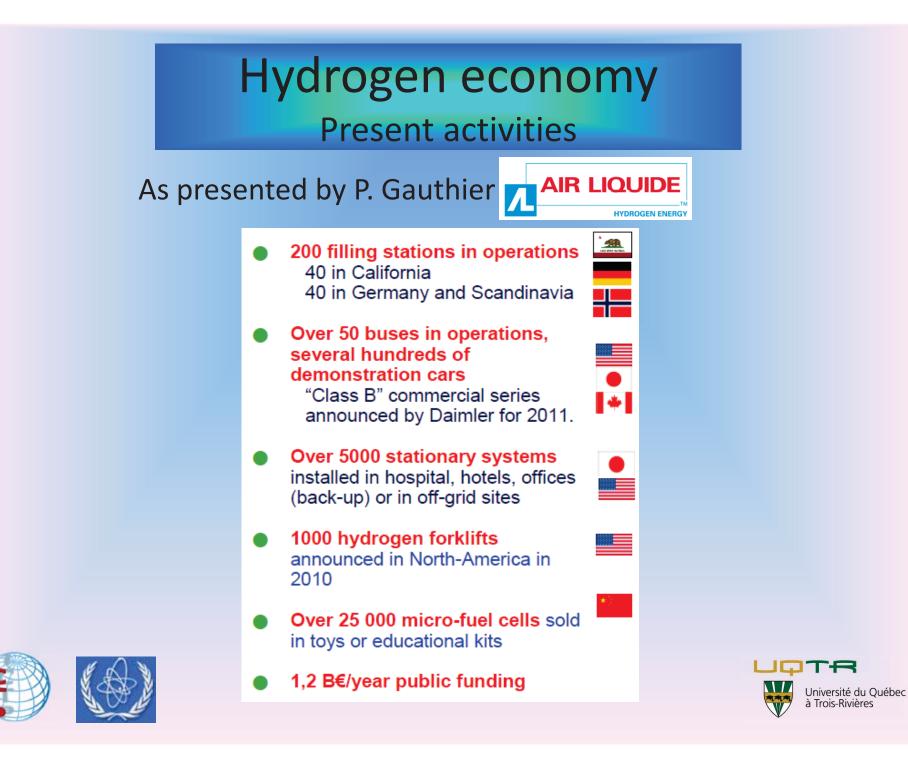
Inductive paddle 62.5 kW (500V, 25A) \Rightarrow 48 minutes (but lower efficiency and higher resistive heating)

Pollution

Today, 50% of the electricity in the United States comes from coal and 20% from natural gas. Plug-in battery vehicles could result in a massive increase in fossil fuel use.

Infrastructure

The United States National Research Council has estimated it would cost \$2.2 million to build a hydrogen fuelling station to support 1,500 fuel cell vehicles - the equivalent of \$1,500 per vehicle. Meanwhile, according to an Idaho National Laboratory estimate, the average cost of a 240V circuit needed for a PHEV-30 or PHEV-40 would be \$1,500-\$2,100.


•Car manufacturers target a commercialization of FC vehicles by 2015

•Electric car will probably be competitive only for less than 100 km range

•Issue for FC cars: Probably cost of FC

Hydrogen markets

- 1. Off-Grid sites (permanent or temporary)
- 2. Back-up power (protection of sensitive sites)
- 3. Captive fleets (forklift, airports, etc)
- 4. Mobile energy (events, cinema, rescue, etc)
- 5. Energy storage (windmill, solar)
- 6. Infrastructure for FCEV (refuelling stations)

Hydrogen in Canada

• Sector profile

• H2Can network

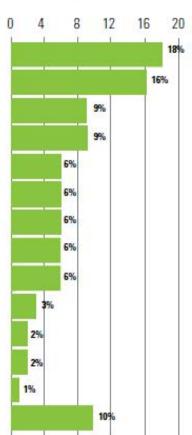
• Industry

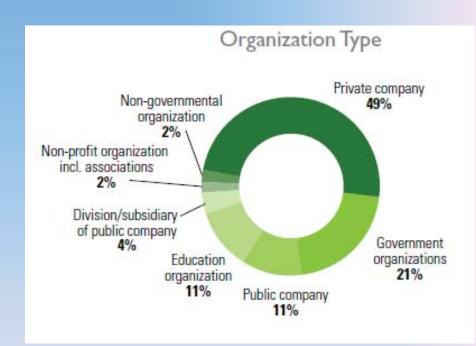
Hydrogen in Canada

One of the largest energy producer

Country	Btus produced (x10 ¹⁵)	
United States	71	
China	67.7	
Russia	53.3	
Saudi Arabia	24.7	
Canada	19.3	
Iran	13.1	

- Hydrogen production: 3 million tons/year
 - Highest per capita
- 300 million\$ invested in $H_2 + FC$
- Largest H₂ bus fleet





Hydrogen in Canada

Areas of Expertise

Fuel cell developer or manufacturer Research organization Hydrogen production Policy development and program administration Supplier to developer or manufacturer Commercialization support Systems integrator Professional services provider Education, safety and training Hydrogen storage Fuel cell user Fuel cell distributor or agent Hydrogen distribution Other

Canadian Hydrogen and Fuel Cell Sector profile 2010

- Revenue \$215 million;
- Product sales \$111 million;
- R&D and development expenditure \$142 million;
- Employment 1765;
- 86 demonstration projects;
- 350 research partnerships.

A few programs

Hydrogen highway

Hydrogen village

Vehicle program

http://www.chfca.ca/

BC TRANSIT FUEL CELL ELECTRIC BUS FLEET

- 41 buses from Winnipeg bus manufacturer New Flyer
- •Dynetek compressed hydrogen fuel storage,
- •Valence lithium-phosphate batteries for energy storage,
- 150 kW fuel cell module provided by Ballard Power Systems.

•Air Liquide has built a 1,000 kg hydrogen fuelling station in Whistler, BC.

Hydrogen village

Installed projects

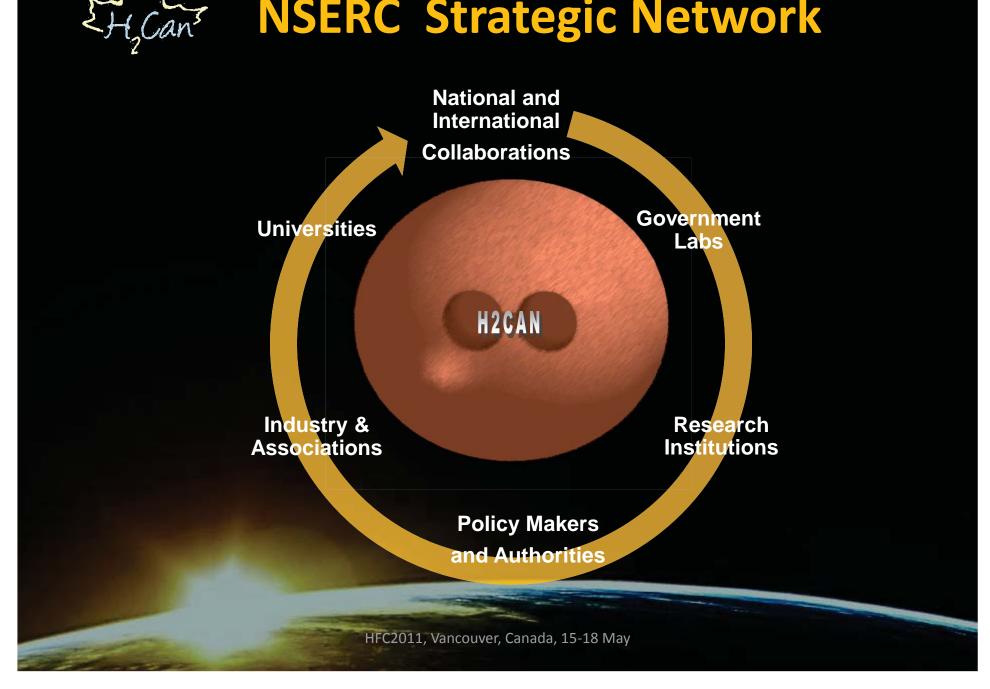
- Bell Canada Switching Station
- Exhibition Place Refueling Station
- Exhibition Place Gators
- UPS/BPS Data Centre
- Ford Shuttle Bus
- Enbridge Baseload Grid Power

http://www.hydrogenvillage.ca/

Vancouver Fuel Cell Vehicle Program

• Three year \$8.7 million joint initiative between the Government of Canada, Canadian Hydrogen and Fuel Cell Association, Ford Motor Company, and the Government of BC.

• Operating and evaluating five Ford Focus fuel cell electric vehicles in 'real world' conditions in British Columbia's Lower Mainland and Capital Region (Victoria).


Website:

http://canmetenergy-canmetenergie.nrcanrncan.gc.ca/eng/transportation/hydrogen_fuel_cells/demo_and_deployment.html

NSERC Strategic Network

Addressing the Challenges of Hydrogen

Production from renewables

□ Storage and Infrastructure

□ Safety

Budget 1 million\$/year

(leveraged 4/1 with other R&D activities)

HFC2011, Vancouver, Canada, 15-18 May

H2Can Academic

H2Can Industry

Production and purification

Project ID	Title	Researcher	Affiliation	
Group A.1 H ₂ production from wind power (group leader: Kodjo Agbossou)				
Project A.1.1	Optimized electrolyzer hydrogen production from renewable energy system for fuel cells and hydrogen powered generators	Kodjo Agbossou	UQTR	
Group A.2 Pro	duction from biomass and renewable hydrocarbons (§	group leader: D. B. Levin)		
Project A.2.1	H ₂ production via cellulose fermentation	David B. Levin	U of M	
Project A.2.2	H ₂ production via aqueous reforming of organic molecules	David B. Levin	U of M	
Project A.2.3	H ₂ production by biomass gasification	Jean Hamelin	UQTR	
Project A.2.4	H ₂ production by water gas shift reaction	Raphael Idem	U of Regina	
Group A.3 Purification and Separation Technologies (group leader: Daniel Guay)				
Project A.3.1	Metallic membranes for H ₂ gas separation	Daniel Guay with Lionel Roué	INRS	
Project A.3.2	Purification and analysis of hydrogen derived from Biomass	Brant Peppley	Queens	

Hydrogen storage

Project ID	Title	Researcher	Affiliation
Group B.1 Th McGready)			
Project B.1.1	DFT modeling of hydrogen storage materials	UNB	
Project B.1.2	Simulations of hydrogen adsorption isotherms for nanoporous materials	Pierre Bénard	UQTR
Group B.2 Dev	elopment of materials for hydrogen storage (group leader:	Richard Chahine)	
Project B.2.1	High volumetric density storage metal hydrides	Jacques Huot	UQTR
Project B.2.2	Light-element destabilized Mg-based alloys for hydrogen storage	David Mitlin,	U of Alberta
Project B.2.3	Catalyzed lithium alanate complex hydride and its composites	Robert A. Varin, Z. Wronski	U of Waterloo
Project B.2.4	Hydrogen storage in novel hybride nanoporous materials	Richard Chahine	UQTR
Group B.3 Stor	age systems design and optimization (group leader: Boyd	Davis)	
Project B.3.1	Hydride Storage Systems	Andrew Rowe	U of Victoria
Project B.3.2	Heat and mass transfer in sorption-based storage systems	Jacques Goyette	UQTR
Project B.3.3	Novel chemical hydrogen storage conceptsBoyd Davis		Queens
Group B.4 Char			
Project B.4.1	Microscopy of nanostructured hydrogen storage materials	Gianluigi Botton	McMaster
Project B.4.2	Neutron diffraction analysis	H. Fritsch	NRC-SIMS-CNBC
Project B.4.3	ject B.4.3 NMR characterization		NRC-SIMS-MSF

Infrastructure and safety

Project ID	Title	Researcher	Affiliation		
Group C.1 – Infrastructure (Group Leader A. Rowe)					
Project C.1.1	Techno-economics for Fleets	Ned Djilali (with A.	U of Victoria		
		Rowe and C. Crawford)			
Project C.1.2	Distribution by cryosorption storage	R. Chahine (with P.	UQTR		
	technologies	Bénard)			
Project C.1.3	.3 Magnetic Liquefaction A. Rowe				
Group C.2 – S	Group C.2 – Safety (Group leader: Luc Bauwens)				
Project C.2.1	Outflow modeling	Pierre Benard	UQTR		
Project C.2.2	Experimental and numerical investigation of	Peter Oshkai, Ned Djilali	U of Victoria		
	hydrogen outflow from pressurized vessels				
Project C.2.3	Compressible Large Eddy Simulations of Marius Paraschivoiu		Concordia		
Ū	hydrogen dispersion		University		
Project C.2.4	Jet ignition in hydrogen energy systems	Luc Bauwens	U of Calgary		
Project C.2.5	Self ignition of hydrogen releases	Matei Radulescu	U of Ottawa		

Training

Are YOU interested in Graduate Studies in **GREEN** technologies...

...but not quite sure where to go?

Exciting opportunities in:

Network Texterroli Institutions

IESVic

University of Victoria

INRS

McMaster University to

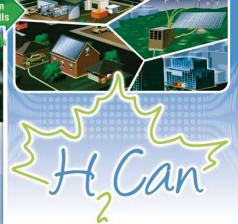
ANC CONC AND AN OF Clowel al Process and Fourier Another Decheskopy Technology Nite Child -Technology Note of the Second Nite Child -Technology Technology Techno

Dia FCRC Queens

UNB

S ATHERYA

EALCART


Cancordia

UNIVERSITY W MANITORA

Waterloo

I+I Institut"

Physics Chemistry Material Sciences Biology Engineering - mechanical, electrical, chemical →Fundamental & applied research → Modeling & system engineerin → Techno-economic & life-cycle analysis

NSERC Hydrogen Canada (H2CAN) CRSNG Strategic Research Network

Q Hydro Québec

CRSNG

Palcan

Powertech m

Québec 🔡

Québec 88

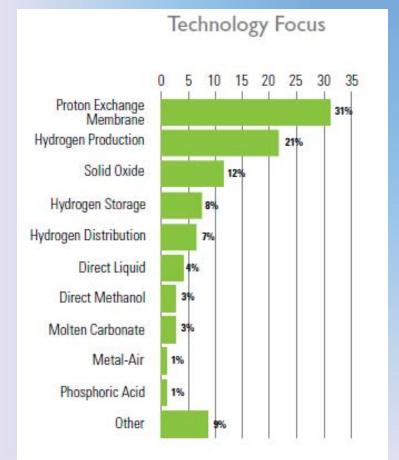
RO

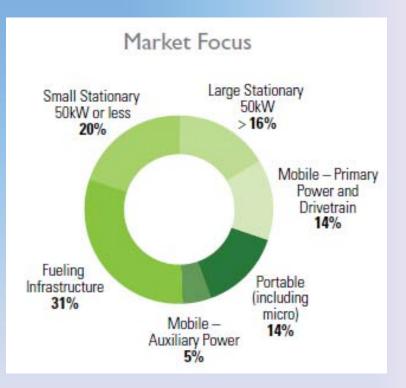
Sauré Bavey

123

VALE INCO

xebec





Université du Québec à Trois-Rivières

Hydrogen in Canada Industry

Université du Québec

Ballard

Founded in 1979 for R&D in Li batteries

- 1983 development of PEM fuel cell
- 1992-1994 sub-scale and full-scale prototypes
- •Headquarters in Burnaby, BC

Products

- Stationary power
- Motive power
- Materials

Motive power

Material handling

• Forklifts, pallet trucks

Advantages

- Battery Changes Eliminated
- Consistent Power
- •Fast Fuelling (one to three minutes)
- More Productive Warehouse Floor Space
- No onsite battery storage
- Zero Emissions
- FC: 4.4- 19.3 kW

Motive power, busses

Advantages

- Reduced Operating Costs
- •Zero Tail Pipe Emissions
- Noise Reduction
- Improved Performance
- •FC: 75 and 150 kW

www.afcc-auto.com

Founded in February 2008 Burnaby, east of Vancouver Joint venture between •Daimler (50.1%) •Ford (30%) •Ballard (19.9%).

Mercedes-Benz B-Class F-CELL

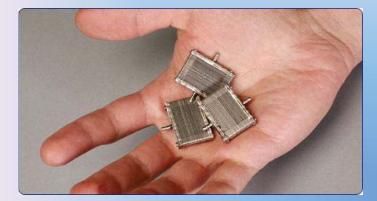
AUTOMOTIVE FUEL CELL COOPERATION

The drive components of the Mercedes-Benz B-Class F-CELL are protected in the sandwich underfloor unit; thanks to this space-saving configuration, the interior and the trunk are fully usable.

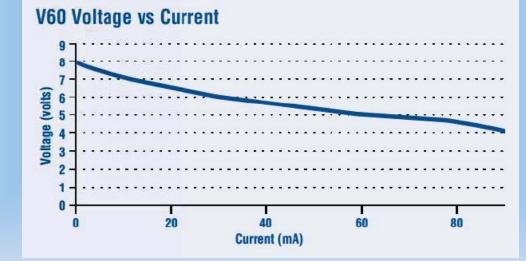
Facts and figures	
Peak power	100 kW
Torque	290 Nm
Tank capacity	3,7 kg at 700 bar
Range	400 km
Consumption (diesel equivalent)	3.3 l/100 km

Mercedes-Benz to build its own production of fuel cell stacks in Canada

Preparation for the next generation of fuel cell drive systems


Vancouver/Stuttgart – Mercedes-Benz announced today that it will set up its own production of fuel cell stacks in Canada. By doing so, the company will bundle the development and production for one of the key components of fuel cell powered electric vehicles in Vancouver, British Columbia.

Press release March 17, 2011



The Angstrom V60 Fuel Cell Module is an ultrasmall power unit that delivers 200 mW of electrical output at 5 Volts.

http://www.angstrompower.com/

Twenty four hours on a single charge. on-board metal hydride storage system. Refueling takes only minutes

http://www.angstrompower.com/

G2 Portable Fuel Cell Power Source

Eight V60 Fuel Cell Modules that all together provide two watts of power. That can be used to top off any device that charges with a USB.

http://www.angstrompower.com/

Hydrogen in United States

Overview

Hydrogen storagePast activitiesPresent activities

Budget

EERE Budget: FY09 – FY12

ENERGY Energy Efficiency & Renewable Energy

Activity	FY 2009	FY 2010 Current Approp.	FY 2012 Request
Biomass and Biorefinery Systems	214,245	216,225	340,50
Building Technologies	138,113	219,046	470,70
Federal Energy Management Program	22,000	32,000	33,07
Geothermal Technology	43,322	43,120	101,53
Hydrogen Technology	164,638		
Hydrogen and Fuel Cell Technologies	0	170,297	100,45
Water Power	39,082	48,669	38,50
Industrial Technologies	88, 1 96	94,270	319,78
Solar Energy	172,414	243,396	457,00
Vehicle Technologies	267,143	304,223	588,00
Weatherization & Intergovernmental Activities	516,000**	270,000	393,79
Wind Energy	54,370	79,011	126,85
Facilities & Infrastructure	76,000	19,000	26,40
Strategic Programs	18,157	45,000	53,20
Program Direction	127,620	140,000	176,60
Congressionally Directed Activities	228,803	292,135	
RE-ENERGYSE	0	0	
Adjustments	-13,238	0	-26,36
Total	\$2,156,865	2,216,392	3,200,053

* SBIR/STTR funding transferred in FY 2009 was \$19,327,840 for the SBIR program and \$2,347,160 for the STTR program.

** Includes \$250.0 million in emergency funding for the Weatherization Assistance Grants program provided by P.L. 111-6, "The Continuing Appropriations Resolution, 2009."

32 | Fuel Cell Technologies Program Source: US DOE 2/24/2011

eere.energy.gov

http://hydrogen.energy.gov/

Budget DOE

Funding (\$ in thousands)

Key Activity	FY 2009 ⁴	FY 2010 Current Appropriation	FY 2012 Request
Fuel Cell Systems R&D ¹	-	75,609	45,450
Fuel Cell Stack Component R&D	61,133		
Transportation Systems R&D	6,435		-
Distributed Energy Systems R&D	9,750		-
Fuel Processor R&D	2,750		-
Hydrogen Fuel R&D ²	-	45,750	35,000
Hydrogen Production & Delivery R&D	10,000		-
Hydrogen Storage R&D	57,823		-
Technology Validation	14,789 ⁵	13,005	8,000
Market Transformation ³	4,747	15,005	-
Early Markets	4,747	15,005	
Safety, Codes & Standards	12,238 ⁵	8,653	7,000
Education	4,200 ⁵	2,000	-
Systems Analysis	7,520	5,408	3,000
Manufacturing R&D	4,480	4,867	2,000
Total	\$195,865	\$170,297	\$100,450 ⁶

http://hydrogen.energy.gov/

Metal Hydride Center of Excellence

L. Klebanoff, ST029

Mandate

Research, develop and validate reversible on-board metal hydride storage materials that support the 2010 DOE system targets for hydrogen storage, with a credible path forward for supporting the 2015 DOE storage system targets

Technical targets

H Capacity:

 Synthesize and characterize hydride materials with high hydrogen capacity and favorable thermodynamics, as guided by theory

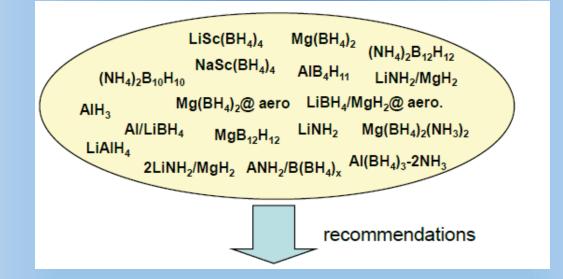
Charge/Discharge Rates:

 Develop materials that are fully reversible, assess nanoengineering and catalysis as means for promoting kinetics

Hydrogen Purity (from Storage Material) :

 Assess release of NH₃, B₂H₆ and other volatile species, extend theory to account for these species during rxn

Cycle Life:


Assess durability of materials, cycling behavior, effects of contaminants, structural stability, release of volatiles

L. Klebanoff, ST029

Metal Hydride Center of Excellence

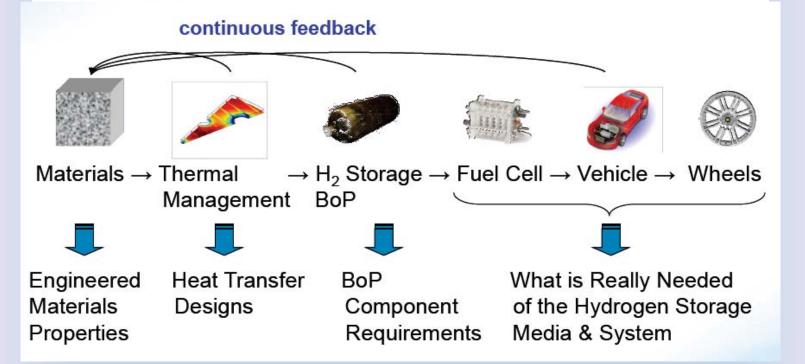
3 High-Level MHCoE Goals For The Final Project Year: Focus for the Future

- Identify a near-term material for collaboration and subsystem testing in the HSECoE ✓ Recommended 2LiNH₂/MgH₂, AIH₃, LiAIH₄
- 2. Identify medium-term materials that need more R&D, but would also be of eventual interest for HSECoE examination and subsystem testing

✓ Recommend LiNH₂/MgH₂, others (TBD)

 Identify areas of further R&D that in the long-term have promise for fulfilling the 2015 targets

25

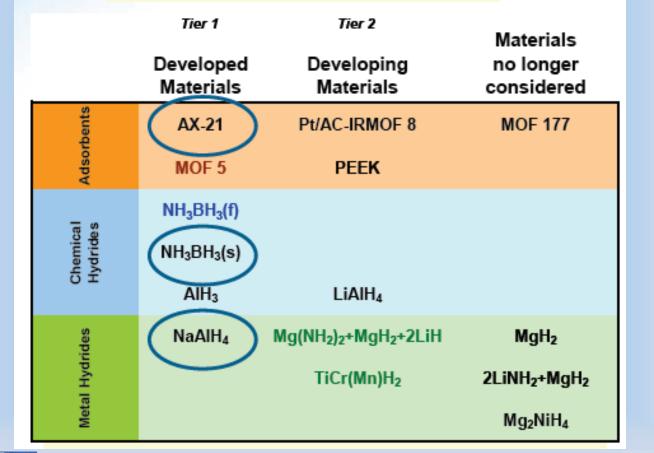

D.L. Anton, H2Can meeting, Whistler, May 2011

Center Goals

Develop the engineering technologies required for materials based light duty vehicle hydrogen storage delivery systems.

D.L. Anton, H2Can meeting, Whistler, May 2011

Role of Technology Area


- Subscale Prototype Constructing Testing and Evaluation (SPCTE)
 - Test subscale prototypes sufficiently to evaluate their performance relative to the DoE Technical Targets.
- Performance, Cost and Energy Analysis (PCEA)
 - Model hydrogen storage systems performance within a mid-size vehicle environment to determine energy utilization efficiency
- Integrated Power Plant Storage System Modeling (IPPSSM)
 - Model the integrated unit of PEM FC with BoP and Hydrogen Storage system to account for steady state and transient response dynamics.
- Enabling Technologies (ET)
 - Assess the availability and performance of BoP components a d design/modify as required to meet the demands of the hydrogen storage systems design concepts
- Transport Phenomena (TP)
 - Model and test advanced thermal and mass transport structures to meet the demanding requirements of both endothermic and exothermic reactions
- Materials Operating Requirements (MOR)
 - Assemble materials data required for the design of systems and experimentally determine data where it is not currently available.

Materials Candidate Matrix

D.L. Anton, H2Can meeting, Whistler, May 2011

System Technical Targets

Pa	rameter	units	2010	2015
Gravimetric	Density	KgH ₂ / Kg system	0.045	0.055
Volumetric	Density	KgH ₂ /liter	0.028	0.04
Cost		\$/KWh net	4	2
Operability	Min./Max. Op. T	°C	-30/50	-40/60
	Min./Max, Deliv. T	°C	-40/85	-40/85
	Cycle Life	N	1000	1500
	Min. Deliv. P	bar	4	3
	Max Deliv. P	bar	100	100
Rates	Fill Time	Min.	4.2	3.3
	Min. Flow	g/s•KW	0.02	0.02
	Start time 20°C	sec.	5	5
	Start Time -20°C	sec.	15	15
	Trans. Resp. 10%-90%	Sec.	0.75	0.75
Fuel Purity		%	99.99	99.99
EH&S	H2 Loss	gH ₂ /hr•KgH ₂	0.1	0.05

D.L. Anton, H2Can meeting, Whistler, May 2011

Conclusion

Hydrogen market is there and growing

Major automakers are targeting 2015 for FC vehicle commercialization

R&D effort should be targeted toward practical applications but we have to make room for some fundamental studies also

