

2246-9

Workshop on Cosmic Rays and Cosmic Neutrinos: Looking at the Neutrino Sky

20 - 24 June 2011

ANTARES and KM3NeT

Juan Jose HERNANDEZ REY IFIC, Univ. Valencia Spain

Detection principle

Cherenkov Neutríno detectíon

Muon neutrinos are well suited for HE detection (crosssection and muon range increase with energy)

Muons emit Cherenkov light collected by a lattice of PMTs.

Arrival time of photons enable track reconstruction.

Other signatures can also be detected.

Example Data Events

reconstructed up-going neutrino detected in 6/12 detector lines:

reconstructed down-going muon bundle detected in all 12 detector lines:

ANTARES – Atmospheric μ 's

Depth intensity relation

Zenith angle distribution

$I(\theta = 0, h) = I(\theta, h_0) \cdot \left| \cos \theta \right| \cdot c_{corr}(\theta)$

Downgoing reconstructed muons

coincidences between storeys (low energy muons)

• Data

- MUPAGE Monte Carlo.
- CORSIKA + QGSJET + NSU
- CORSIKA + SIBYLL + NSU
- CORSIKA + QGSJET+ "poly-gonato" model
 Systematic uncertainty

Diffuse v_{μ} flux

Analysis of 2007-2009 data

Good quality upgoing tracks: Cuts on zenith angle, track quality, n_{lines} in prefit)

Background vs. signal discrimination by energy based on repetition *R* of hits in the same OM

Blind analysis, MRF optimization of *R* cut on 10% of sample

Diffuse v_{μ} flux – Upper limits (E⁻²)

20 TeV < E < 2.5 PeV

Point sources - Track reconstruction

Good quality runs are selected.

• A trigger based on number of causally related hits is applied.

- Events are accepted if the angular error estimate is < 1° (misreconstruted muons have a much larger error estimate).
- The cut on track quality is chosen to optimize the sensitivity to an E^{-2} flux.

MC estimated angular resolution: (0.5±0.1)°

Search for point sources

Look for cluster of events:

- All-sky search: Fit μ_{sig} , δ_s and α_s
- List of candidates: Fit μ_{sig} (δ_s and α_s fixed)

Use likelihood ratio Q to discriminate if signal is present:

 $Q = \log \mathcal{L}_{s+b}^{max} - \log \mathcal{L}_b$

PSF from MC simulation

Background from real data (parametrization + scrambling)

Indepently: a search based on the autocorrelation
function (number of pairs in a given angular distance)
same dataset, but different systematics
(not relying on MC simulations)

sensitive to a large variety of source morphologies

All-sky search

Total live time 295 days (144 with 5-lines) Optimized quality cut $\Lambda > -5.4$ 2040 events selected (60% atmospheric neutrinos) Sky map in Galactic coordinates Hue of background colour indicates visibility Most significant cluster at: RA=134.6°, δ =13.4° (post-trial probability to be background 2.4%)

Source candidate list

List of 24 candidate sources

Source	ra.decl	fit Nsig	0	Limit Nsig	Limit ϕ	p-value 0.068	
GX 339	-104.3, -48.79	2.24	3.41	6.590	2.13e-07		
RX J0852.0-4622	133.0, -46.37	1.24	1.81	5.510	1.78e-07	0.397	
RX J1713.7-3946	-101.75, -39.75	1.07	1.80	5.540	2.25e-07	0.399	
1ES 0347-121	57.35, -11.99	1.49	1.43	4.840	2.57e-07	0.574	
HESS J1837-069	-80.59, -6.95	1.04	1.11	4.620	2.45e-07	0.705	
3C 279	-165.95, -5.79	1.01	1.00	4.600	2.44e-07	0.743	
PSR B1259-63	-164.3, -63.83	1.03	0.56	4.520	1.45e-07	0.879	
HESS J1023-575	155.83, -57.76	1.05	0.24	4.220	1.36e-07	0.952	
PKS 2005-489	-57.63, -48.82	0.00	0.00	3.530	1.14e-07	~ 1	
RGB J0152+017	28.17, 1.79	0.00	0.00	3.110	1.87e-07	~ 1	
Galactic Center	-93.58, -29.01	0.00	0.00	2.790	1.3e-07	~ 1	
LS 5039	-83.44, -14.83	0.00	0.00	2.520	1.34e-07	~1	
H 2356-309	-0.22, -30.63	0.00	0.00	2.430	1.13e-07	~ 1	
PKS 0548-322	87.67, -32.27	0.00	0.00	2.160	1.01e-07	~ 1	
W28	-89.57, -23.34	0.00	0.00	1.940	9.71e-08	~ 1	
HESS J1614-518	-116.42, -51.82	0.00	0.00	1.690	5.46e-08	~ 1	
1ES 1101-232	165.91, -23.49	0.00	0.00	1.400	7e-08	~ 1	
Cir X-1	-129.83, -57.17	0.00	0.00	1.280	4.12e-08	~ 1	
RCW 86	-139.32, -62.48	0.00	0.00	1.270	4.09e-08	~ 1	
ESO 139-G12	-95.59, -59.94	0.00	0.00	1.270	4.09e-08	~ 1	
PKS 2155-304	-30.28, -30.22	0.00	0.00	1.240	5.78e-08	~ 1	
HESS J0632+057	98.24, 5.81	0.00	0.00	1.220	8.2e-08	~ 1	
Centaurus A	-158.64, -43.02	0.00	0.00	0.860	3.5e-08	~ 1	
SS 433	-72.04, 4.98	0.00	0.00	1.390	8.34e-08	~ 1	

Most significant candidate GX 339-galactic micro-quasar

Post-trial probability to be background fluctuation= $6.8\% \Rightarrow$ not significant

12

Point source limits

Assuming an E⁻² flux for a possible signal

Much more data (2009-2011) being analysed plus further improvement once energy estimator is included

γ-ray flaring blazars

9 sources: 0 events \Rightarrow upper-limit on the neutrino fluence

3C279: 1 event compatible with the source direction ($\Delta \alpha$ =0.56°) and time distribution

- \Rightarrow pre trial p-value = 1.1% post trial p-value ~10%
- \Rightarrow not significant

Magnetic Monopoles

 Required in many models of spontaneous symmetry breaking ('t Hooft, Polyakov)

upgoing \Rightarrow masses less than ~10¹⁴ GeV

• High photon yield $(8.5 \times 10^3 \text{ times } \mu)$ Cherenkov threshold $\beta > 0.74$ secondary δ -rays $\beta \ge 0.5$

• Modified track reconstruction with β free

Magnetic Monopoles

Selection criteria based on:

- upward going direction
- reconstructed beta
 - $\lambda = \log \left[\chi^2 (\beta=1)/\chi^2 (\beta=\text{free}) \right]$
- number of hits

β	Number of	90% C.L. upper flux limit
	observed events	$(cm^{-2}s^{-1}sr^{-1})$
0.55	12	3.97×10^{-15}
0.60	3	4.29×10^{-16}
0.65	0	6.45×10^{-17}
0.70	1	8.20×10^{-17}
0.75	0	3.79×10^{-17}
0.80	0	2.33×10^{-17}
0.85	0	1.70×10^{-17}
0.90	0	1.68×10^{-17}
0.95	0	1.54×10^{-17}
0.99	0	1.24×10^{-17}

18

KM3Net Conceptual Design for a Deep-Sea R Infrastructure Incorporating Very Large Volume Neutrito Tele in the Mediferranean Sea

KM3Ne

- Central physics goals:
 - Neutrino Astronomy under the Mediterranean Sea
 - Investigate neutrino "point sources" in the 100 GeV-1 PeV energy range
 - Complement IceCube field of view
 - Instrumented volume > 5 km³
- Implementation requirements:
 - Construction time \leq 5 years
 - Operation over at least 10 years without "major maintenance"

- KM3NeT consortium consists of 40 European institutes, including those in Antares, Nemo and Nestor, from 10 countries (Cyprus, France, Germany, Greece, Ireland, Italy, The Netherlands, Rumania, Spain, U.K)
- KM3NeT is included in the ESFRI and ASPERA roadmaps
- Design Study (2006-2009) funded by the EU VIth Framework Program
- Conceptual Design Report (ISBN 978-90-6488-033-9) and Technical Design Report (ISBN 978-90-6488-031-5) available: www.km3net.org/public.php
- KM3NeT PreparatoryPhase (2008-2012) funded by the EU VIIth Framework Program
 Final design, production plans for the detector elements and infrastructure features. In-situ prototype validation is underway. Legal, governance and funding aspects are also under study.

Major technical decisions taken

KM3NeT storey

Detector Unit

Flexible tower Storey buoyancy Horizontal bars (syntactic foam) 40 m between storeys

Multi-PMT Optical Module

Self-contained "plug-and-play" module (17" pressure-resistant sphere)

- Photo-sensors 31 (19+12) 3" PMTs • Equivalent of 4 x 8" PMTs
- Includes:
 - All read-out/control electronics
 - Calibration devices
 - Single colour point to point connection via DWDM between each OM and the shore station.

Distinguish single from multiple photon hits:

Cable reel

- Photon counting = PMT counting
- Background rejection ⁴⁰K

Looking upward:

6 m

- Background rejection atmospheric muons
- More uniform angular acceptance **Directionality:**
 - Signal photons from one side

Ageing:

- lower gain ~10⁶
- charge spread over multiple dynode chains

The packed flexible tower (20 storeys)

- Compact package
- Self unfurling
- Connection to seabed network by Remotely Operated Vehicle

Storeys Height Compact Package Top drift @ 30 cm/s Total buoyancy EO Cable

20 900m 6 x 2.5 x 2.5m ~120 m ~10 kN 2 x 6.35 mm OD

KM3NeT Performances

Sensitivity and discovery fluxes for point like sources (E⁻² spectrum) for 1 year of observation time

IceCube discovery 5σ 50% 2.5÷3.5 above sensitivity flux. IceCube sensitivity 90%CL

KM3NeT discovery 55 50% KM3NeT sensitivity 90%CL

Detector resolution

25

Next Steps and Timeline

- Prototyping has started.
- Timeline:

Conclusions

- The interest of neutrino telescopes and their technical feasibility are beyond doubt. The struggle is now to reach the required sensitivity.
- ANTARES is taking data in its final configuration since 2008. First results are being released and more will come soon.
- The initiatives for a Med-Sea neutrino telescope (Antares, NEMO and NESTOR) have joined forces in the KM3NeT consortium.
- Substantial progress towards a multi-km3 telescope in the Mediterranean Sea has been made. Major technical design decisions have been taken, minor points optimized for mass production. First pre-production models soon to be deployed.

Backup slides

Detector Status

- Completion
 May 2008
- 885 PMTs
- 88% giving data
- Regular yearly maintenance

	Run 5 Line 1	53144 1-12 Pi	Mon Nov 15 18:58:53 2010 hysics Trigger 3N+2T3+GC+TQ+T2+K40+TS0 Nov2010							010		
25	-*	•	•			•	*	*				
20	- 🍋		- 4 -	- * * -	-	- * *	- * •	- * *	- - •	- 4 4	-	
	- 🍋	- 4 -	- 4 4	- 4 4	- 4 4	- 4 4		- * *	- - •	-	.	
	- 🌯		.	- 4 4	.	•••	- -	- 4 4	- - •	- 4 4	- * *	
	- 🍋	- 4 -	-	- 🎝	- 4 4	- 4 4	~		- - •	- 4 4	-	
20		- 4 -	- 4 4	- 4 4	- 4 4	- 4 4	-	- * *	- - •	•••	- * *	- * •
20	- 🍋	- A -	- 4 4	- 4 4	.	- 4 4	- A	- A.	- 4 4	- A -	- 4 4	- 4 4
	- 🍋	- A -	.	- 4 4	- 4 4	- 4 4	- 4 4	- * •	-	- A -	- 4 4	- 4 4
	- 🍋	- A -	••				-	- -	- - •	- A	- * •	- * *-
	- 🍋	- A -	- 4 -	- 4 -	•*•	- *	-	- A	- - •	- 4 -	- * •	- * *-
15		- A -	-	- - -	- *	- *	- *	- *	- - •		-	-
	- 🎝	- A -	- * •	•••	•••	- - •	- 🐴	- A	- - •	- A -	- * •	- * *-
	- 🍋	- 4	- * •	- * •	•••		- 🎝	- *		- 4 -	-	- * *-
	- 🍋	- A -	-	- - -	-		- -	- A	- - •	•••	- * •	- * *-
	- 🌯	- A -	.	- * •	- *	- - •	-	- A	- - •	- A	-	- * •
10			- * •	- 4 -	- *		- 4 -	- A	- - •	- A	- * •	- * *-
	- 🍋	- A -	••	- - -	- *		- *	- * •	- - •	- 4 -	- * •	- * *
	- 🍋	- A -	- 4 -	- 4 -	•••	- - •	- * •	- A	- - •	- A -	.	- * •
	- 🎝		- * •	- 4 -	-	- *	- 4 -	- 4 -	- - •	-	- * •	- * •
	- 🍋	- A -	- 4 -	- * •	- 4 4	- 4 6	- 4 4	- 4 4	- 4 6	- 4 6	.	- * •
-5		- A -	- 4 4	~ •	- * •	- 4 6	- 4 4	- 4 4	-	- 4 4	~ •	- 💑 -
Ŭ	- 🍋	-	- * •	••	- 4 4		••	- 4 -	- 4 4	- 4 4		- * •
	- 🍋	- *	- *	••	- * *	- * *	-	- * •	- * *	- 4	•••	- * •
	- •••		- * • -	- * •		- 4	- *	- * •	- 4	- 4	-	- * •
0	- 🀴	1	4	<u></u>		<u> </u>	<u> </u>	<u></u>	<u></u>	<u></u>		4
U	1	2	3	4	5	6	7	8	9	10	11	12
	missing	3 0	empt	y 102	0 Ic	w	• • 7 4	high	1	ok	755 11	

PS analysis. Discrimination

PS analysis. Effective area. Visibility

