



2246-13

#### Workshop on Cosmic Rays and Cosmic Neutrinos: Looking at the Neutrino Sky

20 - 24 June 2011

Dark matter searches with Fermi

Vincenzo VITALE Universita' di Roma 2 Italy

## **Dark Matter Searches with Fermi**



Abel 1689. Credit: NASA, ESA, E. Jullo (Jet Propulsion Laboratory), P. Natarajan (Yale University), and J.-P. Kneib (Laboratoire d'Astrophysique de Marseille, CNRS, France)



Vincenzo Vitale for the Fermi-LAT Collaboration INFN Roma Tor Vergata

### I -Testing the WIMP Hypothesis with Indirect Searches in Gamma Rays

WIMPS
Fluxes
Spectra
DM Distribution

## The WIMP hypothesis

- Dark Matter <u>required</u> by LambdaCDM Cosmology, Grav. Lensing, Cel. Dynamics
- Beyond Standard Model physics required
- "natural" candidates at the weak scale in several theories models (Super-symmetry, Universal Extra Dimensions, etc.), among others
- WIMPs, with EW properties, typical mass ~ 100 GeV and relic density thermally produced with cross-section <σv> ~ 3x10<sup>-26</sup> cm<sup>3</sup>s



### **Indirect Dark Matter Fluxes**

- DM particles annihilation or decay allow us to perform Indirect Searches in neutral and charged channels
- The neutral ones have (i) simpler propagation, (ii) both spectral and spatial signatures
- Expected flux typically factorized as Particle Physics factor and DM density distribution



Anti-matter



## **Gamma-ray Emission Spectra**

- Choice of the particle physics model fixes final states and spectrum
- In general no simple power law spectra
- b-bbar spetrum good proxy for hadronic channels (quarks and gauge bosons)
- Annihilation line "smoking-gun" signature, but O(10-3 / 10-4) suppressed







#### **Dark Matter Distribution**

- Large DM halos with sub-structures and a possible central density cusps
- Milky Way embedded in a DM halo
- The MW DM halo foreseen to have several associated sub-structures...
- ... and web of extra-galactic DM structures foreseen by n-body simulations



# II -Experimental Techniques gamma rays from the space (and some charged particles)

Gamma Rays from Space Cosmic Rays with the LAT Backup slides Electron anisotropies

### **Gamma Rays from Space**

#### The Large Area Telescope



Vincenzo Vitale, NUSKY 2011, ICPT Trieste, Italy

## **Charged Cosmic Rays electrons**



- Spectrometers (PAMELA, AMS2) vs\_<u>Calorimeters</u> (ATIC, FERMI, IACTs)
- Statistics driven by ~size (acceptance), integrated livetime
- Inclusive spectrum e+ e- spectrum is hard with no strong features (a TeV cutoff seen by HESS)
- •CRE Anisotropies (Fermi) exclude single local astrophysical source (no dipole, but leave room for DM)

## **Charged Cosmic Rays (II)**



- ●The Fermi-LAT measured the cosmic-ray positron and electron spectra separately, between 20 130 GeV, using the Earth's magnetic field as a charge discriminator
- The two independent methods of background subtraction, Fit-Based and MC-Based, produce consistent results
- The observed positron fraction is **consistent with** the one measured by **PAMELA** (e.g. rising and at odd with standard production of secondaries and antiproton spectrum)

  Vincenzo Vitale, NUSKY 2011, ICPT Trieste, Italy

#### **III – Current Fermi/LAT Results**

Point Sources
Extended Sources
Diffuse Emission
(backup slides)
Unidentified Sources
The Galactic Halo

### **Dwarf Spheroidal Galaxies**

- dSph are DM dominated systems (M/L up to 100-1000).
- Many dSphs closer than 100 kpc to the Galactic Centre.
- Cleanest known target
- Foreseen gamma-ray flux from DM dependent on the DM distribution
- U.L. on DM annihilation
- Previous results already close to cross-sections foreseen by some minimal super-symmetric extension of the Standard Model



## **Dwarf Spheroidal Galaxies**

- Combined likelihood approach within ST to derive combined upper limits for 10 dSphs.
- The dSphs are first individually The dSphs are first individually fitted and then added to the combined fit, where the DM is fitted as a common parameter.

  Backgrounds and surrounding sources are fitted individually within the combined fit.

  J-factor uncertainties included

  The limits cut into the thermal
- The limits cut into the thermal WIMP regime for: bb and  $\tau+\tau$ channels for WIMP < 30 GeV



## **Galaxy Clusters**





- U.L. on DM annihilation or decay (decay limits not shown here)
- Previous results results disfavor lepto-philic DM from CRE excesses
- New Combined likelihood analysis
- Energy between 200 MeV 100 GeV (20 energy bins), P6v11 IRFs.
- •All 1FGL sources within circle 15 degrees considered (fit of normalization parameter for those within 5 deg
- Uncertainties in the J-factors NOT included

## **All-Sky Line Search**

- Data extracted from a large fraction of the sky, the galactic plane used as control region
- No line feature detected from 7 to 200 GeV
- Spurious effects (CTBCORE) in the
   Pass 6v3 solved with the new Pass 7
- U.L. Constrain some scenarios
   (Higgs in space, some Gravitino decay, npn thermal WIMPs )







### The Inner Galaxy

- The Milky Way centre *might* be (according to N-body simulations) the <u>brightest</u>
   <u>dark matter gamma-ray source</u>
- The region hosts a large number of sources (and possibly many unresolved ones)
- •Diffuse gamma emission from interaction of cosmic rays with the interstellar gas and radiation fields: (i) Inverse Compton; (ii) Bremmstrahlung; (iii) neutral pions decay
- Diffuse emission coming from the from: (1) Outer galaxy, (2) True inner galaxy; (3) possible unresolved sources





## The Inner Galaxy (II)

- Currently work in progress for modelling the the diffuse emission in the Inner Galaxy region (45X45deg) with physically-motivated model based on GALPROP
- ●In the residual emission (data diffuse model ) maps the bright known sources are visible
- Work in progress to characterise the low-level residual structures and point sources
- Possible to find combination of diffuse model + sources that describe the innermost region with relatively flat residuals
- Forthcoming paper(s) will describe the method and results in detail



#### **III – Anisotropies in the Diffuse Emission**

Angular Power Spectrum
The Analysis Results
(backup slides)
Measurement of the IGRB
Milky Way Lobes/Bubbles
Intensity Maps
APS from Sources

## **Angular Power Spectrum (APS)**

$$I(\psi) = \sum_{\ell,m} a_{\ell m} Y_{\ell m}(\psi)$$

L.Knox 1995PhRvD..52.4307K

$$C_{\ell} = \langle |a_{\ell m}|^2 \rangle$$

$$\delta C_{\ell}^{\rm s} = \sqrt{\frac{2}{(2\ell+1)\,\Delta\ell\,f_{\rm sky}}} \left( C_{\ell}^{\rm s} + \frac{C_{\rm N}}{W_{\ell}^2} \right)$$

- A diffuse background can be built by the sum of a <u>large number of un-resolved faint</u> <u>sources</u> (possibly <u>DM Halos and sub-structures</u>, for example)
- Fluctuations from source populations can be identified, if different from the Poisson noise ones;
- the energy-dependence of the anisotropy can reveal/constrain multiple population
- Diffuse emission fluctuations can be studied with spher. harmonics expansions
- C<sub>I</sub> = intensity APS : indicates dimensionful amplitude of anisotropy
- $C_l I < I >^2$  = fluctuation APS: dimensionless, independent of intensity normalization, with  $f_{sky}$  = un-masked fraction of the sky,  $W_l$ =window function;  $\Delta I$  =multipole bin,  $C_n$ = noise angular power;

Vincenzo Vitale, NUSKY 2011, ICPT Trieste, Italy

## Studying Anisotropy in the IRGB

- Fermi/LAT all-sky observations from the first 22 months of operation
- The APS of the data are obtained from binned Intensity maps;
- HEALPix (Gorski et al 2005) used;
- Known sources and Galactic diff. em. minimized with masking;
- In the main analysis branch gtools were used for the exposure maps calc.
- An independent method (**Shuffling**) used to cross-check the exposure calculation effects;
- APS of real data and detailed all-sky simulations have been obtained and compared;
- A Foreground Cleaning has been used to estimate the possible effects of residual Galactic diffuse emission

### **APS of the Data**



- For multipoles < 100 excess of angular power likely coming from the Galactic diffuse background
- For multipoles > 150 an excess of angular power is detected





## Simulated Sky Comparison (i)





- All-sky simulations APS compared to real data ones
- Simulated: 1FGL sources (1451), Galactic diffuse emission (the standard gll\_iem\_v02.fit at 0.5deg resolution and a version at 0.125deg resolution), Isotropic diffuse emission;
- Other energy bins in backup slides

## Simulated Sky Comparison(ii)





- Galactic diff. Model shows low multipole (I<100) excess</li>
- Isotropic diffuse and sources follow expected behaviour
- Other energy bins in backup slides

## **Angular Power in the Data**

| $E_{\min}$ | $E_{\rm max}$ | $C_{ m P}$                        | Significance | $C_{\rm P}/\langle I \rangle^2$ |
|------------|---------------|-----------------------------------|--------------|---------------------------------|
| [GeV]      | [GeV]         | $[(cm^{-2} s^{-1} sr^{-1})^2 sr]$ | /            | $[10^{-6} \text{ sr}]$          |
| 1.04       | 1.99          | $7.39 \pm 1.14 \times 10^{-18}$   | $6.5\sigma$  | $10.2 \pm 1.6$                  |
| 1.99       | 5.00          | $1.57 \pm 0.22 \times 10^{-18}$   | $7.2\sigma$  | $8.35 \pm 1.17$                 |
| 5.00       | 10.4          | $1.06 \pm 0.26 \times 10^{-19}$   | $4.1\sigma$  | $9.83 \pm 2.42$                 |
| 10.4       | 50.0          | $2.44 \pm 0.92 \times 10^{-20}$   | $2.7\sigma$  | $8.00 \pm 3.37$                 |
|            |               |                                   |              |                                 |

- Angular power detect with high significance up to 10GeV, and with a lower one at larger energies;
- •Fluctuation angular power of 10<sup>-5</sup> sr in the range predicted for astrophysical source classes and some DM scenarios

## **Energy Dependence of APS**





- Fluctuation anisotropy energy spectrum consistent with no energy dependence and contributed by one or more source classes providing same fractional intensity contribution at all energies
- •Intensity anisotropy energy spectrum consistent with one or more source classes with photon index -2.40+-0.07 (such as FSRQs and BL Lacs)

#### **V – Conclusions**

- Fermi and Pamela provide coherent observational picture
- Fermi and IACT complementary in energy range
- Neutrino initial results important for a comprehensive observational program
  - Only upper limits so-far
- Point sources cleanest target
- Fermi limits from dwarfs scratching WIMP benchmark thermal cross section at ~10 GeV
- All sky (EGB, line, anisotropies) accessible to Fermi only
- Extended regions (halo, Inner Galaxy) promising but hard
- Diffuse emission is the maximal uncertainty, needed input from Fermi and other missions to improve modeling
- Wealth of results from Indirect Dark Matter searches
- Gamma-ray results disfavor lepto-philic DM for CRE excesses
- Hints from direct or accelerator searches reduce models phase space for cross-checks

## Backup Slides



#### **Fermi updates on Galactic Halo**



NFW, bb

- Exploits both spectral and spatial information
  - Data binned in E and angle
- □ Large residuals in the fit favor a DM component
  - scan model parameters of diffuse emission that affect more significantly DM limits
  - Compute limits assuming all diffuse emission is DM
- ☐ Simultaneously fit CR and gamma-ray data scanning full phase space of CR models







### **Challenge with Halo Analysis**

- □ Residual maps from a selection of GALPROP models show considerable large scale structures
  - Fermi lobes, Loop I, bubbles ...
     see talk by JM Casandjian





## **Data Intensity Maps**



- 22 months of data, diffuse class events
- energy from 1 to 50 GeV, 4 energy bins for APS calculation
- Masking of 11-month catalog sources (2deg radius) and |b| < 30 deg diffuse emission
- front- and back-converting events: processed separately through angular power spectrum calculation, then results are combined by weighted average

### Measurement of the IGRB

- Galactic Diffuse Emission component
- Extra-Galactic Diffuse Emission component, with photon index -2.40+-0.05 and  $I(E>0.1GeV) = (1.03+-0.17)X \ 10^{-5} \ cm^{-2} \ s^{-1} \ sr^{-1}$
- Residual Charged Cosmic Rays component
- Guaranteed contributions to IGRB: blazars, star forming galaxies, milli-second pulsars
- Possible contributions: Dark matter structures, etc





### **APS from Sources**

- The Poisson angular power arises from un-clustered point sources and takes the same value at all multipoles
- The APS of many gamma-ray source pop. are dominated by the Poisson components for multipoles
   1>10
- The measured one is ~ 1e-5 sr,
   then within the range predicted for
   some astrophysical source classes
   and some dark matter scenarios
- Other source popolations APS in the backup



predicted fluctuation angular power  $C_\ell/\langle I \rangle^2$  [sr] at I = 100 for a single source class (LARGE UNCERTAINTIES):

- blazars: ~ I e-4
- starforming galaxies: ~ Ie-7
- dark matter: ~ le-4 to ~ 0.1
- MSPs: ~ Ie-2



#### Fermi updates on sources



- No DM satellites found in 1 year of data when requiring
  - Spectrum inconsistent with conventional power law
  - source extension (almost all pulsars pass simple spectral tests)





### Search for CRE anisotropy

- The arrival directions of events from the whole sky were searched for anisotropies in Galactic coordinates
  - Healpix pixelization scheme (12288 pixels, ≈3deg²) used for the skymaps





### Significance skymaps

A pre-trials significance map produced by a bin to bin comparison of the no-CRE-anisotropy to the actual skymap:

- Integration radius 10°, 30°, 60° and 90° and Energy>60GeV
- Because of the large number of trials (from ≈100 trials at 90° up to ≈ 5000 at 10° integration angular radius) all the observed fluctuations are post-trials insignificant

