

2246-21

Workshop on Cosmic Rays and Cosmic Neutrinos: Looking at the Neutrino Sky

20 - 24 June 2011

Probing dark matter with neutrinos

Ina SARCEVIC University of Arizona USA

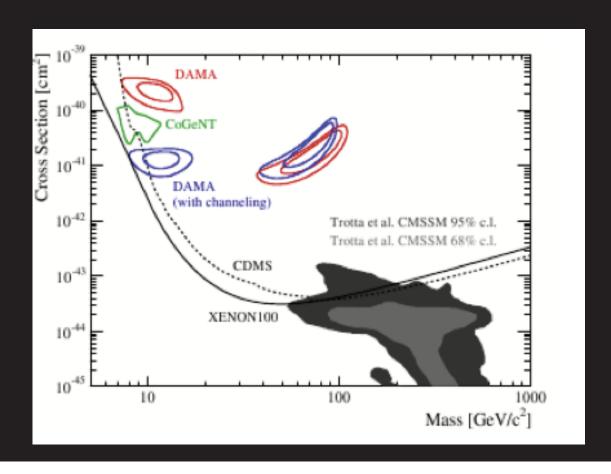
NUSKY 2011

Probing Dark Matter with Neutrinos from the Galactic Center

Ina Sarcevic

Erkoca, Gelmini, Reno and Sarcevic, Phys. Rev D 81 (2010)

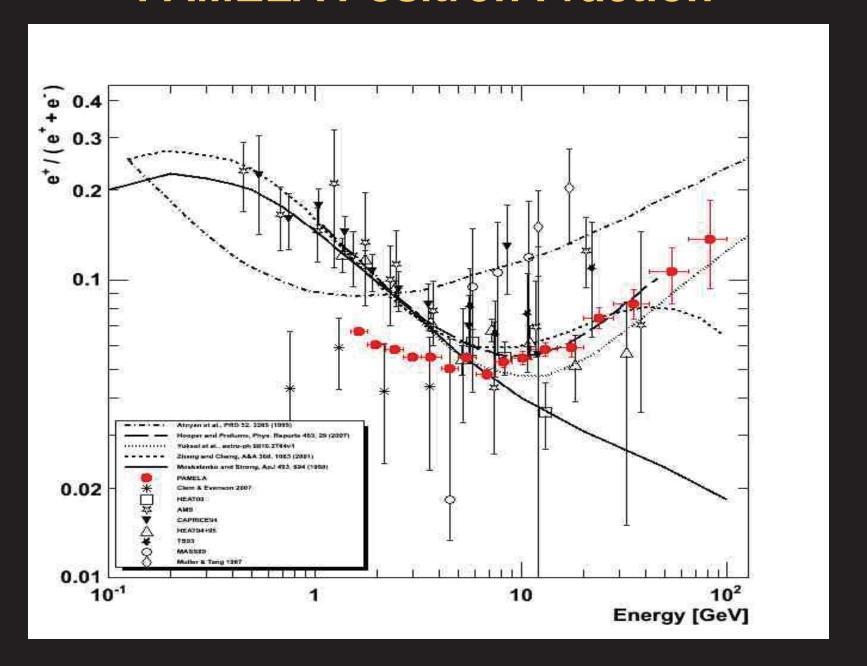
Erkoca, Reno and Sarcevic, Phys. Rev. D 82 (2010)

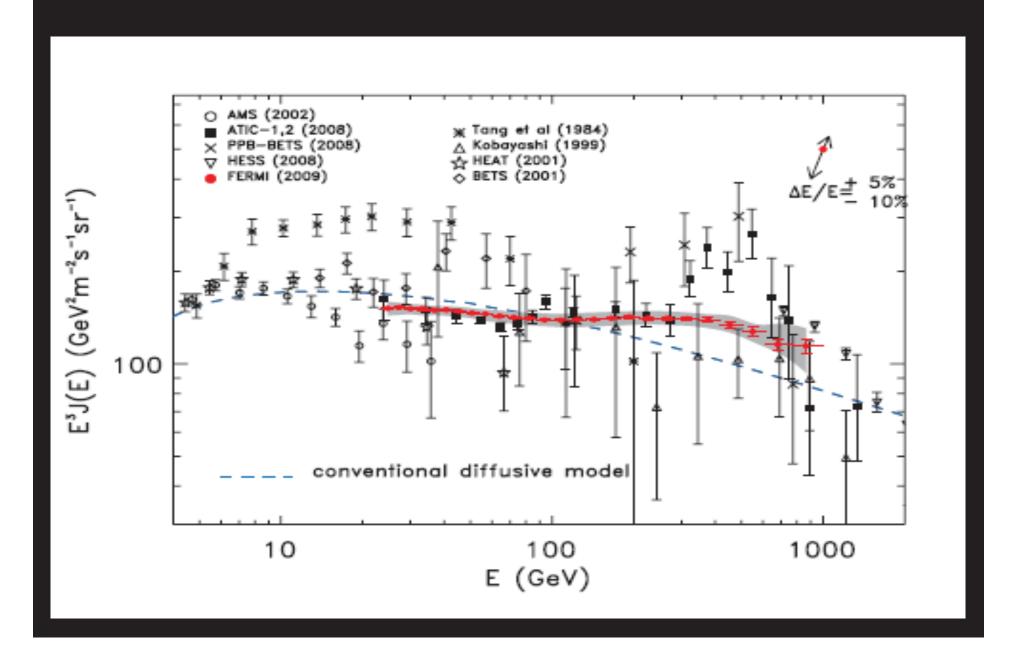

Erkoca, Reno and Sarcevic, Phys. Rev. D 80 (2009)

- Indirect evidence for dark matter comes from observations of galaxy and group of galaxies rotating as if they contain far more matter than observed
- Dark matter is about 23% of the total density of the Universe, while baryonic matter is only 4%
- Dark matter particle with mass of ~100GeV few TeV can account for dark matter density
- No viable candidate for dark matter in the Standard Model

Dark Matter Searches

• Direct searches:


look for DM interactions with target nuclei (XENON, CDMS, DAMA ...)


Indirect searches:

DM annihilation producing electrons, positrons, gamma-rays (PAMELA, ATIC, FERMI/LAT, HESS, Veritas ...) and neutrinos (IceCube, KM3Net...)

PAMELA Positron Fraction

FERMI Cosmic Ray Electron Spectrum

Neutrino Flux from DM Annihilation in the Galactic Center

Erkoca, Gelmini, Reno and Sarcevic, Phys. Rev. D81, 096007 (2010)

- Model independent DM signals: neutrinoinduced upward and contained muons and cascades (showers)
- For dark matter density, we use different DM density profiles (Navarro-Frenk-White, isothermal, etc)
- Predictions for IceCube and Km3Net

Neutrino Flux from Dark Matter

Neutrino flux from DM annihilation/decay:

$$\left(\frac{d\phi_{\nu}}{dE_{\nu}}\right) = R \times \sum_{F} B_{F} \left(\frac{dN_{\nu}}{dE_{\nu}}\right)_{F}$$

here R for DM annihilation is:

$$R = B \frac{\langle \sigma v \rangle}{8\pi m_{\chi}^2} \int d\Omega \int_{l.o.s} \rho(l)^2 dl$$

and for DM decay:

$$R = \frac{1}{4\pi m_{\chi}\tau} \int d\Omega \int_{l.o.s} \rho(l) dl$$

Define $< J_n >_{\Omega}$ as:

$$< J_n >_{\Omega} = \int \frac{d\Omega}{\Delta\Omega} \int_{l.o.s.} \frac{dl(\theta)}{R_o} \left(\frac{\rho(l)}{\rho_o}\right)^n$$

- $l(\theta)$ distance from us in the direction of the cone-half angle θ from the GC
- ho(l) density distribution of dark mater halos
- R_0 distance of the solar system from the GC
- ρο local dark matter density near the solar system

$$\langle \sigma v \rangle = 3 \times 10^{-26} cm^3 s^{-1}$$

 $R_o = 8.5 kpc$ $\rho_o^2 = 0.3 GeV cm^{-3}$

Neutrino Flux ($dN_{ u}/dE_{ u}$) at the Production

Neutrinos can be produced directly or through decays of leptons, quarks and gauge bosons:

$$\chi\chi \to \nu_i \overline{\nu_i}$$

$$\to \tau^- \tau^+ \to (\nu_\tau l^- \overline{\nu_l}) (\bar{\nu_\tau} l^+ \nu_l)$$

$$\to W^+ W^- \to (l^+ \nu_l) (l^- \overline{\nu_l})$$

$$\to b\bar{b} \to (c l^- \overline{\nu_l}) (\bar{c} l^+ \nu_l)$$

$$\to t\bar{t} \to bW^+ \bar{b}W^- \to (cl^- \overline{\nu_l}) (l^+ \nu_l) (\bar{c} l^+ \nu_l) (l^- \overline{\nu_l})$$

 Detection: neutrinos interacting below detector or in the detector producing muons

 Signals: upward and contained muons and cascade/showers

 Upward muons lose energy before reaching the detector • Energy loss of the muons over a distance dz:

$$\frac{dE}{dz} = -(\alpha + \beta E)\rho$$

- α : ionization energy loss $\alpha = 10^{-3} GeV cm^2/g$.
- β : bremsstrahlung, pair production and photonuclear interactions β =10⁻⁶cm²/g.
- Relation between the initial and the final muon energy:

$$E^{i}_{\mu}(z) = e^{\beta \rho z} E^{f}_{\mu} + (e^{\beta \rho z} - 1) \frac{\alpha}{\beta}$$

Muon range:
$$R_{\mu}\equiv z=rac{1}{eta
ho}log\left(rac{lpha+eta E_{\mu}^{i}}{lpha+eta E_{\mu}^{f}}
ight)$$

Contained and Upward Muon Flux

Contained muon flux is given by

$$\frac{d\phi_{\mu}}{dE_{\mu}} = \int_{E_{\mu}}^{E_{max}} dE_{\nu} \left(\frac{dN}{dE_{\nu}}\right) N_{A} \rho \frac{d\sigma_{\nu}(E_{\nu})}{dE_{\mu}}$$

Upward muon flux is given by

$$\frac{d\phi_{\mu}}{dE_{\mu}} = \int_{0}^{R_{\mu}(E_{\mu}^{i}, E_{\mu})} e^{\beta \rho z} dz \int_{E_{\mu}^{i}}^{E_{max}} dE_{\nu} \left(\frac{dN}{dE_{\nu}}\right) N_{A} \rho dz$$

$$\times P_{surv}(E_{\mu}^{i}, E_{\mu}) \frac{d\sigma_{\nu}(E_{\nu})}{dE_{\mu}}$$

Hadronic Shower Flux

$$\frac{d\phi_{sh}}{dE_{sh}} = \int_{E_{sh}}^{E_{max}} dE_{\nu} \left(\frac{d\phi_{\nu}}{dE_{\nu}}\right) N_{A} \rho \frac{d\sigma_{\nu}(E_{\nu}, E_{\nu} - E_{sh})}{dE_{sh}}$$

Neutrino Energy Distribution

 $ullet \chi \chi \longrightarrow
u \overline{
u}$ channel:

$$\frac{dN_{\nu}}{dE_{\nu}} = \delta(E_{\nu} - m_{\chi})$$

• $\chi\chi \to \tau^+\tau^-, b\bar{b}, c\bar{c}$ channels:

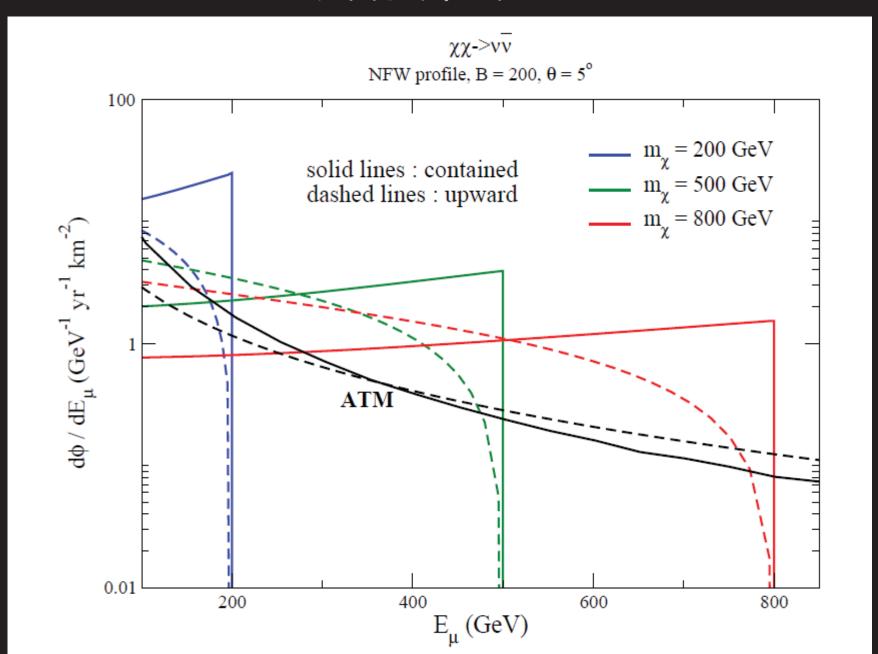
$$\frac{dN_{\nu}}{dE_{\nu}} = \frac{2B_f}{E_{in}}(1 - 3x^2 + 2x^3), \text{ where } x = \frac{E_{\nu}}{E_{in}} \le 1$$

$$(E_{in} , B_f) = \left\{ egin{array}{ll} (m_\chi \, , \, 0.18) & au \; ext{decay} \ (0.73 m_\chi \, , \, 0.103) & b \; ext{decay} \ (0.58 m_\chi \, , \, 0.13) & c \; ext{decay}. \end{array}
ight.$$

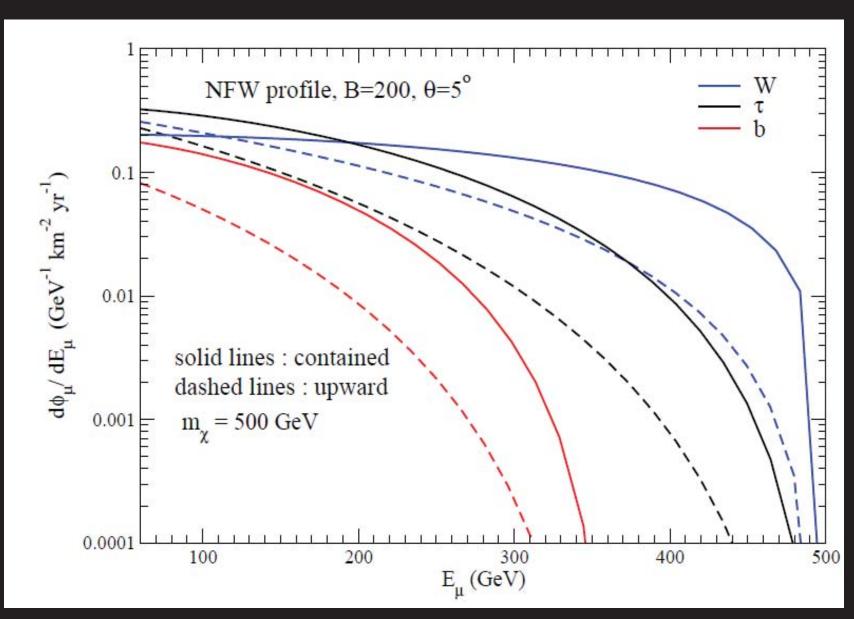
 $\chi \chi \to W^+W^-, ZZ$ channels:

$$\frac{dN_{\nu}}{dE_{\nu}} = n_f \frac{B_f}{m_{\chi}\beta} \quad \text{if} \quad \frac{m_{\chi}}{2} (1 - \beta) < E_{\nu} < \frac{m_{\chi}}{2} (1 + \beta)$$

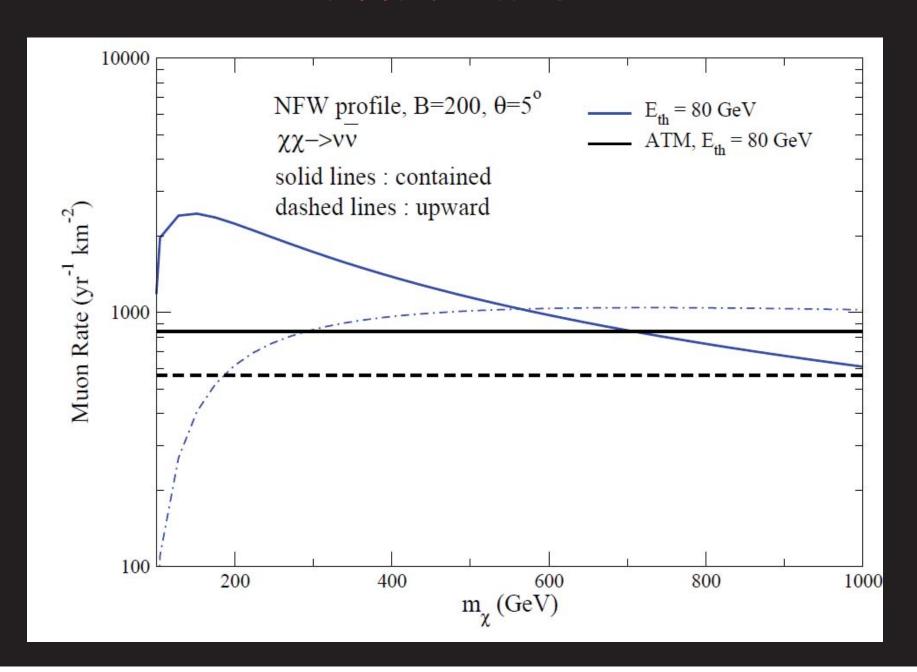
where β is the velocity of the decaying particle (W or Z)

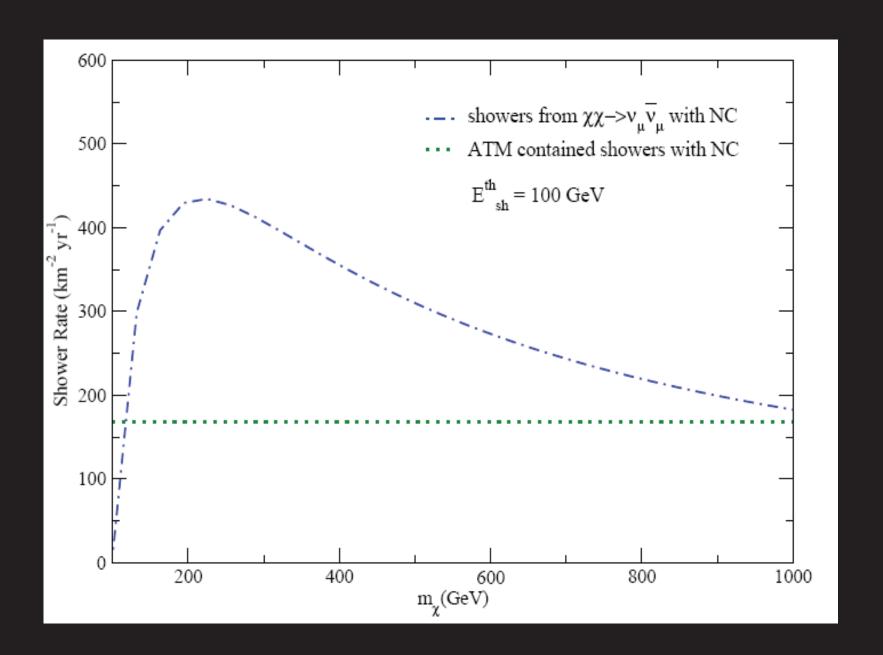

$$(n_f, B_f) = \begin{cases} (1, 0.105) & W \text{ decay,} \\ (2, 0.067) & Z \text{ decay.} \end{cases}$$

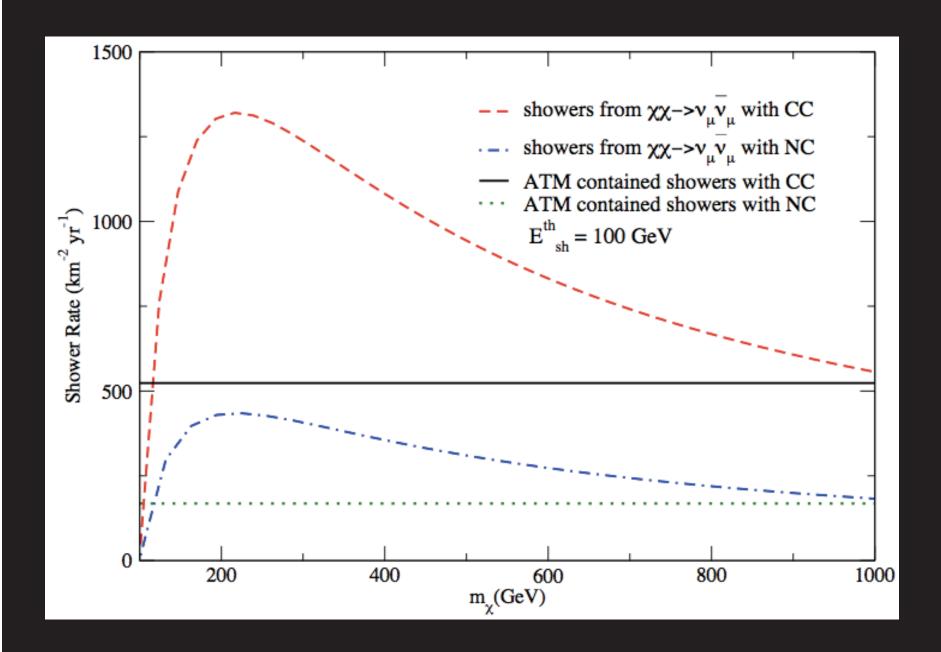
ullet $\chi\chi
ightarrow tar t$ channel:

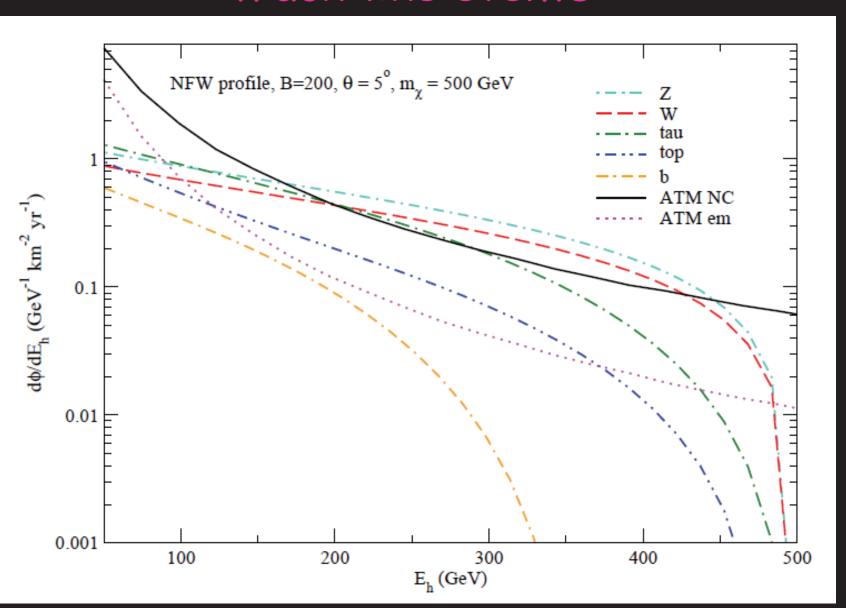

$$\left(\frac{dN_{\nu}}{dE_{\nu}}\right)_{t\bar{t}}^{rest} = \left(\frac{dN_{\nu}}{dE_{\nu}}\right)_{W^{+}W^{-}} + \left(\frac{dN_{\nu}}{dE_{\nu}}\right)_{b\bar{b}}$$

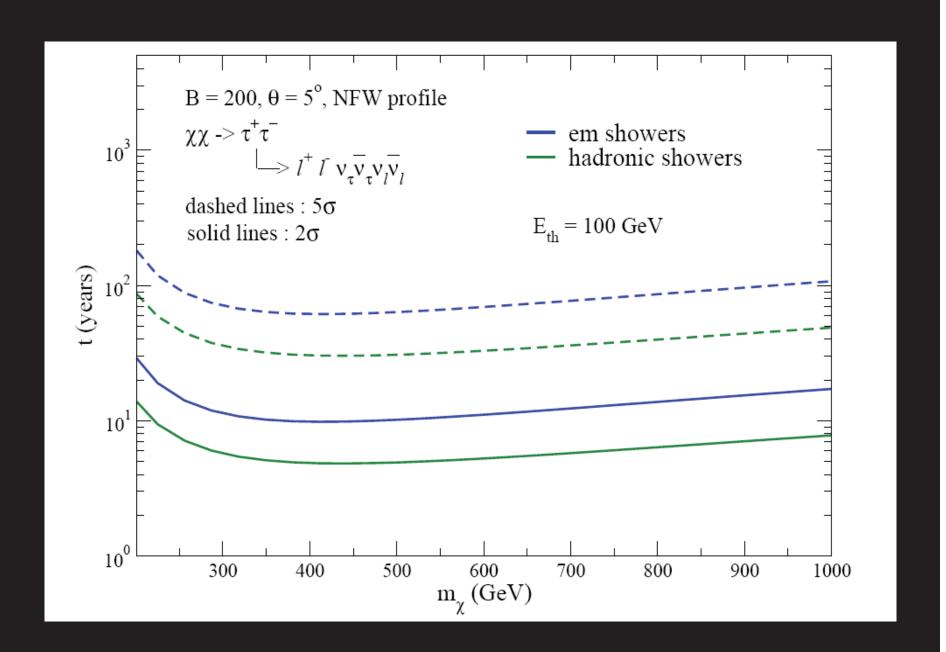
Boosting this expression yields the neutrino spectrum for top quarks moving with velocity $\beta_{\rm t}$


Muon Flux

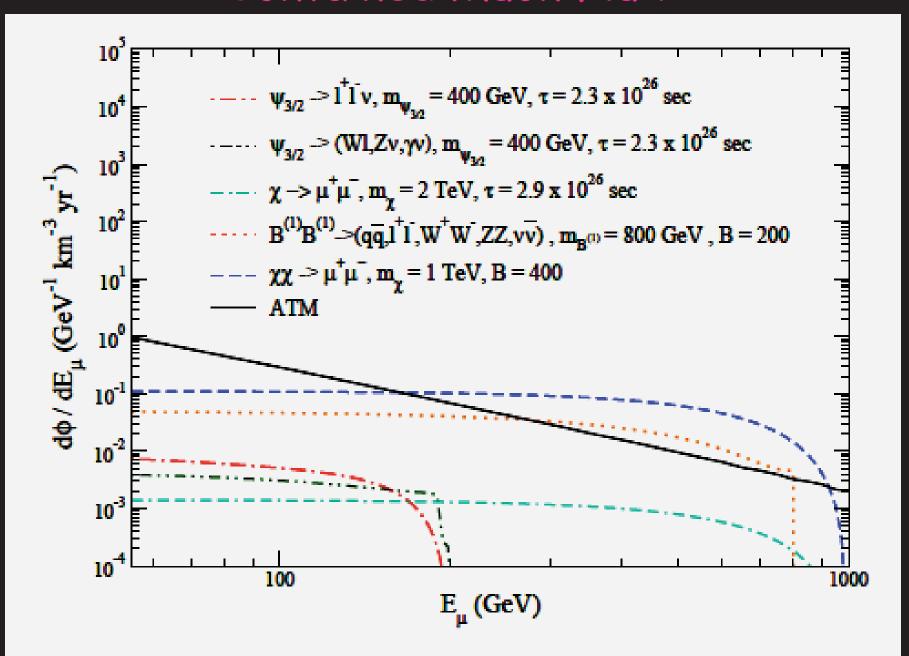



Muon Flux for Different DM Annihilation Modes

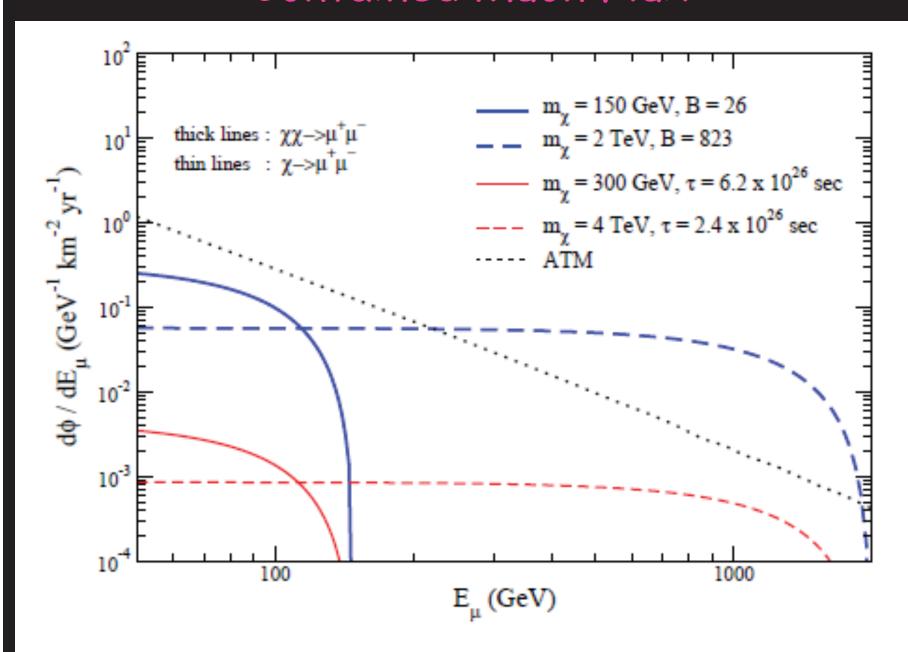

Muon Rates



Hadronic Shower Spectra without track-like events



Probing the Nature of Dark Matter with Neutrinos


Erkoca, Reno and Sarcevic, Phys. Rev. D82, 113006 (2010)

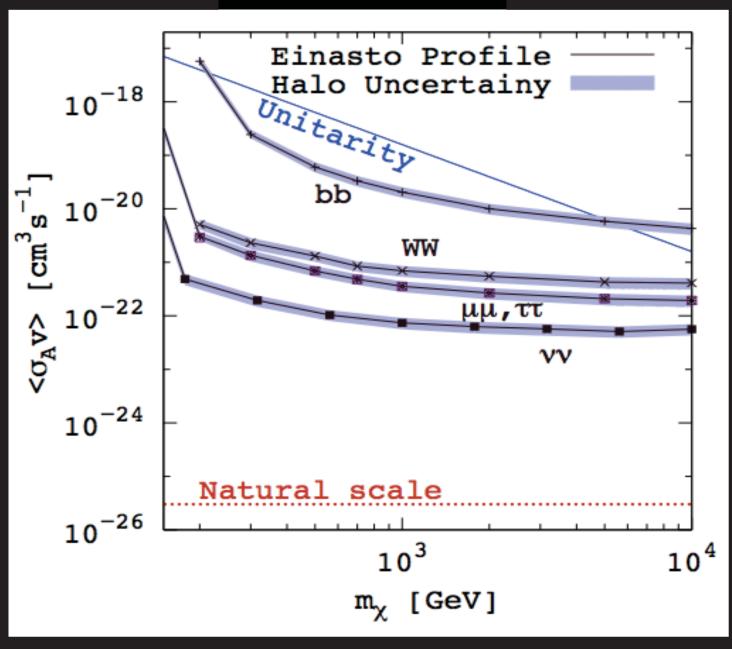
- DM candidates: gravitino, Kaluza-Klein particle, a particle in leptophilic models.
- Dark matter signals: upward and contained muon flux and cascades (showers) from neutrino interactions
- We include neutrino oscillations
- Experimental signatures that would distinguish between different DM candidates

Contained Muon Flux

Contained Muon Flux

	J .	(T.17)									
		m_χ (TeV)									
a/a 1+1-a	NICT (FOO)	0.2	0.4	0.6	0.8	10.0	2	4	6	10.5	10
$\psi_{3/2} \to l^+ l^- \nu$ $B_\tau = 2.3$	$N_{\mu}^{ct}(50^{\circ})$	4.94	11.15	13.8	15.3	16.2 239	18.1 503	19.0 912	19.3	19.5	19.6
$D_{\tau}=2.3$	$N_{\mu}^{up}(50^{\circ})$	8.68	59.5	120	180				1228	1485	1704
	$N_{sh}(50^\circ)$ $t_{\mu}^{up}(10^\circ)$	4	11	13	15	16.3	19	21	22	22	22
	$t_{\mu}^{up}(50^{\circ})$	1.3×10^4 3490	277	69	30 8	17 5	4 1	$\frac{1.2}{0.32}$	0.7 0.18	$0.5 \\ 0.12$	$0.4 \\ 0.09$
	$t_{\mu}^{-}(50^{\circ})$ $t_{sh}(50^{\circ})$	196	74 23	18 16	12	10	7	6.3	5.8	5.8	5.8
$\psi_{3/2} \to (Wl, Z\nu, \gamma\nu)$				8.9	9.1	9.15	9.2	9.2	9.2	9.2	9.2
$\psi_{3/2} \rightarrow (W t, Z \nu, \gamma \nu)$ $B_{\tau} = 2.3$	$N_{\mu}^{ct}(50^{\circ})$	6.1 9.9	8.4 50.9	95.6	139	181	364	638	844	1010	1150
$D_{\tau}=2.5$	$N_{\mu}^{up}(50^{\circ})$ $N_{sh}(50^{\circ})$	3.6	7.66	9.6						14.64	
	$t_{\mu}^{up}(10^{\circ})$	1×10^4	378	107	51	30	7.5	2.5	1.4	1	0.8
		2693	101	29	14	8	2	0.7	0.4	0.3	0.2
	$t_{\mu}^{up}(50^{\circ})$ $t_{sh}(50^{\circ})$	210	47	30	24	21	16	14	13	13	13
$\chi \to \mu^+ \mu^-$	$N_{\mu}^{ct}(50^{\circ})$	2.13		8.43	9.5	10.2	11.5	12.2	12.4	12.5	12.6
$\chi \to \mu^+ \mu$ $B_{\tau} = 2.9$	$N_{\mu}^{up}(50^{\circ})$	3.14	6.45 29	62.3	9.5 97	131	286	533	728	886	1022
$D_{T}=2.8$	$N_{sh}(50^{\circ})$	1.95	8.22		14.55		20.2			23.68	
	$t_{\mu}^{up}(10^{\circ})$	1×10^{5}	1×10^3	252	104	57	12	3.5	1.9	1.3	0.97
	$t_{\mu}^{up}(50^{\circ})$	2.6×10^{4}	316	68	28	15	3.2	0.93	0.5	0.34	0.26
	$t_{sh}(50^{\circ})$	709	40	19	13	11	6.9	5.5	5.2	5	4.8
$B^{(1)}B^{(1)} \to \dots$	$N_{\mu}^{ct}(10^{\circ})$	14.2	9.8	7.2	5.6	4.6	2.4	1.25	0.84	0.63	0.51
B = 200	$N_{\mu}^{up}(10^{\circ})$	86.1	131	140	130	128	124	108	92	81	72
	$N_{sh}(10^{\circ})$	11	9	7	5.7	4.8	2.6	1.4	0.9	0.7	0.6
	$t_{\mu}^{up}(1^{\circ})$	1.27	0.63	0.54	0.65	0.66	0.7	0.87	1.14	1.42	1.72
	$t_{\mu}^{up}(10^{\circ})$	1.55	0.68	0.57	0.71	0.72	0.76	1.0	1.36	1.76	2.2
	$t_{\mu}^{up}(50^{\circ})$	5.1	2.2	1.84	2.29	2.3	2.44	3.2	4.5	5.8	7.2
	$t_{sh}(1^{\circ})$	3.4	4.4	5.9	7.7	9.6	22	61	116	189	280
	$t_{sh}(10^{\circ})$	1.3	1.9	2.9	4.3	5.8	18	64	136	237	364
	$t_{sh}(50^{\circ})$	3.3	5	8	12	16.3	57	204	445	777	1202
$\chi\chi \to \mu^+\mu^-$	$N_{\mu}^{ct}(10^{\circ})$	40.19	29.58	22.01	17.39	14.3	7.59	3.90	2.63	1.98	1.59
B = 400	$N_{\mu}^{up}(10^{\circ})$	144	241	273	283	320	266	221	190	167	151
	$N_{sh}(10^{\circ})$	51.4	45.6	36.4	30	25	14	7.4	5	3.8	3
	$t_{\mu}^{ct}(1^{\circ})$	1.11	1.68	2.55	3.61	4	13.64	44	92	156	238
	$t_{\mu}^{ct}(10^{\circ})$	0.66	1.18	2.06	3.24	4.7	16.31	61	133	234	364
	$t_{\mu}^{ct}(50^{\circ})$	1.93	3.55	6.38	10.2	15	53	201	444	781	1213
	$t_{\mu}^{up}(1^{\circ})$	0.54	0.24	0.2	0.18	0.14	0.21	0.28	0.35	0.43	0.50
	$t_{\mu}^{up}(10^{\circ})$	0.47	0.21	0.16			0.17	0.25	0.33	0.42	0.52
	$t_{\mu}^{up}(50^{\circ})$	1.83	0.65	0.51			0.54	0.78	1.1	1.35	1.7
	$t_{sh}(1^{\circ})$	0.63	0.72	0.91			2.58	5.5	9	13	18
	$t_{sh}(10^{\circ})$	0.12	0.14	0.2			0.87	2.63	5.34	9	13.6
	$t_{sh}(50^{\circ})$	0.18	0.22	0.33	0.48	0.7	2.1	7.2	15.5	27	42
Atmospheric	N_{μ}^{ct}	$2.28(1^{\circ})$ $227.5(10^{\circ})$ $5347(50)$									
	N_{μ}^{up}		28(1°)				(10°)			668(50	
	N_{sh}	0	.3(1°)			28.8	(10°)		6	$76(50^{\circ}$	')

DM Detection with Neutrino Telescopes


IceCUBE: 1 km³ neutrino detector at South Pole

- detects Cherenkov radiation from the charged particles produced in neutrino interactions
- contained and upward muon events and showers
- contained muons from GC
- showers from GC with IceCUBE+DeepCore

KM3Net: a future deep-sea neutrino telescope

- contained and upward muon events and showers
- upward muons from GC

IceCube DM search from the Galactic Hallo (arXiv:1101.3349)

Summary

- Neutrinos could be used to detect dark matter and to probe its physical origin
- Contained and upward muon flux is sensitive to the DM annihilation mode and to the mass of dark matter particle
- Combined measurements of cascade events and muons with IceCube+DeepCore and KM3Net look promising
- Neutrinos can probe DM candidates, such as gravitino, Kaluza-Klein DM, and a particle in leptophilic models