

2246-3

Workshop on Cosmic Rays and Cosmic Neutrinos: Looking at the Neutrino Sky

20 - 24 June 2011

Cosmic-ray spectrum and composition: implications for neutrinos

Tom GAISSER University of Delaware USA

Cosmic-ray spectrum and composition --Implications for neutrinos and vice versa

Outline

- Cosmic ray neutrino connections
- Cosmic rays and neutrinos in IceCube
- Atmospheric neutrinos
- New limits on astrophysical neutrinos
- Implications for models of sources
- Summary

Cosmic-ray connection - I

- Galactic SNR can accelerate particles into nearby molecular clouds
- Extra-galactic jets (in AGN or GRB) may share power between c.r. & v
- Expect a few TeV v/ yr in a gigaton detector in hadronic scenarios
- Sets km³ scale for HE neutrino astronomy

NuSky 20-June-2011

New information ~TeV

• ATIC, CREAM, PAMELA

- Proton \neq Helium
- Pamela break →
 - New population?
- Spectral hardening
 - E > 200 GeV/ A
 - Teresa, next talk

PAMELA, Adriani et al., arXiv:1103.4055

Where is the galactic – extragalactic transition?

• Toy model fits: 3 populations 5 nuclear groups, Exponential cutoff in rigidity

All particle spectrum

$$\phi_i(E) = \sum_{j=1}^3 a_{i,j} E^{-\gamma_{i,j}} \times \exp\left[-\frac{E}{Z_i R_{c,j}}\right]$$

$$\phi_{i,N}(E_N) = A \times \phi_i(A E_N)$$

R_c	γ	p	He	CNO	Mg-Si	Fe
γ for Pop. 1		1.647	1.571	1.634	1.67	1.675
Population 1: 4 PV	see line 1	7860	3550	2200	1430	2120
Pop. 2 (H3a): 30 PV	1.4	20	20	13.4	13.4	13.4
" (H4a): 30 PV	1.4	20	20	13.4	13.4	13.4
Pop. 3 (H3a): 2 EV	1.4	1.7	1.7	1.14	1.14	1.14
" (H4a): 60 EV	1.6	200.	0	0	0	0

Table 1: Normalizations constants $a_{i,j}$, spectral indices and cutoffs for Eq. 5.

Tom Gaisser

NuSky 20-June-2011

NuSky 20-June-2011

High-energy events in IceCube-40

~ EeV air shower

More events

A cascade event, candidate for a high energy $\nu_e\,{\sim}50~\text{TeV}$

IC-79 event: downward muon bundles

IceCube Deep Core talk by Doug Cowen Friday

NuSky 20-June-2011

Detecting neutrinos

- Rate = Neutrino flux x Absorption in Earth x Neutrino cross section x Size of detector x Range of muon (for v_{μ})
- Range favors v_{μ} - ~4 to 15 km.w.e. for $E_{\nu} \sim 10$ to 1000 TeV

Probability to detect $\nu_{\mu}\text{-induced}\;\mu$

$$A_{\text{eff}}(\Theta, E_{\nu}) = \epsilon(\Theta) A(\Theta) P_{\nu}(E_{\nu}, E_{\mu, \min}) e^{-\sigma_{\nu}(E_{\nu}) N_{A} \times (\Theta)}$$

0)

Atmospheric v in IceCube S.P.

Zone 1, I: -30 to -90 ; 3.14 sr Zenith: $90 < \theta < 120^{\circ}$ (40% of Zone 1 is over the Antarctic continent)

Zone 2, I: -30 to +30; 2.30 sr Zenith 120 < θ < 150°

Zone 3, I: +30 to +90, 0.84 sr Zenith: $150 < \theta < 180^{\circ}$

Cosmic ray produces v in atmosphere that puts a **muon** into the detector

Cuts and event reconstruction

- 40-string IceCube:
 - 375 days livetime in 08/ 09 @ 1 kHz
 = 3.3x10¹⁰ triggers, 99.9999% muons
 - 8 x 10⁸ filtered & sent over satellite from S.P.
 - Quality cuts applied to get ~14,000 upward v_{μ} induced muons

All-sky plot of muons in IceCube-22 from 2007 (P. Berghaus, IceCube, ISVHECRI-2008 arxiv.org/abs/0902.0021)

Atmospheric v_{μ} with IceCube-40

Two analyses:

- 1. Unfolding
- Forward folding as a by-product of a search for diffuse astrophysical v
- Look in detail at 2

Measurement of v_{μ} -induced μ

- Fit 3 components:
 - Atmospheric v from K[±] and π^{\pm} (0.3 – 85 TeV)
 - Use Honda 2007 to 10 TeV
 - + power-law extrapolation
 - ~ $\cos^{-1}(\theta)$
 - Prompt v (10-600 TeV)
 - Harder spectrum to > 10⁷ GeV (~E^{-2.7}), isotropic
 - Astrophysical v
 - Isotropic, with E⁻² spectrum assumed (35 7000 TeV)
 - Note different response for astro. v vs atmos. v

NuSky 20-June-2011

Results of likelihood fit

- Consistent with only K, π atmospheric ν to 100 TeV
- Charm component not yet seen; "intrinsic" charm in doubt?
- No astrophysical neutrinos seen yet

IceCube v_{μ} : measurements & limits

Comments on diffuse v results

- Input to analysis
 - Specific spectrum assumed for atmospheric v from decay of π and K (Honda et al., PR D75:043006,2007)
 - Extrapolate with power law for $E_v > 10$ TeV up to 10 PeV
 - For prompt v use Enberg et al.. PR D 78, 043005, 2008
 - Overall normalization fitted for each component with a single fitted slope for both components
- Limitations of this analysis
 - Limits depend on simple power-law extension of conventional atmospheric v_{μ} to $E_{\nu} > PeV$
 - Neutrino spectrum must steepen to some extent above 100 TeV to reflect the knee in the primary spectrum
 - Bounds on prompt and astrophysical v will be relaxed to some extent with a more realistic assumption for shape of atmospheric v
 - Recent calculation extends calculation of v_{μ} to > PeV
 - Illana, Lipari, Masip, Meloni, Astropart. Phys. 34 (2011) 663

NuSky 20-June-2011

Generic model I

- CR acceleration occurs in jets – AGN or GRB
- Abundant target material
 - Most models assume photo-production:
 - $p + \gamma \rightarrow \Delta^+ \rightarrow p + \pi^0 \rightarrow p + \gamma \gamma$
 - $p + \gamma \rightarrow \Delta^+ \rightarrow n + \pi^+ \rightarrow n + \mu + \nu$

- Ideal case (~ "Waxman-Bahcall limit")^{Waxman, Bahcall, PRD 59}, TKG astro-ph/9707283v1
 - Strong magnetic fields retain protons in jets
 - Neutrons escape, decay to protons & become UHECR
 - Extra-galactic cosmic rays observed as protons
 - Energy content in neutrinos \approx energy in UHECR
- This picture disfavored as limits go below W-B
 NuSky 20-June-2011
 Tom Gaisser

Generic model II

- UHECR are accelerated in external shocks analogous to SNR
 - See E.G. Berezhko, 0809.0734 & 0905.4785
 - mixed composition (accelerate whatever is there)
 - Low density of target material
 - → lower level of TeV-PeV neutrino production

IceCube limits on cosmogenic v

- GZK search looks for
 - Very bright events
 - Near the horizon
 - with compact initial burst of light
- Range of sensitivity
 - PeV EeV
 - Complementary to diffuse v_{μ} search that starts by measuring atmospheric v_{μ}
 - Model 6 (Fermi max): expect 0.4 events

NuSky 20-June-2011

IceCube-40 arXiv:1103.4250

Summary

- Pushing below Waxman-Bahcall "limit" in 100 TeV – 10 PeV range disfavors proton dominance in 1 – 100 PeV range
- Expect significant improvements in IceCube sensitivity to astrophysical v:
 - IC59 + IC79 in analysis; IC86 running
 - Better analysis
 - Use more realistic atmospheric neutrino spectrum
 - Use angular dependence
 - Better understanding of systematics