

2246-29

Workshop on Cosmic Rays and Cosmic Neutrinos: Looking at the Neutrino Sky

20 - 24 June 2011

Magnetic field and flavor effects on the neutrino fluxes from cosmic accelerators

Walter WINTER University of Wurzburg Germany

Magnetic field and flavor effects on the neutrino fluxes from cosmic accelerators

NUSKY 2011 June 20-24, 2011 ICTP Trieste, Italy

Walter Winter Universität Würzburg

Contents

- Introduction
- Simulation of sources
- Neutrino propagation and detection; flavor ratios
- On gamma-ray burst (GRB) neutrino fluxes
- Summary

Julius-Maximilians-**UNIVERSITÄT** Neutrino detection: IceCube

Example: IceCube at South Pole Detector material: ~ 1 km³ antarctic ice

WÜRZBURG

- Completed 2010/11 (86 strings)
- Recent data releases, based on parts of the detector:
 - Point sources IC-40 [IC-22] arXiv:1012.2137, arXiv:1104.0075
 - GRB stacking analysis IC-40 arXiv:1101.1448
 - Cascade detection IC-22 arXiv:1101.1692
- Have not seen anything (yet)
 - \succ What does that mean?
 - > Are the models too optimistic?
 - Which parts of the parameter space does lceCube actually test?

Simulation of sources

Meson photoproduction

 Often used: ∆(1232)resonance approximation

$$p + \gamma \to \Delta^+ \to \begin{cases} n + \pi^+ & 1/3 \text{ of all cases} \\ p + \pi^0 & 2/3 \text{ of all cases} \end{cases}$$

- Limitations:
 - No π^- production; cannot predict π^+/π^- ratio (affects neutrino/antineutrino)
 - High energy processes affect spectral shape
 - Low energy processes (t-channel) enhance charged pion production
 - > Charged pion production underestimated compared to π^0 production by factor of 2.4 (independent of input spectra!)

Op

A self-consistent approach

- Target photon field typically:
 - Put in by hand (e.g. obs. spectrum: GRBs)
 - Thermal target photon field
 - From synchrotron radiation of co-accelerated electrons/positrons (AGN-like)
- Requires few model parameters, mainly

Parameter	Units	Description	Typical values used
R	$\rm km~(kilometers)$	Size of acceleration region	$10^{1}{ m km}\dots 10^{21}{ m km}$
В	G (Gauss)	Magnetic field strength	$10^{-9}{ m G}\dots 10^{15}{ m G}$
α	1	Universal injection index	$1.5 \dots 4$

Purpose: describe wide parameter ranges with a simple model unbiased by CR and γ observations;
 ⇒ minimal set of assumptions for v production?

Model summary

Dashed arrows: include cooling and escape

Model summary

Dashed arrows: include cooling and escape

An example: Secondaries α=2, B=10³ G, R=10^{9.6} km

 Secondary spectra (μ, π, K) become loss-steepend above a critical energy

$$E_c = \sqrt{\frac{9\pi\epsilon_0 m^5 c^5}{\tau_0 e^4 B^2}}$$

- > E_c depends on particle physics only (m, τ_0), and **B**
- Leads to characteristic flavor composition
- Any additional cooling processes mainly affecting the primaries will not affect the flavor composition
- Flavor ratios most robust predicition for sources?
- > The only way to directly measure B?

Injection: v_{μ}

Parameter space: Hillas plot

- Model-independent (necessary) condition for acceleration of cosmic rays:
 - $E_{max} \sim \eta Z e B R$ (Larmor-Radius < size of source; η : acceleration efficiency)
 - Particles confined to within accelerator!
- Caveat: condition relaxed if source heavily Lorentzboosted (e.g. GRBs)

Hillas 1984; version adopted from M. Boratav

Flavor composition at the source (Idealized – energy independent)

- Astrophysical neutrino sources produce certain flavor ratios of neutrinos (ν_e:ν_μ:ν_τ):
- Pion beam source (1:2:0) Standard in generic models
- Muon damped source (0:1:0) at high E: Muons loose energy before they decay
- Muon beam source (1:1:0) Cooled muons pile up at lower energies (also: heavy flavor decays)
- Neutron beam source (1:0:0) Neutron decays from $p\gamma$ $n \rightarrow p + e^{-\frac{1}{\mu} + \bar{\nu}_e}$ (also possible: photo-dissociation of heavy nuclei)

> At the source: Use ratio v_e/v_μ (nus+antinus added)

see also: Kashti, Waxman, 2005; Kachelriess, Tomas, 2006, 2007; Lipari et al, 2007)

Parameter space scan

- All relevant regions recovered
- GRBs: in our model α=4 to reproduce pion spectra; pion beam ⇒ muon damped

(confirms Kashti, Waxman, 2005)

 Some dependence on injection index

Hümmer et al, Astropart. Phys. 34 (2010) 205

Neutrino propagation and detection

Neutrino propagation

- Key assumption: Incoherent propagation of neutrinos
- Flavor mixing: $P_{\alpha\beta} = \sum_{i=1}^{3} |U_{\alpha i}|^2 |U_{\beta i}|^2$ Example: For $\theta_{13} = 0$, $\theta_{23} = \pi/4$:

(see Pakvasa review, arXiv:0803.1701, and references therein)

- NB: No CPV in flavor mixing only! But: In principle, sensitive to Re exp(-i δ) ~ cos δ
- Take into account Earth attenuation!

Individual spectra: Muon tracks

 Differential limit 2.3 E/(A_{eff} t_{exp}) illustrates what spectra the data limit best

Log R [km]

(Winter, arXiv:1103.4266; diff. limits from IceCube, arXiv:1012.2137; Auger, arXiv:0903.3385) 16

Which point sources can specific data constrain best?

Constraints to energy flux density $\phi = \int E \frac{dN(E)}{dE} dE$

(Winter, arXiv:1103.4266)

Measuring flavor?

- In principle, flavor information can be obtained from different event topologies:
 - Muon tracks v_{μ}
 - Cascades (showers) CC: v_e , v_τ , NC: all flavors
 - Glashow resonance: \overline{v}_e
 - Double bang/lollipop: $v_{\tau} \longrightarrow$ (Learned, Pakvasa, 1995; Beacom et al, 2003)
- In practice, the first (?) IceCube "flavor" analysis appeared recently – IC-22 cascades (arXiv:1101.1692)

Flavor contributions to cascades for E⁻² extragalatic test flux (after cuts):

- Electron neutrinos 40%
- Tau neutrinos 45%
- Muon neutrinos 15%
- > Electron and tau neutrinos detected with comparable efficiencies
- Neutral current showers are a moderate background

 ν_{τ}

Flavor ratios at detector

- At the detector: define observables which
 - take into account the unknown flux normalization
 - take into account the detector properties
- Example: Muon tracks to showers
 Do not need to differentiate between
 electromagnetic and hadronic showers!

 Flavor ratios have recently been discussed for many particle physics applications

(for flavor mixing and decay: Beacom et al 2002+2003; Farzan and Smirnov, 2002; Kachelriess, Serpico, 2005; Bhattacharjee, Gupta, 2005; Serpico, 2006; Winter, 2006; Majumar and Ghosal, 2006; Rodejohann, 2006; Xing, 2006; Meloni, Ohlsson, 2006; Blum, Nir, Waxman, 2007; Majumar, 2007; Awasthi, Choubey, 2007; Hwang, Siyeon, 2007; Lipari, Lusignoli, Meloni, 2007; Pakvasa, Rodejohann, Weiler, 2007; Quigg, 2008; Maltoni, Winter, 2008; Donini, Yasuda, 2008; Choubey, Niro, Rodejohann, 2008; Xing, Zhou, 2008; Choubey, Rodejohann, 2009; Esmaili, Farzan, 2009; Bustamante, Gago, Pena-Garay, 2010; Mehta, Winter, 2011...)

- However: mixing parameter knowledge ~ 2015 (Daya Bay, T2K, etc) required
- Hümmer et al, Astropart. Phys. 34 (2010) 205

 Basic dependence recovered after flavor mixing

UNIVERSITÄT WÜRZBURG New physics in R?

 $\Phi^0(E)$

1

Stable state
 Unstable state

Mehta, Winter, JCAP 03 (2011) 041; see also Bhattacharya, Choubey, Gandhi, Watanabe, 2009/2010

On GRB neutrino fluxes

p

Observed: broken power law (Band function)

(Example: IceCube, arXiv:1101.1448; see also talks by P. Lipari, J. K. Becker, A. Kappes) 23

 10^{4}

 10^{5}

 10^{6}

 E_{ν} [GeV]

 10^{7}

 10^{8}

10⁻⁴

 10^{-5}

10³

UNIVERSITÄT WÜRZBURG Gamma-ray burst fireball model: IC-40 data meet generic bounds

 Does IceCube really rule out the paradigm that GRBs are the sources of the ultra-high energy cosmic rays? [from a purely technical point of view]
 (see also Ahlers, Gonzales-Garcia, Halzen, 2011 for a fit to data)

Waxman-Bahcall, reproduced

- Reproduced original WB flux with similar assumptions
- Additional charged pion production channels included, also π⁻!

Baerwald, Hümmer, Winter, Phys. Rev. D83 (2011) 067303

BEFORE FLAVOR MIXING

Baerwald, Hümmer, Winter, Phys. Rev. D83 (2011) 067303; see also: Murase, Nagataki, 2005; Kashti, Waxman, 2005; Lipari, Lusignoli, Meloni, 2007

Re-analysis of fireball model

- Correction factors from:
 - Cosmological expansion (z)
 - Some rough estimates, e.g. in f_π (frac. of E going into pion production)
 - Spectral corrections (e. g. compared to choosing the break energy)
 - Neutrinos from pions/muons
- Photohadronics change spectral shape Baerwald, Hümmer, Winter, PRD83 (2011) 067303
- Conclusion (preliminary): Fireball flux ~ factor of five lower than expected, with different shape [but: depends on burst!]

(one example/set of parameters)

(Hümmer, Baerwald, Winter, work in progress)

Systematics in aggregated fluxes

- IceCube: Signal from 117 bursts "stacked" (summed) for IC-40 limit (arXiv:1101.1448)
 - Is that sufficient?
- Some (preliminary) results:
 - z ~ 1 "typical" redshift of a GRB
 - Flux overestimated if z ~ 2-3 assumed (unless z measured)
 - Peak contribution in a region of low statistics
 - Probability to be within 20% of the diffuse flux is (roughly)
 - 40% for 100 bursts
 - 50% for 300 bursts
 - 70% for 1000 bursts
 - 95% for 10000 bursts
 - Need O(1000) bursts for reliable stacking limits!

Summary

- Particle production, flavor, and magnetic field effects change the shape of astrophysical neutrino fluxes
 - Description of the "known" (particle physics) components should be as accurate as possible for data analysis
 - Example: GRB neutrino flux shape and normalization
- Flavor ratios, though difficult to measure, are interesting because
 - they may be the only way to directly measure B (astrophysics)
 - they are useful for new physics searches (particle physics)
 - they are relatively robust with respect to the cooling and escape processes of the primaries (e, p, γ)
- The flux shape and flavor ratio of a point source can be predicted in a self-consistent way if the astrophysical parameters can be estimated, such as from a multimessenger observation

(R: from time variability, B: from energy equipartition, α : from spectral shape)

Julius-Maximilians-

UNIVERSITÄT

WÜRZBURG

(Mücke, Rachen, Engel, Protheroe, Stanev, 2008; SOPHIA)

An example (1)

 α =2, B=10³ G, R=10^{9.6} km

Hümmer, Maltoni, Winter, Yaguna, 2010

Meson production described by

$$Q_b(E_b) = \int \frac{dE_p}{E_p} N_p(E_p) \int d\varepsilon N_\gamma(\varepsilon) R_b(x, y)$$
$$\begin{aligned} x &= E_b/E_p \\ y &\equiv (E_p \varepsilon)/m_p \end{aligned}$$

(summed over a number of interaction types)

- Only product normalization enters in pion spectra as long as synchrotron or adiabatic cooling dominate
- Maximal energy of primaries (e, p) by balancing energy loss and acceleration rate

$$t_{\rm acc}^{-1} = \eta \frac{c^2 eB}{E}$$

 Maximal proton energy (⇔UHECR) often constrained by proton synchrotron losses

UNIVERSITÄT

WÜRZBURG

Sources of **UHECR** in lower right corner of Hillas plot?

Hümmer, Maltoni, Winter, Yaguna, 2010

An example (2)

α =2, B=10³ G, R=10^{9.6} km

Injection: v_{μ}

Hümmer, Maltoni, Winter, Yaguna, 2010

Revised fireball normalization (compared to IceCube approach)

- Normalization corrections:
 - f_{Cγ}: Photon energy approximated by break energy (Eq. A13 in Guetta et al, 2004)
 - f_S: Spectral shape of neutrinos directly related to that of photons (not protons) (Eq. A8 in arXiv:0907.2227)
 - f_o, f_≈, f_{shift}: Corrections from approximations of mean free path of protons and some factors approximated in original calcs

Where to look for sources?

(Hillas, 1984; version adopted from M. Boratav)36