



2246-34

#### Workshop on Cosmic Rays and Cosmic Neutrinos: Looking at the Neutrino Sky

20 - 24 June 2011

Quantifying uncertainties in the high energy neutrino cross-section

Philipp MERTSCH University of Oxford UK

# The high energy neutrino cross-section in the Standard Model and its uncertainty

Philipp Mertsch

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

NUSKY 2011, ICTP, Trieste 24 June 2011





# Why do we want predictions for the $\nu$ cross-section?

#### $\nu$ astronomy

- want to measure flux  $J_{\nu}$
- event rate  $R \propto J_{\nu} \, \sigma_{\nu}$
- even considering the attenuation:  $R/J_{
  u} \propto \sigma_{
  u}^{0.45}$

#### particle physics

- want to measure cross-section  $\sigma_{
  u}$
- test standard model at c.m. energies up to  $\sim 10^3$  TeV: gluon saturation, colour glass condensate, black holes?
- there are a few observables which are independent of  $\sigma$   $\rightarrow$  measure flux and cross-section

Kusenko and Weiler, PRL 88, 161101 (2002); Anchordoqui et al., PRD 74 (2006) 043008

### How accurately can we predict the $\nu$ cross-section?



Does the uncertainty **really** blow up to  $\mathcal{O}(1)$ ?

DIS



# DIS



four Lorentz invariants:

- centre of mass energy  $\sqrt{s} \label{eq:s} s = (p+k)^2$
- momentum transfer  $Q^2 = -q^2 = -(k-k')^2$
- Bjorken scaling variable  $x = Q^2/(2p \cdot q)$
- inelasticity  $y = p \cdot q / (p \cdot k)$

#### $\nu$ cross-section

Double differential cross-section

$$\frac{\mathrm{d}^2 \sigma(\nu(\bar{\nu})N)}{\mathrm{d}x \; \mathrm{d}Q^2} = \frac{G_{\mathrm{F}}^2 M_W^4}{4\pi (Q^2 + M_W^2)^2 x} \sigma_{\mathrm{r}}(\nu(\bar{\nu})N)$$

with reduced cross-section

$$\sigma_{\rm r}(\nu(\bar{\nu})N) = \left[Y_+ F_2^{\nu}(x,Q^2) - y^2 F_{\rm L}^{\nu}(x,Q^2) \pm Y_- x F_3^{\nu}(x,Q^2)\right]$$
  
where  $Y_{\pm} = 1 \pm (1-y)^2$ .

Total cross-section

$$\sigma = \int \mathrm{d}x \int \mathrm{d}Q^2 \, \frac{\mathrm{d}^2 \sigma(\nu(\bar{\nu})N)}{\mathrm{d}x \, \mathrm{d}Q^2}$$

# LO (quark parton model)

q(x): probability density for quark q with momentum fraction x

structure functions combination of quark PDFs,  $F_2^{\nu} = x(u + d + 2s + 2b + \bar{u} + \bar{d} + 2\bar{c}),$  $F_L^{\nu} = 0,$  $xF_3^{\nu} = x(u + d + 2s + 2b - \bar{u} - \bar{d} - 2\bar{c}),$ and similar for  $\bar{\nu}$ .

## NLO

 $q(\boldsymbol{x}, Q^2)$  now scale-dependent,  $\mathbf{no}$  probability density

#### structure functions

$$F_{2} = \int_{x}^{1} \frac{\mathrm{d}\xi}{\xi} \left[ \sum_{i} e_{i}^{2} x q_{i}(\xi, Q^{2}) C_{q}\left(\frac{x}{\xi}, \alpha_{s}\right) + \left(\sum_{i} e_{i}^{2}\right) x g(\xi, Q^{2}) C_{g}\left(\frac{x}{\xi}, \alpha_{s}\right) \right]$$

$$F_{L} = \dots$$

$$xF_{3} = \dots$$

 $C_q, C_g$ : coefficient functions

# PDF fitting: idea

#### problem

- ideally, would like to calculate PDFs from first principles
- however, interactions of partons are soft  $(Q^2 \lesssim \Lambda^2_{\sf QCD})$
- $\rightarrow$  non-perturbative regime
  - lattice?

#### DGLAP evolution

- however, can calculate the evolution of PDFs in the perturbative regime ( $Q^2 \gg \Lambda^2_{\rm QCD}$ )
- assume parametric form at input scale and evolve to other scale

### **DGLAP** evolution

$$\frac{\partial q^{\mathsf{NS}}(x,Q^2)}{\partial \ln Q^2} = \frac{\alpha_s}{2\pi} \left( q^{\mathsf{NS}} \otimes P_{qq} \right)$$

$$\frac{\partial \Sigma(x, Q^2)}{\partial \ln Q^2} = \frac{\alpha_s}{2\pi} \left( \Sigma \otimes P_{qq} + g \otimes 2n_f P_{qg} \right)$$
$$\frac{\partial \Sigma(x, Q^2)}{\partial \ln Q^2} = \frac{\alpha_s}{2\pi} \left( \Sigma \otimes P_{gq} + g \otimes 2n_f P_{gg} \right)$$

 $\Sigma$  and  $q^{\rm NS}$  are convenient linear combinations of quark PDFs.



# PDF fitting: procedure

• chose parametrisation at input scale  $Q_0^2$ , e.g.

$$xg = x^{\lambda_g} (1-x)^{\eta_g} P_g(x)$$
$$xS = x^{\lambda_S} (1-x)^{\eta_S} P_S(x)$$

- ${\, \bullet \,}$  evolve to scale of measurement:  $Q_0^2 \rightarrow Q^2$
- calculate  $F_2$ ,  $F_L$  and  $xF_3$  functions and (differential) cross sections
- determine parameters  $\lambda_i$ ,  $\eta_i$ ,  $P_i(x)$  by fitting to data

. . .

#### experimental uncertainties

- many experimental errors correlated
- correlation matrix diagonalised
- $\rightarrow\,$  linearly independent eigenvectors = variations of best-fit PDF
  - can add errors from eigenvectors in quadrature

#### model/parameter uncertainities

- some parameters/model assumptions get fixed before fit
- vary these parameters within c.l. interval
- $\rightarrow\,$  variations of best-fit PDF

#### $\alpha_s$ uncertainties

- $\alpha_s$  determines how quickly PDFs rise at low x
- $\rightarrow\,$  possibly large effect







# A detailed comparison

• use only up-to-date PDFs:

- ► HERAPDF1.5 ✓
- ► CT10 ✓
- MSTW2008 × (does not include combined HERA data)
- work **consistently** at NLO
- use only publicly available tools (e.g. LHAPDF)
- highlight different contributions to uncertainty within DGLAP:
  - experimental
  - parameters
  - model

### The kinematic range



### The kinematic range



### Pitfalls

#### event generators, e.g. PYTHIA

- are for the most part LO
- using NLO PDFs: inconsistent X

#### LHAPDF

- PDFs provided on a limited grid of points  $(x, Q^2)$
- going beyond this grid: PDFs "freeze" 🗡

### Pitfalls



### Pitfalls

#### event generators, e.g. PYTHIA

- are for the most part LO
- using NLO PDFs: inconsistent X

#### LHAPDF

- PDFs provided on a limited grid of points  $(x, Q^2)$
- going beyond this grid: PDFs "freeze" 🗡

#### gluon parametrisation

- some groups choose a general parametrisation
- gluon PDF can go negative: meaning?

# Example: MSTW2008 gluon momentum distribution



# Example: MSTW2008 gluon momentum distribution



# Could the gluon become negative?

at NLO, the gluon **could** become negative however longitudinal structure function  $F_L$  **must** stay positive



With MSTW2008,  $F_L$  does go negative!

## Could the gluon become negative?

### at NLO, the gluon **could** become negative however longitudinal structure function $F_L$ **must** stay positive



Х

#### With HERAPDF1.5, $F_L$ does stay positive!

# Total $\nu$ CC cross-section (HERAPDF1.5)













# Total $\nu$ CC cross-section (CT10)



cross-section for member 52 rises  $\propto E_{\nu}^{0.7}$ ; central member  $\propto E_{\nu}^{0.3}$ 

# $\nu$ CC cross-section uncertainty (CT10)



#### member 52 of CT10



member 52 put in by hand

# $\nu$ CC cross-section (excluding rogue members)



# $\nu$ CC cross-section uncertainty (excluding rogue members)



# Using these results ...

#### more details in our paper

Cooper-Sarkar, Mertsch and Sarkar, arXiv:1106.3723

- more results:  $\nu$  and  $\bar{\nu}$ , CC and NC
- comparison with event generators and other calculations
- tabulated total cross sections and uncertainties

#### future plans

updating the widely used event generator ANIS with the new cross-sections

A. Gazizov, M. P. Kowalski, Comput. Phys. Commun. 172 (2005) 203.

# gluon at low x

#### $\ln 1/x$ resummation

- DGLAP contains terms  $\sim (\alpha_s \ln x_0/x)^n$
- $\bullet\,$  at low x this becomes larger than 1
- $\rightarrow$  need to resumm  $\ln 1/x$  terms

#### Froissart bound

- DGLAP predicts  $xg \propto x^{-\delta}$  at low x
- $\rightarrow~\sigma\propto s^{\delta}$  at large s
  - however, unitarity demands s,  $\sigma \propto \left( \ln s / s_0 
    ight)^2$  at most

### non-linear effects

- DGLAP eqns. are linear
- $\bullet$  however, in DGLAP gluon and sea quark density large at small x
- $\rightarrow$  gluon saturation? gluon recombination?



#### example

colour glass condensate

### non-linear effects

- DGLAP eqns. are linear
- $\bullet$  however, in DGLAP gluon and sea quark density large at small x
- $\rightarrow$  gluon saturation? gluon recombination?



#### example

colour glass condensate

### non-linear effects



### Conclusion

• cross-sections central values for

- ► HERAPDF1.5
- ► CT10
- ► MSTW2008

agree very well

- for HERAPDF1.5 and CT10 (under moderate assumptions) uncertainty is  $\lesssim 10$  %, even at  $E_{\nu} \sim 10^{20}$  GeV
- many pitfalls...e.g tabulated PDFs in LHAPDF "freeze" below some x value etc.  $\rightarrow$  Don't try to do this at home!
- Any measured deviation from these cross-sections would signal the need for new physics!

Backup slides

# Example: gluon momentum distribution



# Example: HERAPDF1.5 gluon momentum distribution



#### $\nu$ CC cross-section



# $\nu$ CC cross-section uncertainty



### Comparison with CTW



### Comparison with CTW



### Comparison with CSS



# Comparison with CSS



### Comparison with ANIS



# Comparison with ANIS



# The kinematic range TBD: new figure w/o THERA!

