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INTRODUCTION & MOTIVATION

� Last generation of UHECR experiments (Auger in the South
and TA in the North) are rapidly collecting events at highest
energies E > 1019 eV

� One of the questions is settled: there is a cut-off in the
spectrum

� HiRes: 5σ
� Auger: 20σ
� TA: 3.5σ
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� However, there is not much progress (so far) in the other two
key questions — (i) chemical composition and (ii) anisotropies
and sources

� Auger data indicate heavy composition at high energies and
anisotropy (excess around Cen A, correlation with nearby
AGN). These are (potentially) contradictory statements.

� The HiRes and TA indicate light composition and isotropy.
But this is also uncomfortable.



INTRODUCTION & MOTIVATION

The question addressed in this talk:
What anisotropy is expected at high energies?

More specifically:
If one assumes light composition (protons) as indicated by the TA
data, what anisotropy must be present without any concrete
assumptions about sources?

Proceed as follows:

� First, assume the deflections are small and calculate expected
anisotropy.

� Next, check if this assumption is reasonable and how the
conclusions change if it is not satisfied.



SMALL DEFLECTIONS



FLUX CALCULATION

� At highest energies CR have propagation distance � 100 Mpc

� Matter distribution on these scales is inhomogeneous =⇒ one
expects flux variations over the sky

� Matter distribution can be accurately mapped out to
∼ 250 Mpc from the 2MASS Galaxy Redshift Catalog (XSCz)
(unpublished; provided by T. Jarrett)

� Assume the UHECR luminosity proportional to the matter
density

� Calculate all propagation effects (interaction with photon
backgrounds, redshift)

� Apply Gaussian smearing with the angular scale θ treated as a
free parameter

� =⇒ obtain the prediction for the flux sky map
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STATISTICAL TEST: FLUX SAMPLING



STATISTICAL TEST: FLUX SAMPLING

� Events following the model would produce uniform distribution over
the bands

� No binning is actually needed (on the picture it is for illustration
only): two distributions may be compared by the
Kolmogorov-Smirnov test



WHAT IS SEEN IN TA

E > 4× 1019 eV
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WHAT IS SEEN IN TA

E > 5.7× 1019 eV
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STATISTICAL POWER OF THE TEST

� Statistical power is defined as the complement of the type-II
error (type-II error is the probability of falsely accept
null-hypothesis when the alternative hypothesis is true)
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� Statistical power is meaningful when it is close to 1 (say,
larger than 0.5). Then two distributions separate.



STATISTICAL POWERS IN CASE OF TA

E > 1× 1019 eV
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STATISTICAL POWERS IN CASE OF TA
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STATISTICAL POWERS IN CASE OF TA

E > 5.7× 1019 eV
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CONCLUSIONS OF THE TEST:

� Present TA data are compatible with both structure and
isotropy

� Need to double or triple the statistics to see the difference



ARE DEFLECTIONS SMALL OR LARGE?



Origin of “deflections”:
� Finite angular resolution

� 1.5◦ for TA, ∼ 1◦ for Auger
� subdominant

� Deflections in the extragalactic magnetic fields
�

θ = 1.8◦
(

E

1020eV

)−1 (
lcR

50Mpc2

)1/2 (
B

10−9G

)

� a likely upper bound
� may be larger in galaxy clusters (irrelevant for us)
� may be larger in filaments (irrelevant for us?)
� likely subdominant

� Deflections in the Galactic magnetic field
� in the random component: likely subdominant
� in the regular component: likely a dominant contribution
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GALACTIC MAGNETIC FIELD

� Coherent field in other galaxies:

M51 NGC891



Is there a coherent field in the Milky Way?
Smeared Faraday rotation measures

RM ∝
∫

dl ne · B||

by Kronberg & Newton-McGee (2011):



Is there a coherent field in the Milky Way?

NRAO VLA Sky Survey (NVSS) rotation measures catalogue:



GMF general structure

� Two components are necessary: symmetric disk +
antisymmetric halo [Pshirkov, P.T., Kronberg, Newton-McGee
arXiv:1103.0814]
[Previous studies: Simard-Normandin & Kronberg (1980); Han & Qiao

(1994); Stanev 1997; Tinyakov & Tkachev (2002); Prouza & Smida

(2003); Sun et al. (2008);]
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Fit to data:

MODEL

DATA

Bin size 10◦ × 10◦



SIZE OF DEFLECTIONS (protons, E = 4× 1019 eV)

ASS model



SIZE OF DEFLECTIONS (protons, E = 4× 1019 eV)

BSS model



CONCLUSIONS FROM GMF STUDY

� In case of protons of energy E = 4× 1019 eV a typical
deflection is 5◦ − 10◦ depending on direction (larger along the
Galactic plane).

� This implies deflections of order 20◦ − 40◦ at E = 1019 eV.

� Potential caveat: degeneracy in the GMF parameters which
may affect deflections. In particular, a combination of the
halo strength and height over the Galactic plane is poorly
constrained from RM measurements. This gives the
uncertainty of about factor 2 in deflections.



CONCLUSIONS

� The deflections in the Galactic magnetic field can be
calculated with the uncertainty of about factor 2.

� If CR are protons, we should see anisotropy at least at highest
energies with O(100) events above E = 5.7× 1019 eV

� If CR are iron, the deflections are 90◦ − 180◦ at
E = 5.7× 1019 eV and we should see no anisotropy except
may be at largest scales (like dipole or quadrupole).
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