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Abstract

The computation of global invariant manifolds has seen renewed interest in recent
years. We survey different approaches for computing a global stable and unstable
manifold of a vector field, where we concentrate on the case of a two-dimensional
manifold. All methods are illustrated with a single example — the two-dimensional
stable manifold of the origin in the Lorenz system.



1 Introduction

Many applications give rise to mathematical models in the form of a system of ordinary
differential equations. Well-known examples are periodically forced oscillators and the Lorenz
system (introduced in Section 1.1); see, for example, [21, 37, 54| for further references. Such
a dynamical system can be written in the general form

dx
% = f(x)’ (1)

where x € R” and the map f : R” — R” is sufficiently smooth. We remark that, in general,
the function f will depend on parameters. However, we assume that all parameters are fixed
and use (1) as the appropriate setting for the discussion of global manifolds.

The goal is to understand the overall dynamics of system (1). To this end, one needs to
find special invariant sets, namely the equilibria, periodic orbits, and possibly invariant tori.
Already to find these objects (with the possible exception of equilibria) one will need to use
numerical techniques. Furthermore, if these invariant sets are of saddle type then they come
with global stable and unstable manifolds. For example, the stable and unstable manifolds
W*(xq) and W*(xg) of a saddle equilibrium xy are defined as

W) = {xeR" | lim ¢'(x) = xo}
Wix) = {x€ R | Jim 6700 = x0},

respectively, where ¢' is the flow of (1). Hence, trajectories on the stable (unstable) manifold
converge to xo in forward (backward) time. Knowing these manifolds is crucial as they
organize the dynamics on a global scale. For example, stable manifolds may form boundaries
of basins of attraction, and it is well known that intersections of stable and unstable manifolds
lead to complicated dynamics and chaos.

Generally, global stable and unstable manifolds can not be found analytically. Further-
more, they are not implicitely defined, meaning that it is not possible to find them as the
zero-set of some function. Hence, points on global invariant manifolds cannot be found ‘lo-
cally’. Instead, these manifolds must be ‘grown’ from local knowledge, for example from
linear information near a fixed point xq.

It is the purpose of this paper to review different numerical techniques that have recently
become available to compute these global objects. We review five algorithms in detail and
characterize their properties using a common test-case example, namely, the Lorenz manifold
which is introduced now.

1.1 The Lorenz manifold

The Lorenz system [38] is a classic example of a vector field with a chaotic attractor. It is
given as

z = o(y—z),
0r — Y — X2, (2)
z = xy-— Pz

..
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Figure 1: The unstable manifold W*(0) (red curve) accumulates on the butterfly-shaped
Lorenz attractor. The blue disk is the linear approximation E*(0) of the Lorenz manifold
W#(0). Also shown are the two equilibria at the centres of the ‘wings’ of the butterfly and
their one-dimensional stable manifolds (blue curves).

where we fix the parameters at the standard choice ¢ = 10, p = 28 and = 8/3, for which
one finds the famous butterfly-shaped Lorenz attractor. Note that the Lorenz system (2)
has the symmetry (z,y,2) — (—z,—vy, 2) of rotation around the z-axis. In particular, the
z-axis is invariant under the flow.

The origin is a saddle point of (2) with real eigenvalues — 8 and — = +1, /(0 + 1)? + 4o (p — 1),
that is, approximately —22.828, —2.667 and 11.828. The origin is contained in the Lorenz
attractor, so that its one-dimensional unstable manifolds W*(0) can be used to approxi-
mate the Lorenz attractor; this is illustrated in Figure 1 where W*(0) is shown in red. At
the centers of the ‘wings’ of the butterfly are two more equilibria of (2), approximately at
(48.485, £8.485, 27), which are each other’s image under the rotational symmetry. Each of
these equilibria has one negative real eigenvalue, giving rise to a one-dimensional stable man-
ifold, and an unstable pair of complex conjugate eigenvalues with positive real part. Figure 1
shows all equilibria of (2) in green, together with their one-dimensional global manifolds. As
mentioned, the red curve is the unstable manifold W*(0) of the origin, whose closure is the
Lorenz attractor. The blue curves are the stable manifolds of the two other equilibria. The
blue disk lies in the linear eigenspace E*(0) of the origin.

The Lorenz attractor, that is, the red curve in Figure 1 conveys the chaotic nature of the
system, but does not give any information on the overall organization of the phase space of
(2). This role is played by the two-dimensional stable manifold 177%(0) of the origin — which
we refer to as the Lorenz manifold from now on. The Lorenz manifold W#(0) is tangent at
0 to the eigenspace E*(0) spanned by the eigenvectors of —22.828 and —2.667. This is a
generic property of stable and unstable manifolds; see Section 1.2. Note the large difference




in magnitude between the two stable eigenvalues, leading to a dominance of the strong stable
manifold, which is tangent to the eigenspace of the the eigenvalue —22.828.

The Lorenz manifold has a number of astonishing properties. Imagine that the little blue
disk in Figure 1 ‘grows’ to become the Lorenz manifold W*(0), but without ever intersecting
the red unstable manifold W*(0). In other words, the Lorenz manifold stays ‘in between’
trajectories on the Lorenz attractor, but ‘spirals’ simultaneously into both wings of the
butterfly. Now imagine how trajectories on this manifold must be able to pass from one
wing to the other. Any finitely grown part of W*(0) is topologically still a two-dimensional
disk, but one with a particularily intriguing embedding into R*. The geometry of W*(0) can
only truly be appreciated if one can draw an image of it.

The first, hand-drawn image of the Lorenz manifold appeared in [1] and the first published
computer generated image appeared in [23]. Not in the least due to its intriguing nature,
the Lorenz manifold has become a much-used test-case example for evaluating algorithms
that compute two-dimensional (un)stable manifolds of vector fields. For each of the methods
discussed in this paper we present an image of the computed Lorenz manifold that is always
taken from a viewpoint along the line spanned by the vector (v/3,1,0) in the (z,y)-plane.

1.2 Stable and unstable manifolds

In order to explain the different methods for computing two-dimensional (un)stable mani-
folds, we need to introduce some notation. To keep the exposition simple, we consider here
the case of a global (un)stable manifold of a hyperbolic saddle point xq € R" of (1). Further-
more, we present all theory and the different methods for the case of an unstable manifold.
This is not a restriction, because a stable manifold can be computed as an unstable manifold
when time is reversed in system (1).

Suppose now that f(x¢) = 0 and for some 1 < k < n the Jacobian Df(xy) of f at x
has k eigenvalues with positive real parts and (n — k) eigenvalues with negative real parts
(counted with multiplicity). The Stable and Unstable Manifold Theorem states that a local
unstable manifold W (x¢) exists in a neighborhood of xy. Furthermore, Wi*.(x¢) is as
smooth as f and tangent to the unstable (generalized) eigenspace E*(x,) of Df(xo) at xo.
This means that we may define the global unstable manifold W*(x,) as

W(x) = {xeR'| lim ¢'(x) = xo} = |J 6" (Mt(x0)) . (3)

t>0

Hence, W"(xq) is a k-dimensional (immersed) manifold, defined as the globalization of
W.(x0) under the flow ¢*. Note that the local stable manifold Wy _(xo) and the stable
manifold W?(xg) are similarly related with respect to the reversed direction of time, namely

W) = {xeR"| Jim ¢'(x) = xo} = | J &' (W (x0). (4)

t<0

This indeed shows that it is sufficient to consider only the case of an unstable manifold,
possibly after reversing time.

Definition (3) already suggests a method for computing W"(x,): take a small (k — 1)-
sphere (or other ‘outflow boundary’ such as an ellipsoid) S5 C W}%.(xo) with radius ¢ around



xo and ‘grow’ the manifold W*(xg) by evolving S5 under the flow ¢'. As starting data, one
can take S5 C E"(xg) or a higher-order approximation of W}, (xo).

In the special case £k = 1 of computing a one-dimensional manifold, this method works
well, because it boils down to evolving two points at distance ¢ from x, under the flow. This
can be done reliably by numerical integration of (1), so that computing one-dimensional
unstable manifolds is straightforward. The one-dimensional manifolds in Figure 1 were
computed in this way.

However, the above method of evolving a (k — 1)-sphere S5 with & > 2 under the flow
@' generally gives very poor results. This is so because S; will typically deform very rapidly
under ¢'. In particular, it will stretch out along the strong unstable directions (if present).
Furthermore, Ss is a continuous object that will have to be discretized by some mesh.
Any mesh on Ss will deteriorate rapidly under the flow ¢!, so that it will not be a good
representation of W*%(xg) as a k-dimensional manifold.

1.3 Different approaches to computing W*"(x)

It is quite a challenge to compute a global unstable manifold W*(xg) of dimension at least
two. Indeed simple numerical integration of the flow is not sufficient (except in very special
cases) — dedicated algorithms are needed for this task. Before we describe some recent
methods in more detail, we first explain the underlying approaches in general terms. It is
useful to consider for this purpose different parametrizations of W*(x).

We concentrate in this survey on the first nontrivial case £ = 2 of a two-dimensional un-
stable manifold. While all methods could be used in principle to compute higher-dimensional
manifolds, almost all implementations are for £ = 2. Furthermore, visualizing higher-
dimensional manifolds remains a serious challenge. The different methods use the idea
of growing W*(xg) from a local neighborhood of xq. They differ in how they ensure that a
good mesh representing W*(xg) is computed during this growth process.

Consider as starting data a small smooth closed curve S; C W% .(xo), also referred to
as a (topological) circle in what follows, of points that all lie at distance § from xq. (As
was mentioned, one can take S5 C E%(x) if § is small enough.) The goal is to find a ‘nice’
parametrization of W*(xg) in terms of the starting data Sj.

As we have seen above, the parametrization

W*(xo) = {¢t(56)}teR (5)

is not practical, because the ¢'(Ss) are typically not nice smooth closed curves for all ¢.
Indeed, they soon tend to look like very elongated ellipses.

In order to define the parametrization of W*(xg) as a family of the nicest topological
circles possible, recall that the geodesic distance dy(x,y) is defined as the arclength of the
shortest path in W*(xg) connecting x and y, called a geodesic. Consider now the geodesic
parametrization of W*(xq) given by

W*(x0) = {Sy}p>0 where S, :={x e W"(xo) | dy(x,%x0) =n}. (6)

The geodesic parametrization (6) is entirely in terms of the geometry of W*(x;), and not in
terms of the dynamics on the manifold. Since W*(xy) is a smooth manifold tangent to E*(x)



Figure 2: The Lorenz manifold computed with the method of Guckenheimer & Worfolk [23]
up to geodesic distance 180; the computed approximate geodesic level sets are at increasing
radial distances from the origin with steps of 5.0 in between, which is indicated by a color
change from magenta (small) to blue (large).

at Xg, there must be some 7y, > 0 so that the geodesic level sets S, for 0 < 7 < Nyay are all
smooth closed curves without self-intersection, that is, topological circles; see, for example,
[63]. We also refer to geodesic level sets for n < Nmax as geodesic circles. Up until npax,
the geodesic parametrization (6) is geometrically the nicest parametrization, because its
elements, the geodesic circles, are the nicest possible topological circles on W*(xg). For the
Lorenz manifold, apparently nma.x = 00. However, the case of a finite 9.y is possible and it
typically involves a non-smooth geodesic circle; see [35] for details.

The idea of computing W*(xq) as a sequence of geodesic circles goes back to Gucken-
heimer and Worfolk [23]. Starting with a small geodesic circle (or ellipse) Ss around xg, they
rescale the vector field so that the component tangential to the last computed geodesic level
set is practically zero, retaining only the radial part. Then the flow of the rescaled radial vec-
tor field is used to evolve (a sufficient number of points on) this geodesic circle by integration
over a suitably small and fixed integration time (now corresponding to geodesic distance up
to a rescaling of the radial part of the vector field). Figure 2 shows 36 approximate geodesic
circles of the Lorenz manifold computed with this method up to geodesic distance 180. The
output was produced in the DsTool [4] software environment; the manifold could be ren-
dered as a two-dimensional surface by post-processing the data. Notice that the last few
computed circles show some ripples near the z-axis. This happens where the vector field is
almost tangent to the geodesic circles, so that the rescaling to determine the radial part of
the vector field becomes unstable. More generally, the method from [23] requires that the
vector field points radially outward everywhere along each geodesic circle, which is why this
approach has difficulties in case D f(x() has complex conjugate eigenvalues.



The method by Krauskopf and Osinga [34, 35], discussed in detail in Section 2, also
computes W"(xq) as a sequence of geodesic circles, but does not rescale the vector field.
Instead, the idea is to find the next geodesic circle in a local (and changing) coordinate
system given by hyperplanes perpendicular to the present geodesic circle. Determined by
certain accuracy parameters, a suitable number of mesh points on the next geodesic circle
is computed by solving appropriate boundary value problems. During the computation the
interpolation error stays bounded, so that the overall quality of the mesh is guaranteed.

A different approach is to reparametrize time so that the flow with respect to the new
time progresses with the same speed along all trajectories through S5, meaning that the
same arclength is covered per unit time along all trajectories. One also speaks of arclength
integration. We then have the new parametrization of W*(xq) given by

W (xo) = {Ay}gso With A, = {x € W¥(xq) | da(x,%0) =7}, (7)

where d,(x,y) denotes the arclength distance between two points x and y on the same tra-
jectory; we set dy(x,y) = oo if x and y are not on the same trajectory. This parametrization
can be considered as the best in terms of dynamically defined topological circles on W*(xy).

Johnson et al. [27] use essentially this parametrization by trajectory arclength, but con-
sider integration in the product of time and phase space. They start with a uniform mesh
on a first small circle A5 € E%(x9) and then integrate at each step the present mesh points
up to a specified arclength. This leads to a new circle, on which a uniform mesh is then
constructed by interpolation between the integration points. Figure 3 shows the Lorenz
manifold computed with this method up to an approximate arclength distance of 200. The
method is quite fast since it involves only direct integration and redistribution of points by
interpolation. On the other hand, it is difficult to control the interpolation error, which is
determined by the (unknown) dynamics on W*(xg).

An altogether different parametrization of W*(x) is the dual parametrization to (5) and
(7) in terms of the trajectories through a fixed S; C E%(x¢), which is formally given as

W*(x0) = {Bp}pes; where B,:={¢'(p)|t€R}. (8)

Notice that, in the case of a two-dimensional manifold W*(x,) considered here, parametriza-
tion (8) is a one-parameter family of trajectories.

The method by Doedel, discussed in detail in Section 3, computes two-dimensional
(un)stable manifolds by following trajectories B, as a boundary value problem where the
initial condition p € Sy is parametrized with one of the free continuation parameters. This
method is very accurate and flexible by allowing for different boundary conditions at the
other end point of the trajectory B,, which includes specifying a fixed arclength L of the
trajectory. During a computation, mesh points are distributed along the trajectories to
maintain the accuracy of the computation.

The method of Henderson [25], discussed in detail in Section 4, also considers parametriza-
tion (8) of W*(x¢) by orbits. However, the manifold is constructed directly as a two-
dimensional object by computing fat trajectories. A fat trajectory is a string of polyhedral
patches along a trajectory, where the size of the patches is given by local curvature informa-
tion. When a fat trajectory reaches the prescribed total arclength L, the boundary of the
computed part of the manifold is determined. Then a suitable starting point for the next fat
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Figure 3: The Lorenz manifold computed with the method of Johnson, Jolly & Kevrikidis [27]
up to a total trajectory arclength of about 200.

trajectory is found and the computation continues. When no more possible starting points
exist, the computation stops.

The method by Guckenheimer and Vladimirsky [22], discussed in detail in Section 5,
locally models W¥(xq) as the graph of a function ¢ that satisfies a quasi-linear partial
differential equation (PDE) expressing the tangency of the vector field f to the graph of
g. The PDE is discretized in an Eulerian framework and the manifold is approximated
by a triangulated mesh. At each step one new point is added to the mesh, leading to a
new simplex whose other vertices are previously known mesh points. An Ordered Upwind
Method determines where the next point/simplex is added and the ordering of new simplices
is based on the arclength of the trajectories.



The method by Dellnitz and Hohmann [7, 8], discussed in detail in Section 6, is comple-
mentary to the previous methods in that it computes an outer approximation of the manifold
by boxes of the same dimension n as the phase space of (1). This method uses the time-r
map of the flow ¢’ for some fixed 7 > 0. A subdivision algortihm first finds a covering of
Wit (x0) with n-dimensional boxes of suitably small diameter. This local box covering is
then globalized in steps by adding new boxes (of the same small size) that are ‘hit’ under
the time-7 map by the present collection of boxes. The practical problem is to reliably detect
when the image of one box intersects another box (for example, by using test points). If
a-priori bounds on the local growth rate of the vector field are known then it is possible to
compute a rigorous box covering of W*(xy); see [29].

In the following sections we present the different algorithms in more detail, again illus-
trated with the computation of the Lorenz manifold W*(0).

2 Approximation by geodesic level sets

The method of Krauskopf and Osinga [34, 35] approximates a global (un)stable manifold as
a sequence of geodesic circles of the parametrization (6). Only the case of a two-dimensional
unstable manifold of a saddle point in a three-dimensional space is presented here. However,
the method can be formulated in terms of computing a k-dimensional manifold of a vector
field in R™, and has been implemented to compute two-dimensional (un)stable manifolds of
saddle points and saddle periodic orbits in a phase space of any dimension; see the examples
in [34, 35] and also in [42, 43]. Variants of this method exist to compute global manifolds of
maps; see [32, 33].

The method completely steps away from evolving an existing mesh. Instead, new mesh
points are computed by means of solving appropriate boundary value problems; see Sec-
tion 2.1. The boundary conditions predetermine where the new mesh points need to be
added in order to achieve a prescribed mesh quality. This method is as independent of
the dynamics as possible and it grows the manifold as a sequence of discretized geodesic
circles until 7. is reached where the geodesic level sets are no longer smooth circles; see
Section 1.3.

To be more specific, let M; denote a circular list of mesh points from which a continuous
topological circle C; is formed by connecting neighboring points of M; by line segments. The
mesh points in M; are computed to ensure that C; is a good approximation (according to
prespecified accuray parameters) of an appropriate geodesic circle S,,. The manifold W*(0)
is then approximated up to a prescribed geodesic distance L by the triangulation formed by
the total mesh M = Uy<;<;M;, where [ € N depends on L and the accuracy parameters.

The start data is a uniform mesh M, on an initial small geodesic circle S,, = S5 C E"(xp)
at some prescribed distance ¢ from 0. The method then computes at each step ¢ a new circular
list M;, 1 that approximates the next level set S;,,,. In other words, at every step a new
band is added to W*(xg); the width of this band is determined by the curvature of geodesics.
The method stops when the prespecified fixed geodesic distance L from 0 is reached.



Figure 4: The boundary value problem formulated for a mesh point  on the geodesic level set
C; is solved by a family of trajectories, starting at ¢.(¢) on C; and ending at b, (¢) in F,, that
is parametrized by integration time ¢. There is a unique first orbit such that | b.(t,) —r|= A,.
The image shows actual data for the Lorenz manifold W*(0) of Figure 5 where C; ~ S,
with n; = 32.75 and A; = 4.0.

2.1 Finding a new point in M,

Let us consider the task of finding M, ; at some prescribed increment A; from a known
circular list M; representing S,,. The circular list M;,; is constructed pointwise. Let r €
M; and consider the (half)plane F, through r that is (approximately) perpendicular to C;
at r. Then W"(xq) N F, is a well-defined one-dimensional curve locally near r, which is
parametrized by the time it takes to reach W*(xy) N F, by integration from C;. Points in
W"(xq) N F, can be found by solving the two-point boundary value problem

() € G (9)

be(t) = ¢'(cr(t)) € Fr, (10)

where the integration time ¢ is a free parameter. The situation is shown in Figure 4 with

actual data for the Lorenz manifold W#(0) presented in Section 2.3. Note that for an unstable
manifold ¢ > 0 and for a stable manifold ¢ < 0.

The point b,(t,) € F, is uniquely defined by the property that ¢, is the smallest integration
time (in absolute value) for which |b,.(t,) — r|= A;. If A; is small enough then b,.(¢,) exists
and can be found by continuation of the trivial solution b,(0) = ¢,(0) = r for ¢ = 0 while
checking for the first zero of the test function

Ai= b (t) = 7] - (11)

When the first zero is found then b,(¢,) = b,(t) is the candidate for a point in M;,; see
Figure 4.
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2.2 Mesh adaptation

Once all candidate points in M;,; have been found, all for the same A,;, then it is decided
whether the step size A; was appropriate. To this end, it is checked that the curvature of
(approximate) geodesics through all points € M; was not too large. This is done with a
criterion that was originally introduced for one-dimensional global manifolds of maps [26].
Let «, denote the angle between the line through r and b,(¢,) and the line through p, and
r, where p, € M, ; is the associated point of M; ; on the approximate geodesic. The step
of geodesic distance A; was acceptable if both

Qr <  Cmax, and (12)
Aj-op < (Ad)max (13)

hold for all » € M;. In this case M;,; is accepted and step ¢ is complete. If there is some
r € M; that fails either (12) or (13) then A; is halved and step i is repeated with this smaller
A;. Similarly, A; may be doubled if for every r € M; both «, and A, - a, are well below
the respective upper bounds in (12) or (13), say, below @iy and (Aa)min respectively. The
parameters Omin, Omax, (AQ)min, and (Aa)max implicitely determine the mesh adaptation
along geodesics and are fixed by the user before a computation.

It is important to ensure that Cji; is also a good approximation of Sy, . In other
words, neighboring points of M;;; may not be too close or too far from each other. When
two neighboring points of M; lead to two neighboring points of M;;; at more than the
prespecified distance Ax from each other, then a new point is added in between. This is
not done by interpolating between points of M;,; but by applying step ¢ of Section 2.2 for
finding a new point in M;,; to the middle point on C;. In other words, no interpolation is
ever performed between points that are more than distance Ar apart. In order to ensure
proper order relations between directly neighboring points of M;,; a point is removed if two
neighboring points in M;,; lie closer together than a prespecified distance Jx.

The mesh adaptation as decribed ensures that the overall error of a computation up to
a prescribed geodesic distance L is bounded. This means that the computed piece of the
manifold lies in an e-neighborhood of W*(x,), provided the accuray parameters are chosen
small enough; see [35] for the proof.

2.3 The Lorenz manifold approximated by geodesic circles

Figure 5 shows the Lorenz manifold W#(0) represented by a total of 75 bands and with
total geodesic distance 154.75. The manifold was computed starting with a mesh M, of 20
points on S; C E*(0) with 6 = 1.0. The computation was initiated with A; = 0.25 and the
mesh was generated using the accuracy parameters cuin = 0.3, Omax = 0.4, (A)min = 0.1,
(AQ)max = 1.0, Ax = 2.0, and § = 0.67. The coloring illustrates the geodesic distance
from the origin, where blue is small, green is intermediate and red is large. The manifold
was rendered as a two-dimensional surface with the visualization package Geomview [41];
other illustrations of the Lorenz manifold can be found in [35, 36, 44] and animations with
[35, 36].

Figure 5(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint; notice the similarity with the geodesic level sets in Figure 2. Figure 5(b) shows
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(d)

Figure 5: The Lorenz manifold computed with the method of Krauskopf & Osinga up to
geodesic distance 154.75. Panel (a) shows the entire manifold, panel (b) an enlargement
where the manifold is transparent, panel (c) a further enlargement near the Lorenz attractor
(in magenta) where only every second band is shown, and panel (d) the computed mesh
when looking into the outer scroll.

an enlargement of the Lorenz manifold where the manifold is now transparent. This brings
out the detail of the manifold, in particular, the development of a pair of extra helices
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that follow the main helix along the z-axis. Notice that points of the same color are on
the same geodesic circle, which shows that points on W*(0) that are close to the origin in
Euclidean distance need not be close to the origin in geodesic distance. Figure 5(c) shows a
further enlargement near the Lorenz attractor, which is illustrated in magenta by plotting
the unstable manifold W*(0). In this image only every second band is shown to obtain a
see-through effect, showing clearly how the Lorenz manifold ‘rolls’ into the Lorenz attractor.

Figure 5(d) gives an impression of the computed mesh with an enlargement looking into
one of the outer scrolls. Geodesic circles can be seen as spiraling curves (between bands of
the same color). The approximate geodesics are the curves that point approximately radially
out in the image. They are perpendicular to the geodesic circles, and locations where points
were added can be identified as starting points of new approximate geodesics. Notice that the
last six bands are closer together. The image illustrates how the distance between geodesic
circles is determined by the curvature along geodesics, while the mesh distribution on the
geodesic circles is allowed to vary between dr = 0.67 and Ax = 2.0.

3 BYVP continuation of trajectories

It seems very natural to use parametrization (8) for defining a one-parameter family that
describes the unstable manifold W*(xy) of a saddle equilibrium x4 of (1). An approximation
to W*(xo) could then be attempted by simple integration of Eq. (1) for a sufficient number
of initial conditions that lie on the circle (or ellipse) S5 of small radius ¢ in the stable
eigenspace E%(xq) centered at xo. However, as was already explained in Section 1.3, this
procedure does not generally produce W*(xo) as a surface. The main problem is to properly
space the initial conditions around the circle, so that the result gives a reasonable distribution
of the computed trajectories along the stable manifold. This is caused by the fact that the
continuation procedure for computing the initial orbit is sensitive to the dependence of the
entire orbit on the initial condition.

The method of Doedel uses numerical continuation to address this problem. The step
size in the continuation procedure measures the change of the entire trajectory (and various
parameters), and not just the change in the initial conditions. It is this key property of
continuation that generally results in a reasonable distribution of trajectories along the
stable manifold.

In this section we only consider the computation of one-parameter families of trajectories,
which together describe a two-dimensional (un)stable manifold of a fixed point. Most existing
continuation algorithms can handle the computation of such one-dimensional families (also
called solution branches); see, for example, [5, 16, 17, 31, 48, 52|, and [37, Chapter 10]. The
continuation method described here was implemented in the continuation package AUTO
[14, 15, 18] by specifying the respective driver files.

Continuation algorithms have also been developed for the higher-dimensional case; see,
for example, [2, 24]. Hence, this method could be applied, in principle, equally well to
compute manifolds of dimension larger than two.
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3.1 Pseudo-arclength continuation

Let us begin with a discussion of some basic notions of continuation. Consider the finite-
dimensional equation

F(X)=0, F : R™ — R™, (14)

where F'is assumed to be sufficiently smooth. This equation has one more variable than it
has equations. Given a solution X, one has, generically, a locally unique solution branch
that passes through X,. To compute a next point, say, X, on this branch, one can use
Newton’s method to solve the extended system

F(X)) = 0, (15)
(X1 — Xo)* Xy = As. (16)

Here X, is the unit tangent to the path of solutions at X, the symbol * denotes transpose,
and As is a step size in the continuation procedure. The vector X, is a null vector of the
m x (m+1)-dimensional Jacobian matrix Fx(Xy), and it can be computed at little cost [16].
This continuation method is known as Keller’s pseudo-arclength method [31]. The size of the
pseudo-arclength step As is normally adapted along the branch, depending, for example, on
the convergence history of Newton’s method.

The continuation procedure is well posed near a regular solution Xy, that is, if the null
space of Fx(Xp) is one-dimensional. Namely, in this case the Jacobian of the entire system
(15)—(16) at X, that is, the (m + 1) x (m + 1) matrix

(749)

is nonsingular. The Implicit Function Theorem then guarantees that a locally unique solution
branch passes through X,. This branch can be parametrized locally by As. Moreover, for
As sufficiently small, and for sufficiently accurate initial approximation (for example, when
taking X\ = X, + AsX,), Newton’s method for solving Egs. (15)—(16) converges.

3.2 Boundary value problem formulation

When computing a branch of solutions to an ODE of the form (1) one must keep in mind
that (1) has infinitely many solutions and boundary or integral constraints must be imposed.
Furthermore, the pseudo-arclength constraint (16) is then typically given in functional form:;
more details can be found in [17]. This means that the possibly unknown total integration
time 7" is embedded in the equations. To this end, the vector field (1) is rescaled so that
integration always takes place over the interval [0,1], and the actual integration time 7T
appears as a parameter. Hence, in this context, Eqgs. (15)—(16) take the form

xi(t) = f(xl(t)a)\l); (18)
b(x1(0),x1(1),N;) = 0, (19)

/0 a9 A ds = 0, (20)

[ 60 = xa(r)) () i+ (= 20)"h = A 1)
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where the dimension of A; must be chosen consistently with the dimensions of the boundary
conditions (19) and the integral constraints (20) in order to ensure a one-dimensional family
of solutions. Equations (15)—(16) must be solved for X; = (xi(-), A1), given a solution
Xo = (%0(-), \o) and the path tangent Xy = (%o(-), \¢). That is, in a function space setting,
Egs. (18)—(20) correspond to the equation F(X) = 0, as in Eq. (14). Note that the dimension
(m+1) of X = (z(-), \) may be much larger than the dimension n of the phase space of (1).
In particular, A always contains the parameter 7', which may or may not vary during the
continuation; see Section 3.3 for specific examples. If A =T then f(x(t), A1) = Tf(x:1(2))-

In each continuation step, Eqgs. (18)—(21) are solved by a numerical boundary value al-
gorithm. Here, the package AUTO [14, 15, 18] is used, which uses piecewise polynomial
collocation with Gauss-Legendre collocation points (also called orthogonal collocation), sim-
ilar to COLSYS with adaptive mesh selection [3, 6, 49]. In combination with continuation,
this allows the numerical solution of ‘difficult’ orbits. Moreover, for the case of periodic
solutions, AUTO determines the characteristic multipliers (or Floquet multipliers) that de-
termine asymptotic stability and bifurcation properties, as a by-product of the decomposition
of the Jacobian of the boundary value collocation system [17, 20]; see also [39].

3.3 BVP continuation of the (un)stable manifold of an equilibrium

Consider now the situation that (1) has a saddle equilibrium x, with a two-dimensional
unstable manifold, meaning that the Jacobian D f(xg) has exactly two eigenvalues p; and
t2 with positive real part. Suppose further that v; and v, are the associated (generalized)
eigenvectors. We are looking for solutions of the system

x'(t) = Tf(x()), (22)
x(0) = xg+ d(cos(f)vy + sin(0)vy), (23)

which is a combination of Egs. (18) and (19) with A = (0,7). Note that in Eqgs. (22)—(23)
the continuation equation corresponding to Eq. (21) (or Eq. (16)) has been omitted, even
though it is an essential part of the continuation procedure. The continuation equation will
also not be written explicitly in subsequent continuation systems.

If the eigenvalues p; and pg are real, then it is advantageous to choose the initial condition
on the ellipse that is given by the ratio of the eigenvalues as

x(0) = xp+9 (COS(H)L + sin(H)E) . (24)
| | o

In other words, in the continuation Eq. (23) is replaced by Eq. (24).

Obvious starting data for the system (22)—(23) consist of a value of § (0 < 0 < 27),
T =0, and x(t) = xq + 6(cos(#) vy +sin(f)vs), that is, x(¢) is constant. An actual trajectory
for a specific value of # can now be obtained using continuation as well. While this may
seem superfluous, it has the added benefit that the output files of this first step in AUTO
are then compatible with subsequent continuation steps. In this continuation step, system
(22)—(23) is solved for X = (x(-),T’), keeping the angle 6 fixed. Here, " > 0 for an unstable
manifold and T' < 0 for a stable manifold since then integration is backward (or negative)
in time.
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Once a single orbit is obtained up to a desired length, defined by a suitable end-point
condition, then this orbit is continued numerically as a boundary value problem where the
initial condition on the small circle (or ellipse) is now a component of the continuation
variable. In this way, the family (8) of such orbits on (part of) the stable manifold W*(x,)
is approximated. The simplest way to do this is to fix T in the continuation system (22)-
(23) after the first step and allow 6, the angle of the starting point on S; to vary freely.
It is important to note that 6 is not used as the sole continuation parameter. Instead
each continuation step is taken in the full continuation variable X = (x(),#), so that the
continuation step size includes variations along the entire orbit. Also, € is one of the variables
solved for in each continuation step and it is not fixed a priori.

Instead of keeping T fixed, there are other ways to perform the continuation. For example,
one can constrain the end point x(1) as one wishes. This is done by adding to system (22)-
(23) the equation

9(x(1),0,T)—a = 0. (25)

Here g is an appropriate functional, chosen to control the end point in a desirable manner,
for example, by requiring one coordinate to have a particular fixed value. The continuation
variable can now be taken as X = (x(-),6,T), while « is kept fixed.

Another possibility is to impose an integral constraint along the orbit, namely adding to
(22)—(23) the equation

/lh(x(s),H,T) ds—L = 0. (26)

Now h is an appropriate functional, chosen to control the orbit in a desirable manner. The
continuation variable can again be taken as X = (x(-),0,7), but now keeping L fixed. A
particularly useful choice is h(x, A\, T) = T|| f (x, )\)H, which results in the total arclength of
the orbit being kept fixed during the continuation. Finally, it is entirely possible to use a
combination of end-point conditions and integral constraints, but this will not be used here.

3.4 The Lorenz manifold as a family of trajectories

Figure 6 shows an enelargement near the origin of the orbits that were continued on the
Lorenz manifold W#(0) (for negative 7'). The angle # is allowed to vary from 0 to 27, so
that the initial condition varies along the ellipse in the middle of the image, which is defined
by (24) with § = 5.0, u; = —22.828 and pu; = —2.667. All orbits have the same arclength
and the coloring is in terms of the total integration time 7" along each trajectory. In other
words, the coloring gives an indication of the speed of the flow along trajectories, where red
is fast and green is slower. The flow is fastest along the strong stable manifold, which is
located in the middle of the red region. Note that the disctribution of points is much denser
near the top and bottom of the ellipse, that is, near the invariant z-axis, which ensures a
good distribution of orbits over the Lorenz manifold 17°(0).

Figure 7(a)—(c) shows the Lorenz manifold W*(0) covered by 2284 trajectories of ar-
clength 250, where the ellipse of initial conditions is as in Figure 6. The number of mesh
points along each trajectory was NTST = 75, with NCOL = 4 collocation points in each
mesh interval. Figure 7(a) shows the entire computed part of the Lorenz manifold from
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Figure 6: Continued trajectories on 1W*(0) near the origin starting from the ellipse (24) with
0 = 5.0, py = —22.828 and py = —2.667; the coloring is according to integration time 7',
where red indicates faster and green slower flow.

the common viewpoint. The coloring changes from blue to red according to the mesh point
number along a trajectory, which gives an impression of the arclength of trajectories. Fig-
ures 7(b) and (c) show enlargements where the coloring shows the total integration time T
along trajectories. As in Figure 6, this indicates the speed of the flow; the strong stable
manifold is located in the red region of fast flow. In Figure 7(b) every fourth trajectory is
rendered as a thin tube. This results in a better sense of depth so that an impression is
given of how trajectories lie in phase space to form 1W?*(0). Figure 7(c) is an enlargement of
Figure 7(a) (though with a different color scheme) showing how the manifold forms a scroll.

Figure 7(d) illustrates the flexibility of the method by showing part of the Lorenz manifold
computed by numerical continuation of solutions to the boundary value problem (22)—(23)
and (25) for the choice g(x, A\, T) = x. This results in the z-coordinate of the end point x(1)
being kept fixed during the continuation, and it was set to x = —25 in the computation.
For an appropriate choice of «, the continuation procedure then naturally leads to non-
monotonous variation of #, thereby allowing the computation of a scroll-like structure on the
stable manifold. In Figure 7(d) the origin is the point on the right from which all trajectories
emerge.
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Figure 7: The Lorenz manifold computed with the continuation method of Doedel. Panels
(a), (b) and (c) show the manifold where the arclength of the trajectories is fixed at L = 250.
In panel (a) the coloring indicates the arclength along trajectories and in panels (b) and (c)
the coloring is according to the total integration time 7' of trajectories; the strong stable
manifold lies inside the red region. Panels (a) and (c) show all trajectories, while panels
(b) shows only every fourth trajectory as a tube. Panel (d) demonstrate that only a part of
interest of the stable manifold may be computed, such as a part of the main scroll; this was
done by fixing x = —25 at the end point of trajectories.
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4 Computation of fat trajectories

The method of Henderson [25] computes a compact piece of a k-dimensional invariant man-
ifold by covering it with k-dimensional spherical balls in the tangent space, centered at a set
of well-distributed points. This set is found by computing so-called fat trajectories, which are
trajectories augmented with tangent and curvature information at each point. The centers
of the balls are points on the fat trajectory, and the radius is determined by the curvature.

For the implemented case of computing a two-dimensional unstable manifold W*(xq) of
a saddle point of (1), the method starts with a small circle S; C E*(x0) and at every step
circular disks are added along a fat trajectory with a fixed total arclength (from x4) of L.
Initially all fat trajectories start on S5, but at later stages fat trajectories begin at points
interpolated where two fat trajectories move too far from each other. The method stops
when W*(xg) has been covered up to the prescribed arclength L.

4.1 Fat trajectories on the global stable manifold

The method requires a basis for the tangent space and the curvatures in that basis to
construct the disks. As was mentioned in the introduction, invariant manifolds are not
defined locally, so that there is no local way of determining the tangent space or curvature
for a given a point on the invariant manifold. This information is known at points on the
initial curve S; C E%(xg), because the tangent to Ss is known, and if the flow is transverse
to the initial curve Ss, f can be used as the second tangent. The circle S5 (or possibly an
ellipse) may be chosen to be transverse to the flow for sufficiently small 6. The curvature
information is obtained using the second derivative tensor.

The tangent and curvature can be ‘transported’ over W"(xq) by deriving and solving
evolution equations for them along a trajectory. To this end, one writes the parametrization
(5) in the form

2(t,0) = c(0) + /0 F(x(s,0))ds, (27)

where c¢(o) parametrizes Ss with the one-dimensional parameter 0. Then the tangent space
at x(t, o) is spanned by x, and x; = f, and the curvatures are X,,, Xt; = fxX, and xy = fi f.
Evolution equations for these quantities can be found by differentiating (27)

d
Zx = 2
%xa = [fxXo, (29)
d
axaa - fxxaa + fxxxaxa - (30)

Note that, even if x, is orthogonal to f at the initial point, there is no reason to expect
the basis to remain orthogonal. In [25], equations are derived for the evolution of a local
parametrization which does remain orthonormal and has minimal change in the basis along
the trajectory. (This is analogous to finding Riemannian normal coordinates in gravitation,
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Figure 8: Two adjacent fat trajectories starting from Ss;. A new fat trajectory is started from
the point where the two fat trajectories separate. This point can be found by interpolation
between two suitable mesh points, which is indicated by the green lines.

where trajectories play the role of geodesics [40].) If the tangents in the local parametrization
are Xg and x;, they evolve according to

d
&Xo = fxXo — ngxXO Xo — X{fxxo X1, (31)
d
&Xl = fxX1 — Xonxxl Xp — X1foX1 X - (32)

4.2 Interpolation points on the invariant manifold

The method starts with a set of well-distributed points on the initial curve S5, which can
be found using the algorithm described in [24]. At each such point on S5 an orthonormal
basis for the invariant manifold and second derivatives of the manifold in that basis are
computed, and used as initial conditions for finding a set of disks along a fat trajectory.
Because trajectories may move apart from each other, these disks will generally not cover
W"(xg); see Figure 8. This means that additional fat trajectories must be started at suitable
points until W*(xy) is covered. In order to generate a well-spaced set of points on W"(x,),
one chooses a starting point from the boundary of the computed part of the manifold.

The method in [24] represents the boundary of the union of disks {D;} using polygons
related to the Voronoi regions of the centers of the disks. A disk D; consists of a center
x(t;,0;) (a point on a fat trajectory), the orthonormal basis for the tangent space of the
manifold x¢(¢;, 0;) and x;(¢;, 0;), a radius R;, and polygon P;. The polygon P; is represented
by a list of vertices in the tangent space and edges joining them (this actually works in
arbitrary dimensions). The polygons are constructed in such a way that each edge of P,
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which crosses the boundary of D; corresponds to a neighboring disk D;. The situation is
sketched in Figure 8.

Suppose that part of W"(xg) is represented this way, and a new disk D; is to be added.
P; is initially a square centered at the origin with sides 2R;, and for each disk D; which
intersects the new disk D; complementary half spaces are subtracted from P and P;. The
projection of D; into the tangent space at x; is approximated by a disk of radius I; centered
at the projection of x;. If R; and R; are small enough so that the distance between the
tangent space and the manifold is small (this depends on the curvature of W*(xy)), then
this is a good approximation. This pair of disks in the tangent space at x; defines a line
containing the intersection of the circles bounding the disks, and one subtracts from P; a
half space bounded by this line. The same approach is used to update P; by projecting x;
into the tangent space at x;.

With these polygons a point on the boundary of the union can easily be found. Any point
on 6D; N P; is near the boundary of the union (the distance to the boundary is controlled
by the distance between the tangent space and the manifold at the radius). Points on the
boundary where two disks meet correspond to points where an edge of P; crosses 6D; (the
point obtained is in the tangent space of the manifold and must be projected onto the
manifold).

If one considers the part of the invariant manifold that is not yet covered (that is, the
exterior of the union of neighborhoods, ¢ < T), one can define something resembling a
constrained minimization problem (it lacks a global objective function) which looks for a
point in this region that lies furthest back in time under the flow. With a mild assumption
about the shape of the region (it must be a topological ball), such a minimal point must
exist. It must lie on the boundary of the region at the intersection of two disks. This point is
a ‘minimum’ if the flow vector extended backwards intersects the interior of the edge joining
the centers of the intersecting disks. (This is, in fact, Guckenheimer and Vladimirksy’s
upwinding criterion; see Section 5.) One can easily find candidate points on the boundary
from the edges of the polygons, and checking the upwinding criterion is a matter of computing
a projection. One can then either interpolate tangents and curvatures from the disks’ centers
(the method used in the computations shown in Figure 9) or use a homotopy (as Doedel uses
in AUTO [14, 15, 18]) to move from the fat trajectory from S; through the center of one of
the disks to the fat trajectory which starts on S; and passes underneath the interpolation
point.

This interpolation to find new starting points for fat trajectories completes the algotithm.
It computes a covering of the manifold W"(xq) with disks centered at well-spaced points.
Provided the disks are sufficiently small compared to the curvature, the algorithm is guar-
anteed to terminate, and all points lie on trajectories that originate on the initial curve Sj
or at points interpolated from nearby trajectories.

The fat trajectory, with its string of disks and polygons, is integrated until a prespecified
total arclength L is reached. This is repeated for all the points on the initial curve. (The
total integration time 7" of fat trajectories varies with the initial condition.)
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Figure 9: The Lorenz manifold computed with the method of Henderson up to a total
trajectory arclength of 240. Panel (a) shows a view of the entire manifold, panel (b) a
transparent enlargement near the main scroll, panel (c¢) shows the part of the manifold for
x < 0 together with the Lorenz attractor and the one-dimensional stable manifolds of the
two other equilibria, and panel (d) gives an impression of the computed mesh.
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4.3 The Lorenz manifold covered by fat trajectories

Figure 9 shows the Lorenz manifold W*(0) computed (using integration backward in time)
up to a total trajectory arclength of 240. The step was controlled so that the distance
between the tangent space and W*(x,) over each disk was less than 0.5. The scaled time
step along trajectories was 0.01 (many more than one time step is taken between sucessive
points on a fat trajectory), and no radius is greater than 2.0. The result was a total of 221,210
disks. Figure 9(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint. Figure 9(b) shows an enlargement of the Lorenz manifold near the central region
where the manifold is now transparent. Notice the different ‘sheets’ of manifold in the scroll
and the extra helices forming around the z-axis. This complicated structure of the Lorenz
manifold is further illustrated in Figure 9(c) where only the half of W*(0) with negative
z-coordinate is shown. The intersection curves of the manifold with the plane {z = 0} are
shown in white. Also shown is the on-dimensional unstable manifold W*(0) (red curve)
accumulating on the the Lorenz attractor (yellow) and the stable manifolds (blue curves) of
the other two equilibria.

Figure 9(d) gives an impression of the computed mesh. The fat trajectories are the
white curves and they are surrounded by the polygons that make up the Lorenz manifold.
Clearly visible are points where new fat trajectories are started from interpolated data. The
boundary of the manifold at termination simply consists of the disks that are distance L
from xq (measured along trajectories).

5 PDE formulation

Another method for approximating invariant manifolds of hyperbolic equilibria was intro-
duced by Guckenheimer and Vladimirsky [22]. Their approach locally models a codimension-
one invariant manifold as the graph of a function g satisfying a quasi-linear PDE that ex-
presses the tangency of the vector field f of (1) to the graph of g. The PDE is then discretized
in an Eulerian framework and the manifold is approximated by a triangulated mesh. We
denote by M the triangulated approximation of the ‘known’ part of the manifold. It can be
extended by adding simplices at the current polygonal boundary OM in a locally-outward
direction in the tangent plane. The discretized version of the PDE is then solved to obtain
the correct slope for the newly added simplices. To avoid solving the discretized equations
simultaneously, an Ordered Upwind Method (OUM) is used to decouple the system: the
causality is ensured by ordering the addition/recomputation of new simplices based on the
lengths A of the vector field’s trajectories.
Two key ideas provide for the method’s efficiency:

1. The use of Eulerian discretization ensures that ‘geometric stiffness’, a high non-uniformity
of separation rates for nearby trajectories on different parts of the manifold, does not
affect the quality of the produced approximation: new simplices constructed at the
current boundary 0M are as regular as is compatible with the previously constructed
mesh.

2. Since OUM is non-iterative, the PDE-solving step of the method is quite fast.
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5.1 Tangency condition

The method is explained here for a two-dimensional manifold W*(x,) of a saddle point xg
in R?; see [22] for more details. Let (u, g(u)) = (uy,ug, g(u1,usz)) be a local parametrization
of the manifold of (1). Then the vector field f should be tangential to the graph of g(uy, us),
that is,

0

0
o ——g(u1,u2), =1| - f (w1, ug, g(u1,u2)) = 0. (33)
Uy

8’11,2

(U'lv u2)7

The above first-order quasi-linear PDE can be solved to ‘grow’ the manifold in steps, because
the Dirichlet boundary condition is specified on the boundary M of the piece of the manifold
computed in previous steps. The initial boundary is chosen by discretizing a small circle
or ellipse S5 C E“(x¢) that is transverse to f, so that the vector field is outward pointing
everywhere.

Unlike a general quasi-linear PDE, Eq. (33) always has a smooth solution as long as the
chosen parameterization remains valid. Thus, switching to local coordinates when solving
the PDE avoids checking the continued validity of the parameterization.

In [22] the PDE formulation (33) is extended to approximate two-dimensional manifolds
in R". A similar characterization can be used for general k—dimensional invariant manifolds
in R", but the current numerical implementation relies on k£ = 2.

The PDE approach for characterizing invariant surfaces goes back to at least the 1960s.
The existence and smoothness of solutions for equations equivalent to (33) were the subjects
of Sacker’s analytical perturbation theory [50] and later served as a basis for several numer-
ical methods, for example, those in [12, 13, 19]. However, all this work was done for the
computation of invariant tori. There are two very important distinctions between the PDE
methods for tori and the method presented in this section:

1. These prior methods assume the existence of a coordinate system in which the invari-
ant torus is indeed globally a graph of a function g : T¢ +— R . This implies the
availability of a global mesh, on which the PDE can be solved. For invariant manifolds
of hyperbolic equilibria such a mesh is not available a priori and has to be constructed
in the process of ‘growing’ the approximation M.

2. For the invariant tori computations, the solution function g has periodic boundary con-

ditions; hence, the discretized equations are inherently coupled and have to be solved
simultaneously.
For the approximation of W*(x) all characteristics of the PDE start at the initial
boundary (chosen in E%(xg)) and run ‘outward’. Knowledge of the direction of infor-
mation flow can be used to decouple the discretized system, resulting in a much faster
computational method.

5.2 FEulerian discretization

To enable decoupling of the discretized system, our discretization of Eq. (33) at a ‘new’
mesh point y has to be ‘upwinding’, i.e. it should use only previously-computed mesh points
straddling y’s approximate trajectory. For a two-dimensional invariant manifold in R?,
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Figure 10: Geometric interpretation of Eq. (34). The search space for finding a suitable « is
one-dimensional and given by the normal direction w, which corresponds to the codimension
of the manifold.

let G(u1,us) be a piecewise-linear numerical approximation of the local parameterization
g(u1,up). Consider a simplex yyly?, where y* = (uf,ub, G(ui,ud)) = (u',G(u’)) and
y = (u1, uz, G(u1,uz)) = (u,G(u)). Suppose that the vertices y' and y? are two adjacent
mesh points on the discretization of the current manifold boundary, called AcceptedF'ront
(thus, G(u') and G(u?) are known and can be used in computing G(u)). If u is chosen so
that the simplex uu'u? is well-conditioned, then y = (u, G(u)) can be determined from the
PDE. Define the unit vectors P; = % and let P be the square invertible matrix with
the P;s as its rows. The directional derivative of GG in the direction P; can be computed as

vi(u) = (G(u) — G(u?)) /||u — u!||, for i = 1,2. Therefore, Vg(u) ~ VG(u) = P lv, where

v = zl . This yields the discretized version of Eq. (33) as
2

[P v(u)], fi(u,G(u) + [P v(u)], fo(u,G(u) = f3(u,G(u)). (34)

This nonlinear equation can be solved for G(u) by the Newton-Raphson method or any other
robust zero-solver. In addition, it has an especially simple geometric interpretation if the
local coordinates are chosen so that G(u') = G(u?) = 0. Namely, we reduce the problem
to finding the correct ‘tilt’ of the simplex yyly? with respect to the simplex gy'y? with
9 = (u,0). Hence, solving Eq. (34) is equivalent to finding a@ € R such that f(§ + aw)
lies in the plane defined by y?!, y2, and y = § + aw, where w is the unit vector normal to
gy'y?; see Figure 10. A similar discretization and geometric interpretation can be derived
for the general case of k¥ > 2 and n > 3 [22].

The described discretization procedure is similar in spirit to an implicit Euler’s method for
solving initial value problems since y' and y? are assumed to be known and the vector field
is computed at the to-be-determined point y. In solving first-order PDEs, a fundamental
condition for the numerical stability requires that the mathematical domain of dependence
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y y?

Figure 11: An acceptable (a) and an unacceptable (b) approximation of f (y); The range
of upwinding directions is shown by dotted lines; the local linear approximation to the
trajectory is shown by a dashed line; ¢ is its intersection with the line y*y?. In the second
case the upwinding criterion is not satisfied and the update for y should be computed using
another segment of AcceptedFront.

should be included in the numerical domain of dependence. Since the characteristics of
PDE (33) coincide with the trajectories of the vector field, G(u) should be computed using
the triangle through which the corresponding (approximate) trajectory runs. Thus, having
computed y = (u,G(u)) by (34) using two adjacent mesh points y* and y?, we need to
verify an additional upwmdmg condition: the linear approximation to the trajectory of y
should intersect the line yiy’ at a point § = (@, G(@)) that lies between y® and y7; see
Figure 11. An equivalent formulation is that f(y) should point from the newly computed
simplex yy'y’.

Algebraically, if y solves (34), then f(y) = Bi(y — y®) + Bo(y — y?); thus, the upwind-
ing criterion above simply requires (1,82 > 0. In this case the discretization is locally
second-order accurate and the arclength A(y) of the trajectory up to the point y can be
approximated as

M) ~ -l + @) ~ UL+ s + s (3

Numerical evidence indicates that the resulting method is globally first-order accurate [22].
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5.3 Ordered Upwind Method

Ordered Upwind Methods (OUMs) were originally introduced for static Hamilton-Jacobi-
Bellman PDEs [51]. In [22] the same idea of space-marching for boundary value problems
is used to solve Eq. (33). All mesh points are divided into those that are Accepted, that
is, already fixed as belonging to the approximation M, and those C'onsidered, which are in
a tentative position adjacent to the current polygonal manifold boundary 0M, called the
AcceptedFront. A tentative position can be computed for each C'onsidered mesh point y
under the assumption that its trajectory intersects M in some neighborhood N (y) of that
point. In other words, y is updated by solving Eq. (34) for a ‘virtual simplex’ yy®y? such
that y*y? € OM N (y) and the upwinding criterion is satisfied. All Considered points are
sorted based on the approximate trajectory arclengths A(y) defined by (35). The method
starts with OM discretizing a small ellipse in E“(@xg). That initial boundary is surrounded
by a single ‘layer’ of Considered mesh points (also in E*(xg)).

A typical step of the algorithm consists of picking the Considered y with the smallest A
and making it Accepted. This operation modifies OM (g is included, and the mesh points
that are no longer on the boundary are removed) and causes a possible recomputation of all
the not-yet-Accepted mesh points near g. If y* is adjacent to 4 and y’¢ is on the boundary,
then the mesh is locally extended by adding a new Considered mesh point y connected
to 'y in a tangent plane. To maintain good aspect ratios of newly-created simplices, the
current implementation relies on an ‘advancing front mesh generation’ method similar to
[46]. Other local mesh-extension strategies can be implemented similarly to methods in [47]
or [24].

The vector field near OM determines the order in which the correct ‘tilts’ for tentative
simplex-patches are computed and the Considered mesh points are Accepted. This ordering
has the effect of reducing the approximation error (since a mesh point y first computed
from a relatively far part of N (y) is likely to be recomputed before it gets Accepted). The
default stopping criterion is to enforce A(g) < L, so that the algorithm terminates when the
maximal approximate arclength L is reached. Other stopping criteria (for example, based
on Euclidean or geodesic distance or the maximum number of simplices) can be used as
well. Current algorithmic parameters include L, the size N of the neighborhood N, and
the desired simplex size A. As in the original OUMs, the computational complexity of the
algorithm is O(M log M), where M = O(L?/A?) is the total number of mesh points and
the (log M) factor results from the necessity to maintain a sorted list of Considered mesh
points. A detailed discussion of the algorithmic issues can be found in [22].

5.4 The Lorenz manifold computed with the PDE formulation

Figure 12 shows the Lorenz manifold W*(0) computed up to an approximate total arclength
of L = 174. The computation was started from S; C E*(0) with § = 2.0, A = 0.6 and
N = 4A, which resulted in the total of 271469 mesh points. The coloring shows arclength
along trajectories where blue is small and red is large. The manifold was rendered as a two-
dimensional surface with MATLAB; other illustrations can be found in [22] and animations
at http://www.math.cornell.edu/"vlad/manifold_movies/lorenz.html.
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Figure 12: The Lorenz manifold computed with the method of Guckenheimer and
Vladimirsky up to a total trajectory arclength of about 174. Panel (a) shows a view of
the entire manifold, panel (b) an enlargement near the main scroll where the manifold is
shown transparent, panel (c) shows how the manifold interacts with the Lorenz attractor,
and panel (d) gives an impression of the computed mesh.
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Figure 12(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint. Figure 12(b) is an enlargement near the central scrolls where the manifold is now
shown transparent. Clearly visible are two secondary spirals forming near the positive z-axis.
The coloring is such that points of the same color are equally far away from the origin in
arclength along trajectories. Figure 12(c) is a further enlargement near the unstable manifold
W*(0) accumulating on the Lorenz attractor. This clearly shows how the Lorenz manifold
‘rolls’” into both wings of the Lorenz attractor, creating different sheets that do not actually
intersect the shown trajectories representing the unstable manifold W*(0).

Figure 12(d) gives an enlarged impression of the computed mesh looking into one of the
outer scrolls. The simplices of the mesh are sufficiently uniform in spite of the complicated
geometry of the manifold they represent. The red boundary of the computed manifold is not
a smooth curve, because it is formed simply by the last simplices that were added locally.

6 Box covering

In contrast to the techniques described so far, the method of Dellnitz and Hohmann [7, §]
presented in this section approximates invariant manifolds by objects of the same dimension
as the underlying phase space. It first produces an outer covering of a local unstable manifold
by a finite collection of sets. This covering is then ‘grown’ in order to cover larger parts of
the manifold analogously to what is described in Sections 2 and 5. In combination with
set-oriented multilevel techniques for the computation of invariant sets, such as periodic
orbits, attractors and general chain recurrent sets, the technique allows, in principle, for the
computation of manifolds of arbitrary dimension, where the numerical effort is essentially
determined by the dimension of the manifold. In combination with rigorous techniques for
the implementation of this approach, it is possible to compute rigorous coverings of the
considered object. For a more detailed exposition of the general method see [7, 8, 10, 11].
The algorithm is implemented in the software package GAIO [10].

6.1 The box covering algorithm

The box covering algorithm applies to a discrete-time dynamical system, that is, to a diffeo-
morphism D. In the context of approximating global manifolds, it can compute the unstable
manifold of an (unstable) invariant set of D in a compact region of interest ). In this
section, we explain how this method can be used for the computation of a two-dimensional
(un)stable manifold of a saddle x in R3.

Here, the diffeomorphism D : R® — R? is given by the time-7 map of the vector field
(1). For an unstable manifold 7 > 0, while for a stable manifold 7 < 0 to account for
reversing time. Numerically, the map D may be realized by classical one-step integration
schemes. Since the algorithm involves integration over short time intervals only, typically
the requirements in terms of accuracy or preservation of structures of the underlying vector
field f are rather mild. The diffeomorphism D then has a hyperbolic saddle fixed point
X = X, and, because of the reversal of time, X has a two-dimensional unstable manifold
W*(x), which is identical to the (un)stable manifold of xq.

The idea of the algorithm is as follows. Imagine a finite partition P of (). The method
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first finds a (small) collection Cy C P that covers the local unstable manifold W (x). This
local covering of W*(X) is extended in steps, where in each step the sets in the current
collection C, are mapped forward under D. All sets in P that have an intersection with the
images of Cy are added to the current collection of sets, yielding Cy .

More formally, let Py, P1,... be a nested sequence of successively finer partitions of Q):
We take Py = {Q} and each element P € P,y is contained in an element P’ € P, and
diam(P) < ~ diam(P’) for some fixed number 0 < v < 1.

The algorithm consists of two main steps:

1. Initialization: Compute an initial covering Cék) C Py of the local unstable manifold
E"(x) of x. This can be achieved by applying a subdivision algorithm for the computa-
tion of relative global attractors to the element P € P, containing x for some suitable
?; see [T].

2. Growth: From the collection CJ(-k), 7 =0,1,..., the next collection is obtained by setting

CJ('Ij-)l ={P € Prys : f(Q) N P # 0 for some set Q € C](-k)}.

T(h%s is r(eg)eated until no more sets are added to the current collection, that is, until
k k
C;” =Cjiy-
We can show that this method converges to a certain subset of W*(x) in (). Namely, let
Wy = W (x) N P, where P is the element in P, containing x and define
Wi =DW,)NQ, j=01,2,....
Then we have the following convergence result (see [7]):

1. the sets CJ(-k) are coverings of W; for all j,k =0,1,..;

2. for fixed j and k£ — o0, the covering CJ(-k) converges to W; in Hausdorff distance.

In general, one cannot guarantee that the algorithm leads to an approximation of the
entire set W*(x) N Q. This is due to the fact that parts of W*(x) that do not lie in ) may
map into @. In this case, the method will indeed not cover all of W*(x) N Q.

Under certain hyperbolicity assumptions on W*(x) it is possible to obtain statements
about the speed of convergence in terms of how the Hausdorft distance between the covering
and the approximated subset of W*(X) depends on the diameter of the sets in the covering
collection; see [11] for details.

6.2 Realization of the method

The efficiency of the growth part of the algorithm significantly depends on the realization of
the collections P,. In the implementation the P, are partitions of () into bozxes

Ble,r)={yeR |y, —c| <rifori=1,...,d},

where ¢,7 € R?, r; > 0, are the center and the sizes of the box B(c, ), respectively. Moreover,
only partitions are used that result from bisecting the initial box () repeatedly, where in this
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process of bisecting the relevant coordinate direction is changed systematically (typically,
the bisected coordinate direction is varied cyclically).

Starting with Py = {Q}, this process yields a sequence P, of partitions of ), that can
efficiently be stored in a binary tree. Note that it is easy to store arbitrary subsets of the full
partition Py just by storing the corresponding part of the tree. In fact, in the initialization of
the algorithm one starts with a single box on a given level /, so that the stored tree consists of
a single leaf. Whenever sets are added to the current collection, the corresponding paths are
added to the tree. Figure 13 illustrates the first three growth steps for the computation of a
covering of the Lorenz manifold on level 18 of the tree (all other parameters are as described
in Section 6.3 below). The yellow box in Figure 13(a) was created in the initialization step
and then grown in one step to obtain the blue boxes. Panels (b) and (c) show two further
growth steps, where the covering of the previous step is again shown in yellow.

The hierarchical storage scheme has another crucial computational advantage in that it is
easier to decide which boxes are ‘hit’ by mapping the boxes that were added in the previous
step of the continuation algorithm. Namely, for each of these boxes B € Py, one needs to
compute the set F(B) = {B' € Pyyx | D(B) N B’ # (}. Since B contains an uncountable
number of points, this problem must be discretized. The obvious approach is to choose a finite
set T of test points in B and to approximate F(B) by F(B) = {B' € Py | D(T)NB' # B}.
Using the tree structure, the determination of the box that contains the image of a test point
can be accomplished with a complexity that only depends logarithmically on the number of
boxes in P, [8].

6.3 Box covering of the Lorenz manifold

Figure 14 shows a box covering of the Lorenz manifold W*(0). For the computation the
time-7 map of the Lorenz system (2) was considered with 7 = —0.1. This map is realized
by the classical Runge-Kutta scheme of fourth order with a fixed step size of —0.01. The
region of interest @ is a box with sizes (70,70, 70) and center (10~',107",107"); this offset
centering is for a practical reason: it avoids having the origin on the edge of a box. Level
¢ = 27 of the tree was used and 16 growth steps were performed, starting from a single box
containing the origin (i.e. £ = 0). In each growth step, an equidistant grid of 125 test points
in each box was mapped forward. The resulting object contains more than 4 million boxes.

Figure 14(a) shows the entire computed part of the Lorenz manifold from the common
viewpoint in a transparent rendering. A non-transparent rendering is shown in Figure 14(c).
Figure 14(b) shows an enlargement near the central region. Because the methods is using
the time-7 map of the Lorenz system (2), the Lorenz manifold first grows initially mainly
in the direction of the strong unstable direction until the boundary of the box of interest is
reached. This can be seen nicely in Figure 13. Later steps of the growth process then start
to build up the other part of the manifold, resulting in the image in Figure 14(a) and (c).
As a result, the helical part of the manifold near the positive z-axis is less pronounced.

The further enlargement near the scroll of the manifold in Figure 14(d) gives a local
impression of the box covering. Notice that covering of the manifold has a thickness of
several box diameters at the end of the scroll.
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Figure 13: Coverings of the Lorenz manifold during the first three growth steps are shown
in panels (a)—(c), where the covering of the previous step (the initialization box in the case
of (a)) is shown in yellow.
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(c) (d)

Figure 14: The Lorenz manifold computed with the box covering method of Dellnitz and
Hohmann. In panels (a) and (b) the manifold is rendered transparently, while panels (c)
and (d) show the box covering in more detail. The common viewpoint is chosen in panels
(a) and (c). Panel (b) shows an enlargement near the z-axis, and panel (d) gives a closer
look at the computed boxes.
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7 Discussion

After a recent flurry of research activity, several complementary methods are available today
to compute global (un)stable manifolds in applications. While these methods are still some-
what under development and testing, we hope that this survey will encourage the reader to
consider computing such global objects in systems arising in applications.

Each of the methods presented in the previous sections is based on a particular point
of view of characterizing a global (un)stable manifold. Common to all is the idea that the
manifold must be ‘grown’ from local information near the saddle point, and the difference is
in how this is done. The choice of method will generally depend on the application one has
in mind and on the particular questions one wants to answer. This discussion is intended to
give an indication of the specific properties of the different approaches.

Approximation by geodesic level sets. The method by Krauskopf and Osinga [34,
35] is presently implemented for two-dimensional manifolds of saddle points and saddle
periodic orbits in a phase space of arbitrary dimension; see also [42, 43]. This implementation
approximates the manifold linearly between mesh points, while the boundary value problems
(9)-(10) are solved by single shooting. It would be possible to use higher order interpolation
between mesh points and collocation for solving the boundary value problems. The method
produces a very regular mesh that consists of (approximate) geodesic circles and approximate
geodesics. This means that the manifold is rendered as a geometric object, independently of
the dynamics on it. The mesh is, in fact, constructed so regularly that it can be interpreted
as a crochet pattern. This allows one to produce a real-life model of the Lorenz manifold;
see [45] for details. During a computation the interpolation error is controlled by prescribed
mesh quality parameters, so that the correctness of the method can be proved; see [35] for
details.

The price one has to pay for obtaining a guaranteed ‘geometric mesh’ is that one needs
to set up and continue a boundary value problem for each new mesh point. This makes the
method more expensive compared to other methods. With the non-optimized present im-
plementation and the accuracy parameters as in Section 2.3, computing the Lorenz manifold
up to geodesic distance 140 takes about 10 minutes, while the larger image in Figure 5 with
69,900 mesh points took 40 minutes and 47 seconds on an 800MHz Pentium III machine
with 256 Mb RAM.

Because it is based on the geodesic parametrization (6), the method works as long as
the geodesic level sets of this parametrization remain smooth circles. While this is not an
obstruction for computing the Lorenz manifold, there are examples where the computation
stops when a geodesic circle seizes to be smooth; see [35]. Furthermore, the method stops
when it encounters an equilibrium or a periodic orbit on (the closure of) the (un)stable
manifold.

An implementation for global (un)stable manifolds of dimension three would already be
quite challenging. First of all, geodesic level sets are spheres in this case, on which one
needs to compute a regular mesh. Secondly, the method would require multi-parameter
continuation to continue the boundary value problems (9)—(10).
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BVP continuation of trajectories. The method by Doedel is arguably the most straight-
forward one. The continuation calculations can be carried out using the standard boundary
value continuation capabilities of AUTO. This means that all that is required are rather
standard AUTO equations and parameter files. The orbits that make up the manifold are
computed very accurately, due to the high accuracy of the orthogonal collocation method,
which is superconvergent for the solution at the mesh points and for scalar variables. Fur-
thermore, the boundary value continuation algorithms in AUTO, written in the f77 or C
programming language, are rather efficient, so that the calculations can generally be done in
relatively little computer time. For example, the Lorenz manifold in Figure 7 was computed
on a ?? MHz Linux laptop in 77 seconds. (SEBIUS: please provide info.)

The method is very flexible in that it allows for different boundary conditions at the
endpoint of a trajectory. This means that one can compute only a part of interest of the
manifold, as was illustrated in Figure 7(d). However, the manifold cannot be ‘grown’, so
that the continuation must be repeated if a larger part of the manifold is desired.

While visualizing or even animating the computed trajectories gives much insight into
the geometry of the manifold, it would require substantial post-processing to produce a nice
mesh representation of the manifold as a two-dimensional object. In particular, the density
of the orbits may be high in areas where the further evolution of the trajectories depends
sensitively on the current state. For example, in Figure 7(a) and (c) the density of the orbits
is high along a curve in the direction of the z-axis, that is, the direction of the weakly stable
eigenvector.

Computation of fat trajectories. While also essentially computing trajectories, the
method of Henderson [25] does produce a nice mesh representation by ‘fattening’ the tra-
jectories with a string of polygonal patches. The method tends to minimize the need for
interpolation. When interpolation is needed there is a guarantee that appropriate points
exist, and at those points information is available which allows higher order interpolation
or the generation of an interpolating trajectory. The method is presently implemented for
computing two-dimensional manifolds. It would be possible to use it for computing higher-
dimensional manifolds, because updating the computed boundary works in all dimensions
[24]. However, solving the minimization problem and interpolation would have to be gener-
alized. (MIKE: please provide status of the implementation.)

The computation of a fat trajectory is more expensive than straighforward integration,
because it adds equations for the evolution of the tangent space and curvatures. However,
the implementation of updating the computed boundary is quite efficient; see also [24].
The overall algorithm is relatively fast. For example, the Lorenz manifold in Figure 9 was
computed on a 7?7 in about ?? minutes. (MIKE: please provide info.)

Finally, the algorithm may encounter a geometric problem. It must be able to distinguish
between mesh points on different sheets of the invariant manifold, for example, where a
trajectory returns close to itself. This can be done by checking the values of ¢ and o at the
centers of the disks, but it demands sufficiently small disks so that those quantities vary
only little across each disk. This requirement may results in many more mesh points being
computed than is necessary to obtain a geometrically smooth manifold. This geometric
problem occurs when trajectories spiral tightly, as is the case, for example, on the unstable
manifolds of the two equilibria on the wings of the Lorenz attractor.
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PDE formulation. The PDE approach by Guckenheimer and Vladimirsky [22] leads to a
very efficient numerical method for computing a mesh representation of a global (un)stable
manifold. The computational cost of this method is largely independent of the geometric
stiffness present in the system. For example, the Lorenz manifold in Figure 12 was computed
in under 90 seconds on a Pentium III 850 MHz processor with 256 Mb RAM.

The constructed approximation M is ‘causal’, that is, it contains approximate trajectories
for all of the mesh points on OM. As a result, the method is not restricted to manifolds
where the level curves of the geodesic distance remain smooth. In particular, the method
can be used for approximating manifolds containing homoclinic and heteroclinic trajectories;
see [22] for examples. Another advantage of the PDE method is that it is readily adaptable
to a continuation framework. When a vector field is studied under parameter variation,
an approximation of the manifold for one parameter value can be used to build a global
parametrization for nearby parameter values. This reduces the cost of locally extending the
mesh near OM at every step. (ALEXANDER: has this continuation approach actually been
implemented /tried? If not, i would prefer it at the end of the section as a possible extension.)

The computational cost of adding each simplex is proportional to the codimension (n —
k) of the manifold. When approximating manifolds of high codimension, this is clearly a
disadvantage compared to other methods for which this cost is proportional to the dimension
of the manifold k. A second limitation of the method is that the constructed approximation
is globally only first-order accurate, in contrast with, for example, the second-order accuracy
of computing fat trajectories.

The current implementation of the PDE approach works for two-dimensional manifolds
in a phase space of arbitrary dimension. An adaptive implementation for £ > 2 will have to
employ a robust algorithm for higher-dimensional mesh extension, which remains a challenge.

Box covering. The box covering algorithm of Delnitz and Hohmann [7, 8, 10, 11] con-
structs a covering of (part of) the global invariant manifold. This covering consists of a
collection of small boxes. The method is formulated for discrete time systems, and dif-
ferential equations can be handled by considering a corresponding time-7-map. It allows
for the computation of (un)stable manifolds of arbitrary invariant sets. It is possible (and
implemented in GAIO) to compute manifolds of arbitrary dimension. The ‘thickness’ of
the covering depends on the contraction rate transverse to the manifold. The stronger the
contraction, the fewer ‘box-layers’ along the manifold will be produced. In particular, the
algorithm needs to be modified in order to apply it to Hamiltonian systems [30].

The key implementational issue, namely how to compute the image of a given box, is
typically discretized by mapping a (finite) set of test points in each box. Evidently, depending
on the properties of the underlying map, the choice of these points determines the quality
of the resulting covering. Using too few points may lead to missing boxes, while using too
many slows down the computation. There exist strategies for a near-optimal choice of these
points. In the case that Lipschitz estimates of the dynamical system are available, one may
compute rigorous coverings. In this case, it can be ensured that the manifold is contained
inside the union of the sets in the constructed covering [10]. (OLIVER: right ref?)

The overall computational cost is quite high when good resolution, that is, many boxes
are required. For example, the Lorenz manifold in Figure 14 of more that 4 million boxes
took 77 on a ??7 machine (OLIVER: please check!) Since the numerical cost depends on
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the dimension of the manifold, for manifolds of dimension larger than two it may only be
feasible to compute rather coarse approximations.
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