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Abstract. Historically, the wrapping effect was discovered and named in the con-
text of solving ordinary initial value problems in interval arithmetic. Its explanation
was obviously geometric: rotations of interval vectors enclosing the set of solutions
catch excessive points into the enclosure which may eventually ’explode’ exponen-
tially. Also discrete dynamical systems share this undesirable behaviour. In the
literature the wrapping effect has been discussed primarily in this context.

However, the wrapping effect is not confined to the computation of bounds
for dynamical systems — it is much more a phenomenon which occurs concealed
within many other problems such as difference equations, linear systems with full
or with banded and even triangular matrix, similarly in non-linear systems and even
in automatic differentiation. It appears that almost any algorithm which computes
rigorous error bounds in some ’iterative’ or 'recurrent’ fashion may become a victim
of the wrapping effect. This paper gives an overview on many such wrapping prone
problems as well as on old and new methods designed to eliminate or at least
diminish the wrapping effect.

1 Introduction or What is the Wrapping Effect?

The wrapping effect was discovered and named by R.E. Moore [14,5] in the
context of solving ordinary initial value problems in interval arithmetic. The
classical model problem for the explanation of the wrapping effect is the
harmonic oscillator with initial values taken in some box:

u” +u =0, u(0) € [uo], u'(0) € [u1].

The exact solution set in the phase plane is indicated in Fig. 1 by the
dashed square rotating clockwise around the origin. A straight forward in-
terval enclosure method takes some time step size h > 0 and successively
computes enclosures at t; = jh by starting with the enclosure at ¢;_; and
wrapping the propagated solution set to an interval vector at t; as is also
sketched in Fig. 1.
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Figure 1: Wrapping effect for the harmonic oscillator.

Thus the explanation for the rapid growth of the enclosure set is geomet-
rically obvious: rotations of interval vectors enclosing the solution set catch
excessive points into the enclosure which may eventually ’explode’ exponen-
tially. Another observation is that no numerical errors such as roundoff or
discretization errors are involved in the wrapping operation — it is solely due
to the enclosure in interval vectors.

Therefore, we do not even need the context of a differential equation
to examine the wrapping effect: A simple matrix vector iteration shows all
important details.

If for the rotation A with angle ¢ and initial condition [zo]

B cos¢ sing [ [1—&1+¢]
A_<—sinqz5 cosqb)’ [wo]_([l—e,l—l-a]
we perform the interval iteration

[Zn41] = Alza]-

then the sequence of the diameter vectors d,, = d([z,,]) satisfies

_ [ |cos@| |sing| o n (26
dn+1 - |A|dn - ( |sin¢| |COS ¢| dn - (lSIH ¢| t | cos (bl) %/
do

The d,, diverge exponentially. For small ¢ this occurs with a blow up factor
~ €™ ~ 535 per revolution.

There are other examples where the solution has no rotations in the phase
plane but still the wrapping effect occurs massively (e.g. u] = u1 — 2ug, ub =
3u; — 4ug, see [10,11]).
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In the linear case the exact solution set is an affine image of the initial
set. Computing with affine images of interval vectors, i.e. computing with
parallelepipeds can completely eliminate the wrapping effect, however, only
if all computations are done exactly ([4,10,11,20]). As soon as computational
errors have to be taken into account the wrapping effect is still a serious issue.
We will discuss this in Section 3.

For nonlinear discrete or continuous dynamical systems the situation is
even less favourable. Here the nonlinear dependence on the initial data pre-
vents the a priori choice of some ’optimal’ class of enclosure sets. The exact
solution set may develop a very complicated shape and become non-convex
or even multiply connected. Thus parallelepipeds or even any class of convex
sets may be unsuitable for the computation of enclosures. With the recently
developed ’Taylor models’ ([3,13]) the dependency problem can be handled
to a large degree very satisfactorily, however, the computational cost may
increase rapidly with the number of variables and the wrapping effect will
not be completely eliminated (see Section 3).

We take this as a reason to define only loosely what we mean with the
wrapping effect: It is the undesirable overestimation of a solution set of an it-
eration or recurrence which occurs if this solution set is replaced by a superset
of some ’simpler’ structure and this superset is then used to compute enclo-
sures for the next step which may eventually lead to an exponential growth
of the overestimation. Although not very precisely defined, this notion of the
wrapping effect covers the observations made with the simple model problem
as well as being useful for more complicated classes of enclosure sets which
have been introduced by several authors [3,7-11,13,19,22].

The focus of this paper will not be the dependency problem of nonlinear
problems but the fact that in each step of a 'marching algorithm’ we have to
take into account additional local errors (roundoff, discretization etc.) which
force overestimations already in the linear case where we cannot benefit from
nonlinear tools.

In Section 2 we will identify many different kinds of problems which are
prone to the wrapping effect. The reason for this is basically that these prob-
lems can be reformulated as a linear or nonlinear recurrence which reveals
where and how they are vulnerable. The enumeration of such problems is by
far not complete. Still it gives an impression of how widespread such problems
are which might suffer from the wrapping effect if enclosures for their solu-
tions are to be computed. Section 3 gives an overview on different appoaches
to eliminate or at least to reduce the wrapping effect. Most of the methods
which were proposed by authors in the last four decades are of an intuitive
geometric nature. However, also purely algebraic approaches have been con-
sidered. Conlusions in Section 4 discuss the present situation especially with
a look on the cost of the methods proposed in Section 3.

Throughout the paper we assume that the reader has a basic knowlegde
in interval analysis as presented e.g. in [1] and [18]. For brevity of the pre-
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sentation we implicitly assume that necessary conditions such as smoothness
of functions, existence of interval evaluations etc. are fulfilled wherever used
but not stated explicitly.

2 Where does the Wrapping Effect appear?

2.1 DMatrix-Vector Iterations

As in the model problem from Section 1 we consider matrix vector iterations
[Zni1] = Anlzn] + bn, [20] € IR .

Here we must expect overestimations, since for the spectral radii of a matrix
A and the matrix of its absolute values |A| we have

p(A) < p(|4])
and for the diameter vectors d,, = d([z,,]) there holds
dp+1 = |An|dy.
If A, and b,, are allowed to contain intervals too, then
d(An)|[zn]| + |Anldn + d(bn) 2 dni1 2> |Anldn + d(bn) -

If for example
p(A) <1 and p(|A]) > 1

then the solution set

{xn—l—l = Anwn + bn|$0 € [.Z'o]},’n >0,

may shrink to a point whereas the interval iterates [z,] diverge.
The same may (and does) happen in matrix-products, matrix-powers as
well as in more complicated matrix and matrix-vector expressions.

2.2 Discrete Dynamical Systems

For a nonlinear iteration with f : IR" — IR" sufficiently smooth

Tnt1 = f(zn), To given

or with intervals
[Tni1] = f([zn]), 2o € [T0] given

we can apply a mean-value form which gives tighter enclosures as long as
d([x,]) remains small:

[znt1] = f(@n) + f([&n])([zn] — En), & € [2n].
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Formally this is a ’linear’ iteration scheme as in the previous subsection,
however, with an interval matrix 4, = f'([z,]) depending on the iteration
index n. Therefore we must expect the same kind of difficulties which can
occur in the linear case: Iterations may diverge even though the exact solution
set stays bounded.

In the mean-value representation the nonlinearity of the original itera-
tion is hidden inside the functional matrix A,, = f'([z,]) whose diameter
additionally grows if d([z,]) does.

2.3 Continuous Dynamical Systems (ODEs)

For an ordinary initial value problem with g : R"*" — IR™

' (t) = g(t, (1)), @(to) = o,

a numerical one step method which also takes into account all roundoff and
discretization errors leads to a discrete system again which basically has the
form

[Tnt1] = [zn] + hO([20], tn) + [2n41] -

Here h is the step size, t, = to +nh, z, = z(t,) € [z,], ¢ comes from the one
step method and [z,,41] is an interval vector containing all local errors. Since
this is the type of problem for which the wrapping effect has been studied
most intensively, we refer to the literature for further details ([3,4,10,11,14—
16]).

As with linear and nonlinear discrete dynamical systems we see that we
potentially run into problems with the wrapping effect. Any counter measures
that work in the discrete case should also work in the continuous case and
vice versa.

2.4 Difference Equations

Whereas the previously mentioned problems all were problems for systems
in IR™ the following linear difference equation

AgZp + 1241+ + AmZpngm T Gmt12ngmy1 = bpy, >0
20,215 - - -, Zm Glven

is a recurrence equation for scalar values z, only. There seems to be no reason
to expect a behaviour similar to the previous cases.
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However, rewriting the scalar equation as a matrix-vector iteration by use

of Tn := (Zny Zngls - - s Zngm)’ € R™TL:
[0 1 0 0\ [0
Zn+1 0 0 0
Zn+2 . ) ) .
.’I;n_{-l = : == : ‘. f. O :l:n +
0 0 1 0
Zn+m+1 —agp —Qm—1 —Qm bn
\ m41 m41 Am41 ) \ Am+1 )

it can be seen immediately that both formulations are equivalent not only
theoretically but also computationally: Solving the scalar difference equation
for z,4+m+1 requires precisely the same computation as doing one step of the
matrix-vector form.

Unexpected overestimations in the scalar computation are often attributed
to data dependency. In the vector formulation, however, it becomes evident
that such overestimations are due to the wrapping effect in its classical geo-
metric appearance. Data dependence of the initial values is linear only and
can be dealt with by the use of parallelepipeds as we will see in Section 3. The
techniques described there can be applied only to the matrix-vector formu-
lation however, not to the scalar formulation. This suggests that difference
equations should really be treated as matrix-vector iterations if tight error
bounds are to be computed.

As an example, consider the recurrence equations for the Chebycheff poly-
nomials

To(z) =1, Ti(z) =z, Tpyi(x) — 22T, (z) + Tr_1(z) =0

If we wish to compute an enclosure of T}, (z) for some value zp and a large
value of n then we can use this difference equation and compute the desired
value in interval arithmetic. However, this computation is nothing else but
forward computation in interval arithmetic for the matrix-vector iteration

( Ti’iga(:;z) ) _ ( B 29160 ) ( T%;Ea(:g) ) '

Even though we have point data at the beginning interval floating-point
arithmetic will introduce roundoff errors. Then a very fast blow up of the
enclosures will occur due to the wrapping effect. If the argument zg is not a
floating-point number, then such intervals will enter the computation right
from the beginning. If we take e.g. zo = 0.99 then we obtain the following
output from a short PASCAL-XSC program (IEEE double precision) for the
values of n and the enclosures for 7,,(0.99):
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n T[n](0.99)
2 [ 9.601999999999999E-001, 9.602000000000007E-001 ]
3 [ 9.11195999999999E-001, 9.11196000000002E-001 ]
4 [ 8.43968079999998E-001, 8.43968080000004E-001 ]
5 L 7.5986079839999E-001, 7.5986079840001E-001 ]
6 [ 6.6055630083198E-001, 6.6055630083202E-001 ]
7 L 5.480406772473E-001, 5.480406772474E-001 ]
8 [ 4.245642401176E-001, 4.245642401179E-001 ]
9 L 2.925965181856E-001, 2.925965181861E-001 ]
10 L 1.54776865889E-001, 1.54776865891E-001 ]
15 [ -5.246430527E-001, -5.246430525E-001 ]
20 L -9.52088247E-001, -9.52088240E-001 ]
25 [ -9.222663E-001, -9.222657E-001 ]
30 [ -4.496E-001, -4.494E-001 1]
35 L 2.3E-001, 2.5E-001 ]
40 L 6.9E-001, 9.3E-001 ]
45 [ -8.0E+000, 1.0E+001 ]
50 L -7.1E+002, 7.2E+002 ]

Of course the values of the Chebychev polynomials can be computed in
a much easier way, since T),(x) = cos(n arccos ). This example should only
demonstrate the difficulties that can arise with difference equations even as
simple as this one. This example is also important since many other well
known functions can be computed by use of certain difference equations such
as three term recursions for orthogonal polynomials and special functions like
Lagrange polynomials, Bessel functions and many others.

Similarly, nonlinear difference equations can be treated in an obvious way
by rewriting them in an equivalent nonlinear vector formulation. This can
then be evaluated by the mean-value form as was done for nonlinear discrete
dynamical systems. The two representations are theoretically equivalent but
no longer computationally. Nevertheless, for small diameters of the iterates
we should expect better enclosures from the mean-value formulation however,
this is a matrix-vector iteration again (with interval data) and such a problem
has already been identified as being susceptible to the wrapping effect.

2.5 Linear Systems with (Banded) Triangular Matrix

Forward and backward substitution in interval arithmetic for triangular ma-
trices are known to be mostly unstable processes resulting in large overesti-
mations.

That this is also due to the wrapping effect becomes evident e.g. in the case
of banded triangular matrices since there is an obvious equivalence with linear
difference equations which in turn are equivalent to matrix-vector iterations
as we have demonstrated in the previous subsection.

This is precisely the reason why verification methods for linear systems
Ax = b which use an LU-factorization usually break down for medium to
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high system dimensions unless special methods against the wrapping effect
are employed.

The following example is taken from [19]: The system Az = b with three
band lower triangular matrix

( 1 0 0 O 0\
1 1 0 0 0
1 1 1 0 0
A=1o 1 1 1
E .-. .“ ... ... 0
\0 -~ 0 1 1 1)
and right hand side (b1,0,0,...,0)7, b = [~¢,€] can be reformulated as a

linear second order difference equation:

x1 =by, w2 = —by
Tpntl +Tpn +Tp—1 =0, n > 2.

Computing the solution of this difference equation by solving for z,41 in
interval arithmetic is computationally equivalent with interval forward sub-
stitution with the original matrix.

For any fixed b; the exact solution is:

—b; forn=3k-1
1 =b1, 23 =-b1, x, = 0 for n =3k
by forn=3k+1

Interval forward substitution, however, yields for b; = [—¢,¢€]:
x1 = [—¢e,€], 3 = [—€,¢], Tp = [—ane,ane], n >3

where the a,, are the Fibonacci numbers a; = a2 = 1, ap41 = ap + ap—_1.
Therefore, the diameters d(z,,) diverge exponentially:

d(x,) = 2ane > const - 1.62".
On the other hand the optimal solution set stays bounded:

B 0 forn =3k
Tn = [—¢e,e] forn =3k+1.

Again we have seen from the theoretical and computational equivalence of
two problems, that susceptibility for the wrapping effect in one problem class
induces the same risk for the other problem class. Since the bandwidth itself
does not play any role and also the resulting difference equations need not
necessarily have constant coefficients this observation holds for any triangular
matrix.
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2.6 Automatic Differentiation

The computation of Taylor coefficients of a scalar function by automatic
differentiation (see [10,11,15,18,21]) often involves forward/backward substi-
tution for a triangular matrix. As we know from the previous subsection
we must be suspicious and expect to get difficulties here also. Examples are
division, square root and virtually all elementary function.

To compute Taylor coefficients (w)y, of a quotient w = u/v of two functions
u, v with Taylor coefficients (u)g, (v)r we have to solve the triangular Toeplitz
system

(v 0 0 0 (w)o (w)o
()1 (v)o O 0 (w)1 (u)1
(v)2 (V)1 (v)o 0 (w)a | = | (u)2
T : :
(W) - ()2 (W1 (v)o (w)n (1)

for (w)o, ... (w)y. Here, in general, all quantities are intervals due to roundoff
errors.

The way how this is usually done is by interval forward substitution which
results in the well known and widely used recurrence formulae (see [21]).
Here often large overestimations are produced as can be seen from the simple
example f(xz) = sin(e®)/e~*. Computing an enclosure of the 30th Taylor
coefficient (f)30 at £ = —8 by the recurrence formula in interval arithmetic
(IEEE double floating-point) yields (f(—8))s0 € [-6,6] - 10717,

If instead we first precondition the triangular system with an approxi-
mate inverse of the mid-point matrix and solve the resulting system by in-
terval forward substitution, then we get practically no wrapping effect and
as an enclosure of the 30th Taylor coefficient at x = —8 we get (f(—8))30 €
[—8.708693, —8.708691] - 1030,

In general this preconditioning technique is quite expensive. However, here
we are dealing with a Toeplitz matrix the consequence of which is that all
matrix operations can be done at a cost being only quadratic in the system
dimension.

3 How can we Reduce the Wrapping Effect?

In Section 2 we demonstrated that the straight forward interval solution of
many important classes of problems may yield bounds which are too bad by
an exponentially growing overestimation. In order to get satisfactory bounds
new algorithms have to be designed which are much less vulnerable to the
wrapping effect. In this section we give a short overview over different such
techniques which have been created by different authors.

We formulate all methods for the special case of matrix-vector iterations.
As we have seen in the previous section this is the central problem class in
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the sense that once we have a means to reduce the wrapping effect for this
special problem class, then we can reformulate other problem classes in order
to take advantage from the method for matrix-vector iterations.

We note that a typical property of many of these methods is, that they try
to separate (up to a certain degree) the computation of the operator (i.e. the
matrix product) and its action on the initial set zg. A successful separation
of both has a good chance to avoid many unnecessary wrapping operations —
at least if the operator itself does not involve large perturbations (i.e. interval
entries with large diameter).

3.1 Rearranging Expression Evaluation

We start with a purely algebraic approach to reduce the wrapping effect,
see Gambill and Skeel [5]. It is based on the idea of minimizing the depth
of the computational graph induced by the matrix-vector iteration thereby
having the (somewhat vague) intention to reduce the number of operations
with dependent variables:

Instead of computing

Tpy1 = Ap(An—1(An—2(--- A1 (Aozo) -+ +)))

which would be the normal order of operations we compute the product of
the matrices first and do this in such a way that the expression is not very
deeply nested. If n = 2™ then this can be achieved for example by grouping
pairs of factors recursively:

Tng1 = (- (ApAp_1)(-)) -+ ((A342) (A1 Ao)) - - - o

Modifications for other values of n can be obtained easily. Also many vari-
ations are possible such as taking groups of more than two factors or even
varying the number of factors in different groups.

Numerical experiments often show astonishingly narrow enclosures. One
reason for this behaviour is, that the method first computes the operator,
i.e. the matrix product, before it is applied to the argument zy. For initial
values with large diameter and matrices with very small diameters (ideally
point matrices) this is a favorable situation.

Nevertheless, the arbitrariness in grouping the terms gives rise to the pos-
sibility to construct counterexamples for each given grouping strategy such
that the method yields exponentially growing overestimations. For grouping
in pairs a simple counterexample is given with all matrices equal to the 2 x 2
rotation matrix with 30° rotation: The group pairing will always compute
rotations whose angles are a multiple of 30° but never a multiple of 90°.

For nonlinear problems this method does not behave satisfactorily since
now the matrices are interval matrices which depend on the iterates. This
causes the matrix products to blow up rather soon in most cases.
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3.2 Coordinate Transformations

The oldest approach which also has been continuously modified and devel-
oped further by different authors uses enclosures in suitably transformed coor-
dinate systems instead of just taking interval vectors in the original Cartesian
system.

A more geometrical interpretation of this approach is that now the en-
closing sets are suitably chosen parallelepipeds (i.e. affine images of interval
vectors). As already discussed in Section 1 this class of sets is optimal in the
linear case if the initial set belongs already to this class and if computations
are done exactly. Because of this reason this approach is rather successful
also if computation is not exact and generates additional error intervals in
each iteration.

A parallelepiped can be represented as P = {c¢+ Bz|z € [z]} with a point
vector ¢, a point matrix B and an interval vector [z].

Then the original iteration

Tny1 = Apzyn + by
is replaced by the equivalent one:

{ Tn+1 = Buy1Ynt1, Bo:=1, yo:=xo
Yn+1 = (B;ilAan)yn + B;_|1_1bn

In interval arithmetic:

{ [Znt1] = Bnyilynal, Bo:=1, [yo] := [wo]
[Yn+1] = (B;j_lAan)[yn] + Bral-lbn

The crucial point in this approach is the choice of basis matrices Bj1.
Several possibilities will be discussed now.

Coordinate Transformations — non orthogonal Choose the basis ma-
trices as good approximations of the iteration map [14,15,4,10,11] .

This means B, 11 &~ A, Ap—1 --- A1 Ao, which can be achieved by choosing
By+1 ~ A, B, in each step.

An advantage of this choice is that the edges of the enclosing set are
roughly parallel to those of the solution set itself (at least in the linear case).
This however is at the same time also a disadvantage: If there are domi-
nating eigenvalues (e.g. all A; are constant with a largest simple eigenvalue)
then B, t; may become ill conditioned and usually becomes even singular
numerically. In this case the method breaks down.

Unfortunately this is the most common situation: the method behaves
similar to the power method for the computation of the dominant eigenvector
in B,4+1 with the consequence that the columns of Bj,,; become linearly
dependent very soon. Then B,;; rapidly becomes ill-conditioned or even

singular such that B;j_l will cause the enclosures to blow up.
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This limited applicability may be considerably broadened if we restrict the
pairwise angles between the columns of the basis matrix B, to stay above
a minimal prescribed angle. The resulting matrices have bounded condition
numbers and offer a great flexibility in choosing an appropriate basis. Up
to now this variant has not yet been tested thoroughly, so there is not yet
practical experience with this modification.

Coordinate Transformations — orthogonal Choose orthogonal basis ma-
trices to keep them well conditioned and invertible [10,11].

The choice of an orthogonal matrix B, guarantees that it has much
more favorable properties than with the previous choice. A suitable orthog-
onal matrix can be obtained from a @ R-factorization of A,B,: Compute
AnBn = Qn Ry and choose Bp+1 &~ @Q,. (If computations are done exactly
then B;hAan = R, is upper triangular.)

It is advisable to apply a pivoting strategy prior to the () R-factorization
by sorting the columns of A, B,, in descending order according to the lengths
of the columns of A, B,diag(d([y,])). The columns of this matrix span a
good approximation of the exact solution set. The advantage of this pivoting
becomes clear from Figure 2: If a3, as are the columns which span an approx-
imation of the solution set (dashed) and which are to be orthogonalized then
obviously proceeding in decreasing order of their length (right picture) yields
much narrower enclosures than taking a different order (left picture).

Figure 2: Sorting edges prior to orthogonalization.

A big advantage of this method is that it never breaks down because of
a singular matrix. In practical computations is has proven to be very robust
and mostly delivers astonishingly narrow enclosures.

However, also this method is not infallible. Kiihn [7] has constructed an
example where this choice of orthogonal basis matrices leads to an exponential
overestimation of the solution set:

11 _ 20
A0:(0 1)’A1:A017A2:(0 1>,A3:Ag’7
A4:A;17 A5:A2_17 An+6:An7 TLZS

After each six steps this iteration is the identity. However, starting the itera-
tion with [zo] = ([~1,1],[-1,1])T and choosing orthogonal basis matrices as
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described above doubles the initial interval after each six iterations eventu-
ally producing an exponential blow up whereas the exact solution set stays
bounded.

Coordinate Transformations — Constant Matrix Case (A4, = A) If
the iteration matrices A, are all identical, A, = A, then it is possible to
obtain some quantitative information about its behaviour. A very detailed
discussion in this direction can be found in Nedialkov and Jackson [17] in
this volume.

Because of the general rule d(A[z]) > | A|d([z]) the growth of the diameter
of [z,] for the non orthogonal choice of the matrices B, is dictated by the
spectral radius p(|]A|) which may be considerably larger than p(A).

The situation is much more complicated in the case of orthogonal matrices
B,,. Here, writing Cp41 := B, ABy, the growth of the diameters of [z,], [ys]
is dictated by p(|Cp+1]). Since Cj 11 is upper triangular we have

P(|Cnra]) = p(Crtr) -

Moreover, since B,, and B, 41 are orthogonal it follows that

Cr 1Cny1 = BFATAB,, = 0(Cpi1) = 0(A)

n

where o(-) denotes the spectral norm (i.e. the largest singular value).

For orthogonal A we trivially obtain always p(|Cp+1|) = 1 which demon-
strates that this choice of B,, is ideal in this case.

For symmetric A we obtain the result

p|Cn+1]) = p(Crtr) < 0(Cryr) = a(4) = p(4)

which shows that here the orthogonal choice of B,, also yields optimal results
concerning the growth of the enclosure. For more and deeper results see [17].

3.3 Ellipsoids

Neumaier [19] proposes the use of ellipsoids as enclosure sets. An ellipsoid is
represented as

E(z,L,r) :={z+ Lz|x € R", ||z||» < r}

where the n x n-matrix L is chosen to be lower triangular.

In [19] an algorithm is developed which computes enclosures for z, as
ellipsoids. Some numerical examples for constant 2 x 2 (interval) iteration
matrices A demonstrate the applicability of the algorithm. The results are
mostly superior to naive interval arithmetic. There do not, however, exist
comparisons with methods that use affine coordinate transformations as dis-
cussed earlier. The algorithm for computing with ellipsoids is more compli-
cated than computing with parallelepipeds.
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An advantage of the use of ellipsoids could be the fact that ellipsoids
have a smooth boundary which make them perhaps easier to handle analyt-
ically. Also some applications can be treated in a more natural way as with
parallelepipeds (e.g. stability regions and confidence regions, [19]).

3.4 Zonotopes

Proposing zonotopes as enclosing sets Kiithn has introduced another promis-
ing class of sets into the arena against the wrapping effect [7—9]. Zonotopes
are the Minkowski sum of line segments and thus are convex polyhedrons.
The sum of three line segments and the resulting zonotope is depicted in

Figure 3: Zonotope as sum of three line segments.

A parallelepiped in IR" is a zonotope: The Minkowski sum of n line seg-
ments. This is used by Kiihn to represent zonotopes as a sum of m paral-
lelepipeds

zZ = in[zk] = {inszZk S [Zk],k = lm}
k=1

k=1
which enables comfortable computation:

m m
Az+b=> ABilzs] +b=> Bilax] +b.
k=1 k=1
The number m of terms to represent a zonotope is kept constant by wrapping
the smallest term in the sum into an interval vector and adding it to the next
larger term. Kiithn discusses many possible strategies how this can be done in
detail. The key point is that wrapping operations are done only with small
terms which effectively delays or almost eliminates a blow up of the enclosing
zonotope.

The method has a large degree of flexibility due to the free choice of
the number m of terms in a zonotope and many possible strategies of wrap-
ping and combining different terms in the representation of a zonotope. For
satisfactory results m must not be too small, usually m =5,..., 10.

An advantage over the coordinate transformation approach is that no in-
verse matrices have to be computed. On the other hand, however, the zono-
tope and coordinate transformation approaches can be combined by using
coordinate transformations whenever several terms in the zonotope represen-
tation have to be added together. Then the necessary wrapping operations
can be performed with much less overestimation than would be obtained by
pure interval arithmetic.
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3.5 Taylor Models

Taylor models were introduced by Berz [3] and Makino/Berz [13]. A Taylor
model is an enclosure of a function f(z) by use of a polynomial 7'(z) with
floating-point coefficients and a corresponding remainder term [I;] which is
an interval vector.

f(z) € T(z) + [Iy]

Usually T'(x) is a (very close) approximation of the Taylor polynomial of
f(z) at some specified expansion point and [If] contains the corresponding
remainder term and all other kinds of errors (round-off, approximation).

Berz and Makino report very successful applications of Taylor models to
different types of problems such as computing range of values, univariate and
multivariate verified integration, ordinary initial value problems and others.

In the linear case (i.e. T'(z) is linear) Taylor models represent a special
zonotope, the sum of a parallelepiped plus an interval vector:

Computing a matrix-vector iteration z,,1 = Ax, by use of such a linear
Taylor model yields

xo =Ty + (r — Zo), = € [zo],

x1 = Azo = A(Zo + (x — To)) = AT + A(x — o)
=& + Ai(z — Zo) + [1], = € [z0],

xo = Axy = A(Z1 + A1 (z — Zo) + [1])
=Ty + As(x — Zo) + [I2], x € [zo],

Tn+l = A*/L'n = A('i'n + An(m - 'i'O) + [In])
= Znt1 + Ang1(x — To) + [Ing1], € [20],

where Zj and Ay are floating-point quantities, A9 = I, and the interval
vectors [Ip41] = Allg]+(AZg —Tpt1) +(AAr — Ag41)(z—Z0), [Io] = 0 contain
all errors. We see that the wrapping effect is not completely eliminated: It is
just moved to the smallest term A[I;] within the Taylor model representation
which here at the same time is a zonotope representation.

Taylor models have their strong point in nonlinear problems. To a high
degree they solve the dependency problem which we have identified in Sec-
tion 1 because they approximate this dependence up to the degree of the
approximating polynomial 7'(z). However, the cost for computing such Tay-
lor models can be very high as compared to other methods. Also, as can be
seen in the linear case that the wrapping effect is still not completely elim-
inated. Nevertheless, because of the successful treatment of the dependency
problem Taylor models are a valuable new tool.
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4 Conclusion

We have identified many situations where the wrapping effect may severely
blow up computed error bounds if no suitable measures are taken against
it. Unfortunately these situations can be problems in which it is not at all
obvious that the wrapping effect may be the cause of large overestimations
(as e.g. in automatic differentiation).

On the other hand we also gave an overview over different methods which
can be used with more or less success to reduce or almost eliminate the
influence of the wrapping effect. However, at the present stage no method
can be recommended to be always superior to all others or even just to be
successful in all applications.

Whereas coordinate transformations and parallelepipeds have proven to
be rather robust for some time now, new candidates such as zonotopes and
Taylor models are an interesting and promising step ahead.

In summary we state that among the presently available methods there is
no general rule available to choose the ’right’ one. All have their advantages
and disadvantages. There is one thing. however, that is common to all the
methods: The cost for computing tight enclosures for an n-dimensional vector
iteration is at least of order O(n®) whereas the cost for simple floating-point
computation and naive (but usually unacceptable) interval arithmetic is only
O(n?).

Therefore, the main problem which still is unsolved is the question if there
are any methods that compute tight bounds without or with only negligible
wrapping effect whose cost is only of order O(n?).
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