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Rigorous integration of nonlinear dynamical systems

Considerable interest in using computers for obtaining rigorous
results in the field of continuous dynamical systems,

computing rigorous enclosures of trajectories,
finding accurate positions of periodic solutions,
finding all short periodic orbits,
proving the existence of topological chaos,
proving the existence of chaotic attractors.

Interval arithmetic: all calculations are performed on intervals
in such a way that the true result is always enclosed within
the interval found by a computer, notations:

boldface is used to denote intervals, x = [a, b]
by x and x we denote left and right end points of x,
the diameter of the interval x: diam(x) = x− x.

Rigorous integration — the basic tool needed to study
continuous systems,

Most of methods for rigorous integration work under the
assumption that the vector field is smooth.
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Rigorous integration of piecewise linear systems

The methods developed for smooth systems are not directly
applicable to piece-wise linear (PWL) (or piece-wise smooth)
systems, which are an important class of nonlinear dynamical
systems,

When intersections of trajectories with hyperplanes separating
linear regions (C 0 hyperplanes) are transversal it is possible to
extend general methods to integration of PWL systems:

C 0 hyperplanes are used as transversal sections,
when a trajectory intersects a C 0 hyperplane, its intersection
with the transversal plane is computed and the resulting set is
used as a starting set for further computations.

What to do when trajectories are tangent to C 0 hyperplanes?
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Piece-wise linear systems

The continuous piecewise linear system is defined by

ẋ = f (x),

where f : Rn 7→ Rn is a piece-wise linear continuous map.

By x(t) = ϕ(t, x̂) we denote the solution of ẋ = f (x)
satisfying the initial condition x(0) = x̂ .

Let us assume that the state space Rn is composed of m
linear regions R1, R2, . . . Rm, separated by hyperplanes
Σ1, Σ2, . . . , Σp (the C 0 hyperplanes).

In the region Rk the state equation has the form
ẋ = Akx + vk , where Ak ∈ Rn×n, vk ∈ Rn. If Ak is invertible
then in the linear region Rk solutions can be computed as

x(t) = ϕk(t, x̂) = eAk t(x̂ − pk) + pk ,

where pk = −A−1
k vk .
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Rigorous integration of PWL systems

The problem is how to rigorously calculate an enclosure of the
set ϕ(t, x) for a given interval t and an interval vector x ∈ Rn.
Without loss of generality we can assume that x ⊂ Rk .

If all trajectories based at x remain in Rk for s ∈ [0, t] the
problem is simple. The enclosure can be found by evaluating
the solution of a linear system in interval arithmetic:

y = ϕk(t, x) = eAk t(x− pk) + pk .

For the evaluation of the above formula one can use the mean
value form to obtain a narrower enclosure of the set of
solutions.
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Transversal intersection — rigorous integration procedure

Another relatively easy case is when all trajectories based at x
enter another linear region Rl through the plane Σ, and
intersections of trajectories with Σ are transversal.

In this case the first step is to find s1 >0 such that
ϕk([0, s1], x) ∈ Rk , s1 should be as large as possible.

Then we find s2 >s1 such that ϕk(s2, x) ⊂ Rl , s2 should be as
small as possible.

Next, one evaluates y = ϕk(s, x), where s = [s1, s2].

Finally, the intersection of y and Σ is computed. The
intersection serves as a set of initial conditions for further
computations. The problem of finding ϕ(t, x) has been
reduced to the problem of finding ϕ(t− s, y ∩ Σ).
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Transversal intersection — algorithm

Algorithm 1. Computation of ϕ(t, x), transversal case:

1 find s1 such that ϕk(s1, x) ⊂ Rk ,

2 if s1 > t return y = ϕk(t, x),

3 find s2 > s1 such that ϕk(t, x) ⊂ Rl ,

4 define s = [s1, s2] and compute y = ϕk(s, x),

5 go to step 1 with x = y ∩ Σ, t = t− s.

The algorithms works when trajectories transversally intersect
the C 0 hyperplanes.

It has been successfully applied to the analysis of the Chua’s
circuit for parameter values, for which the attractor does not
contain trajectories tangent to the C 0 hyperplanes.
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Integration of perturbed dynamical systems

Consider an ordinary differential equation ẋ = f (x), where
x ∈ Rn and f : Rn 7→ Rn.

Assume that we know how to rigorously integrate ẋ = g(x).

Theorem

Let x(t) and y(t) be solutions of ẋ = f (x) and ẋ = g(x),
respectively. Let us assume that x(0) = y(0), and
x(t), y(t) ∈ D ⊂ Rn for t ∈ [0, h], where D is a bounded, closed,
convex set, and the map g is C 1. Then for t ∈ [0, h]

|yi (t)− xi (t)| ≤ ∆i ,

where ∆ =
∫ t
0 eB(t−s)cds, bij ≥ supx∈D

∣∣∣∂gi
∂xj

(x)
∣∣∣ for i 6= j ,

bii ≥ supx∈D
∂gi
∂xi

(x), and ci ≥ |gi (x(t))− fi (x(t))|, for t ∈ [0, h].
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Rigorous integration — tangent intersection case

Let us assume that x ⊂ Rk , and that some trajectories based
at x are tangent to the C 0 hyperplane Σ separating the linear
regions Rk and Rl .

The goal is to compute an enclosure of the set
ϕ(t, x) = {ϕ(t, x) : x ∈ x, t ∈ t}.
The PWL system is considered as a perturbed linear system:

ẋ = g(x) = Akx + vk .

We use the main theorem with bij = |aij | for i 6= j and
bii = aii .

g(x)− f (x) = 0 over the region Rk , and
g(x)− f (x) = (Ak − Al)x + vk − vl for x ∈ Rl . Close Σ this
difference is small (f is continuous).

When B is invertible

∆ =

∫ t

0
eB(t−s)cds = B−1

(
eBt − I

)
c .
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Tangent intersection — rigorous integration procedure

Find s1 >0 such that ϕk([0, s1], x) ⊂ Rk . The set
u = ϕk(s1, x) serves as an initial condition for integration
along the tangency. To reduce overestimation s1 should be as
large as possible.

Select s2, compute enclosure v of the solution ϕk([0, s2],u) of
the linear system.

Choose w ⊃ v, w serves as a guess of the set containing the
solution ϕ([0, s2],u) of the PWL system.

Compute c = supx∈w |g(x)− f (x)| and the vector ∆.

If v + [−1, 1]∆ ⊂ w then the solution ϕ([0, s2],u) of the PWL
system is enclosed in v + [−1, 1]∆. It follows that
ϕ(s2,u) ⊂ z = ϕk(s2,u) + [−1, 1]∆.

If z ⊂ Rk and the vector field f over the set z points away
from the plane Σ, then we continue integration using the
Algorithm 1.
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Tangent intersection — rigorous integration algorithm

Algorithm 2. Computation of ϕ(t, x), tangent case:

1 Find maximum s1 such that ϕk(s1, x) ⊂ Rk ,

2 Compute u = ϕk(s1, x),

3 Select s2 > 0 and compute v = ϕk([0, s2],u),

4 Select w ⊃ v,

5 Compute c = supx∈w |g(x)− f (x)|,
6 Compute ∆ = B−1

(
eBt − I

)
c ,

7 Compute z = ϕk(s2,u) + [−1, 1]∆,

8 If v + [−1, 1]∆ ⊂ w, z ⊂ Rk and the vector field f over the
set z points away from the plane Σ call the Algorithm 1 with
x = z and t = t− s1 − s2,

9 Go back to step 4 and select larger w or go back to step 3
and select larger s2.

Z. Galias On rigorous integration of PWL systems



Example 1: A planar PWL system

A simple piecewise-linear planar system:(
ẋ1

ẋ2

)
= g

(
x1

x2

)
=

(
a11x1 + a12x2 + (|x1 − 1| − 1)e

a21x1 + a22x2

)
.

Parameter values: a11 = 2, a12 = 1, a21 = 1, a22 = 1, e = 2.

The line Σ1 = {x : x1 = 1} separates the two linear regions
U1 = {x : x1 < 1} and U2 = {x : x1 > 1},

Trajectories are tangent to
Σ1 at
(1, e − a11/a12) = (1, 0).
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The PWL system as a perturbed linear system

We treat the planar PWL system as a perturbed linear system:(
ẋ1

ẋ2

)
= f

(
x1

x2

)
=

(
a11x1 + a12x2 + (x1 − 2)e

a21x1 + a22x2

)
,

for which the vector field is equal to the vector field of the
nonlinear system when x1 > 1.

Hence, we can get bounds for the solution y(t) of the PWL
system from the solution x(t) of the linear system using
bounds with the following constants:

B =

(
a11+e |a12|
|a21| a22

)
, c =

(
supx∈w |(|x1−1|−x1+1)e|

0

)
.
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Rigorous integration of the planar PWL system

Example: find of enclosure of ϕ(t, x) for
x = ([1.004, 1.0045], [−0.099,−0.091]) ⊂ U2 and t = 0.2.

three types of trajectories:
tangent to Σ1, with no
intersections, and with two
intersections.
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Rigorous integration of the planar PWL system

u = ϕ2(s1, x), s1 ≈ 0.0642,
all trajectories are just
before intersection with
Σ1, u is a very narrow
enclosure of the set of true
trajectories.
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z = ϕ2(s2,u) + ∆, s2 = 0.1044, all trajectories has already
passed the tangency area, u is relatively large and in
consequence s2 is also large. This results in a considerable
overestimation.

The final result: y = ϕ2(0.2− s1 − s2, z) is computed using
formulas for solutions of linear systems.

diam(x) = (0.0005, 0.008), diam(y) = (0.0065, 0.0104).

when diam(x) = (10−5, 10−5) then s2 ≈ 0.0215,
diam(y) = (6.63 · 10−5, 1.92 · 10−5) (reduced overestimation).
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Example 2: The Chua’s circuit

The state equation:

C1ẋ1 = (x2 − x1)/R − g(x1),

C2ẋ2 = (x1 − x2)/R + x3,

Lẋ3 = −x2 − R0x3,

where

g(z)=Gbz + 0.5(Ga − Gb)(|z +1| − |z−1|)

is a three segment piecewise linear characteristics.

Parameter values: C1 = 1, C2 = 8.3, Ga = −3.4429,
Gb = −2.1849, L = 0.06913, R = 0.33065, R0 = 0.00036.
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Roessler-type attractor

Linear regions: R1 = {x ∈R3 : x1 <−1}, R2 = {x : |x1|<1}
and R3 = {x : x1 >1},
C 0 hyperplanes: Σ1 = {x : x1 =−1} and Σ2 = {x : x1 =1},

Roessler-type
attractor,

intersections with
Σ1 are not always
transversal.
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Chua’s circuit, rigorous integration along the tangency

Example: find an enclosure of ϕ(t, x) for t = 2 and
x = ([1.2412, 1.2432], [−0.2141,−0.2121],
[−4.7623,−4.7603]), diam(x) = (0.002, 0.002, 0.002),

x has non-empty intersection with the numerically observed
attractor and some trajectories based in x are tangent to Σ1.

diam(y) =
(0.0098,0.0042,0.041),

integration time as a
perturbed linear
system: s2 = 0.1936.
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the size of initial set is relatively large and the integration
time is relatively long thus showing usefulness of the proposed
method.
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Conclusions

We have studied rigorous integration methods for piece-wise
linear systems.

An algorithm handling the case of trajectories tangent to
hyperplanes separating linear regions has been described.

Several examples have been considered to show the
effectiveness of this technique.

The methods can be used without major modifications for
rigorous integration of piece-wise smooth systems — one has
to use standard techniques for rigorous integration of
nonlinear systems in smooth regions.
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