On rigorous integration of piece-wise linear systems

Zbigniew Galias Department of Electrical Engineering AGH University of Science and Technology

06.2011, Trieste, Italy

On rigorous integration of PWL systems

向下 イヨト イヨト

Rigorous integration of nonlinear dynamical systems

- Considerable interest in using computers for obtaining rigorous results in the field of continuous dynamical systems,
 - computing rigorous enclosures of trajectories,
 - finding accurate positions of periodic solutions,
 - finding all short periodic orbits,
 - proving the existence of topological chaos,
 - proving the existence of chaotic attractors.
- Interval arithmetic: all calculations are performed on intervals in such a way that the true result is always enclosed within the interval found by a computer, notations:
 - boldface is used to denote intervals, $\mathbf{x} = [a, b]$
 - by \underline{x} and \overline{x} we denote left and right end points of x,
 - the diameter of the interval **x**: diam(**x**) = $\overline{\mathbf{x}} \underline{\mathbf{x}}$.
- Rigorous integration the basic tool needed to study continuous systems,
- Most of methods for rigorous integration work under the assumption that the vector field is smooth.

- The methods developed for smooth systems are not directly applicable to piece-wise linear (PWL) (or piece-wise smooth) systems, which are an important class of nonlinear dynamical systems,
- When intersections of trajectories with hyperplanes separating linear regions (C⁰ hyperplanes) are transversal it is possible to extend general methods to integration of PWL systems:
 - C^0 hyperplanes are used as transversal sections,
 - when a trajectory intersects a C^0 hyperplane, its intersection with the transversal plane is computed and the resulting set is used as a starting set for further computations.

• What to do when trajectories are tangent to C^0 hyperplanes?

・ロット (四) (日) (日)

• The continuous piecewise linear system is defined by

$$\dot{x}=f(x),$$

where $f : \mathbb{R}^n \mapsto \mathbb{R}^n$ is a piece-wise linear continuous map.

- By x(t) = φ(t, x̂) we denote the solution of x̂ = f(x) satisfying the initial condition x(0) = x̂.
- Let us assume that the state space \mathbb{R}^n is composed of m linear regions R_1, R_2, \ldots, R_m , separated by hyperplanes $\Sigma_1, \Sigma_2, \ldots, \Sigma_p$ (the C^0 hyperplanes).
- In the region R_k the state equation has the form
 ẋ = A_kx + v_k, where A_k ∈ ℝ^{n×n}, v_k ∈ ℝⁿ. If A_k is invertible then in the linear region R_k solutions can be computed as

$$x(t) = \varphi_k(t, \hat{x}) = e^{A_k t} (\hat{x} - p_k) + p_k,$$

where $p_k = -A_k^{-1}v_k$.

- The problem is how to rigorously calculate an enclosure of the set φ(t, x) for a given interval t and an interval vector x ∈ ℝⁿ. Without loss of generality we can assume that x ⊂ R_k.
- If all trajectories based at x remain in R_k for s ∈ [0, t] the problem is simple. The enclosure can be found by evaluating the solution of a linear system in interval arithmetic:

$$\mathbf{y} = \varphi_k(\mathbf{t}, \mathbf{x}) = e^{A_k \mathbf{t}} (\mathbf{x} - p_k) + p_k.$$

• For the evaluation of the above formula one can use the mean value form to obtain a narrower enclosure of the set of solutions.

- Another relatively easy case is when all trajectories based at x enter another linear region R_l through the plane Σ, and intersections of trajectories with Σ are transversal.
- In this case the first step is to find $s_1 > 0$ such that $\varphi_k([0, s_1], \mathbf{x}) \in R_k$, s_1 should be as large as possible.
- Then we find $s_2 > s_1$ such that $\varphi_k(s_2, \mathbf{x}) \subset R_l$, s_2 should be as small as possible.
- Next, one evaluates $\mathbf{y} = \varphi_k(\mathbf{s}, \mathbf{x})$, where $\mathbf{s} = [s_1, s_2]$.
- Finally, the intersection of y and Σ is computed. The intersection serves as a set of initial conditions for further computations. The problem of finding φ(t, x) has been reduced to the problem of finding φ(t s, y ∩ Σ).

(日) (部) (注) (注) (言)

Algorithm 1. Computation of $\varphi(\mathbf{t}, \mathbf{x})$, transversal case:

- **1** find s_1 such that $\varphi_k(s_1, \mathbf{x}) \subset R_k$,
- 2 if $s_1 > \overline{\mathbf{t}}$ return $\mathbf{y} = \varphi_k(\mathbf{t}, \mathbf{x})$,
- \bullet find $s_2 > s_1$ such that $\varphi_k(\mathbf{t}, \mathbf{x}) \subset R_l$,
- define $\mathbf{s} = [s_1, s_2]$ and compute $\mathbf{y} = \varphi_k(\mathbf{s}, \mathbf{x})$,

3 go to step 1 with
$$\mathbf{x} = \mathbf{y} \cap \Sigma$$
, $\mathbf{t} = \mathbf{t} - \mathbf{s}$.

- The algorithms works when trajectories transversally intersect the *C*⁰ hyperplanes.
- It has been successfully applied to the analysis of the Chua's circuit for parameter values, for which the attractor does not contain trajectories tangent to the C⁰ hyperplanes.

イロト 不得 とくき とくき とうき

Integration of perturbed dynamical systems

- Consider an ordinary differential equation $\dot{x} = f(x)$, where $x \in \mathbb{R}^n$ and $f : \mathbb{R}^n \mapsto \mathbb{R}^n$.
- Assume that we know how to rigorously integrate $\dot{x} = g(x)$.

Theorem

Let x(t) and y(t) be solutions of $\dot{x} = f(x)$ and $\dot{x} = g(x)$, respectively. Let us assume that x(0) = y(0), and $x(t), y(t) \in D \subset \mathbb{R}^n$ for $t \in [0, h]$, where D is a bounded, closed, convex set, and the map g is C^1 . Then for $t \in [0, h]$

$$|y_i(t)-x_i(t)|\leq \Delta_i,$$

where $\Delta = \int_0^t e^{B(t-s)} c ds$, $b_{ij} \ge \sup_{x \in D} \left| \frac{\partial g_i}{\partial x_j}(x) \right|$ for $i \ne j$, $b_{ii} \ge \sup_{x \in D} \frac{\partial g_i}{\partial x_i}(x)$, and $c_i \ge |g_i(x(t)) - f_i(x(t))|$, for $t \in [0, h]$.

イロト イポト イヨト イヨト

Rigorous integration — tangent intersection case

- Let us assume that x ⊂ R_k, and that some trajectories based at x are tangent to the C⁰ hyperplane Σ separating the linear regions R_k and R_l.
- The goal is to compute an enclosure of the set $\varphi(\mathbf{t}, \mathbf{x}) = \{\varphi(t, x) \colon x \in \mathbf{x}, t \in \mathbf{t}\}.$
- The PWL system is considered as a perturbed linear system:

$$\dot{x} = g(x) = A_k x + v_k.$$

- We use the main theorem with $b_{ij} = |a_{ij}|$ for $i \neq j$ and $b_{ii} = a_{ii}$.
- g(x) f(x) = 0 over the region R_k , and $g(x) - f(x) = (A_k - A_l)x + v_k - v_l$ for $x \in R_l$. Close Σ this difference is small (f is continuous).
- When B is invertible

$$\Delta = \int_0^t e^{B(t-s)} c ds = B^{-1} \left(e^{Bt} - I \right) c.$$

Z. Galias On rigorous integration of PWL systems

Tangent intersection — rigorous integration procedure

- Find s₁ > 0 such that φ_k([0, s₁], x) ⊂ R_k. The set
 u = φ_k(s₁, x) serves as an initial condition for integration
 along the tangency. To reduce overestimation s₁ should be as
 large as possible.
- Select s₂, compute enclosure v of the solution φ_k([0, s₂], u) of the linear system.
- Choose w ⊃ v, w serves as a guess of the set containing the solution φ([0, s₂], u) of the PWL system.
- Compute $c = \sup_{x \in \mathbf{w}} |g(x) f(x)|$ and the vector Δ .
- If $\mathbf{v} + [-1, 1]\Delta \subset \mathbf{w}$ then the solution $\varphi([0, s_2], \mathbf{u})$ of the PWL system is enclosed in $\mathbf{v} + [-1, 1]\Delta$. It follows that $\varphi(s_2, \mathbf{u}) \subset \mathbf{z} = \varphi_k(s_2, \mathbf{u}) + [-1, 1]\Delta$.
- If z ⊂ R_k and the vector field f over the set z points away from the plane Σ, then we continue integration using the Algorithm 1.

(日) (同) (E) (E) (E)

Tangent intersection — rigorous integration algorithm

Algorithm 2. Computation of $\varphi(\mathbf{t}, \mathbf{x})$, tangent case:

- Find maximum s_1 such that $\varphi_k(s_1, \mathbf{x}) \subset R_k$,
- **2** Compute $\mathbf{u} = \varphi_k(s_1, \mathbf{x})$,
- Select $s_2 > 0$ and compute $\mathbf{v} = \varphi_k([0, s_2], \mathbf{u})$,
- Select $\mathbf{w} \supset \mathbf{v}$,
- Sompute $c = \sup_{x \in \mathbf{w}} |g(x) f(x)|$,
- Compute $\Delta = B^{-1} \left(e^{Bt} I \right) c$,
- Compute $\mathbf{z} = \varphi_k(s_2, \mathbf{u}) + [-1, 1]\Delta$,
- If v + [-1,1]∆ ⊂ w, z ⊂ R_k and the vector field f over the set z points away from the plane Σ call the Algorithm 1 with x = z and t = t − s₁ − s₂,
- Go back to step 4 and select larger w or go back to step 3 and select larger s₂.

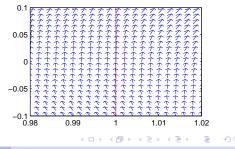
・ロン ・日 ・ ・ 日 ・ ・ 日 ・ ・ 日

• A simple piecewise-linear planar system:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = g \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + (|x_1 - 1| - 1)e \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix}.$$

- Parameter values: $a_{11} = 2$, $a_{12} = 1$, $a_{21} = 1$, $a_{22} = 1$, e = 2.
- The line $\Sigma_1 = \{x : x_1 = 1\}$ separates the two linear regions $U_1 = \{x : x_1 < 1\}$ and $U_2 = \{x : x_1 > 1\}$,

• Trajectories are tangent to Σ_1 at $(1, e - a_{11}/a_{12}) = (1, 0).$



• We treat the planar PWL system as a perturbed linear system:

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \end{pmatrix} = f \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} a_{11}x_1 + a_{12}x_2 + (x_1 - 2)e \\ a_{21}x_1 + a_{22}x_2 \end{pmatrix},$$

for which the vector field is equal to the vector field of the nonlinear system when $x_1 > 1$.

Hence, we can get bounds for the solution y(t) of the PWL system from the solution x(t) of the linear system using bounds with the following constants:

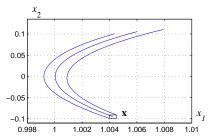
$$B = \begin{pmatrix} a_{11} + e |a_{12}| \\ |a_{21}| & a_{22} \end{pmatrix}, c = \begin{pmatrix} \sup_{x \in \mathbf{w}} |(|x_1 - 1| - x_1 + 1)e| \\ 0 \end{pmatrix}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Rigorous integration of the planar PWL system

• Example: find of enclosure of $\varphi(t, \mathbf{x})$ for $\mathbf{x} = ([1.004, 1.0045], [-0.099, -0.091]) \subset U_2$ and t = 0.2.

• three types of trajectories: tangent to Σ_1 , with no intersections, and with two intersections.



Rigorous integration of the planar PWL system

- x_2 • $\mathbf{u} = \varphi_2(s_1, \mathbf{x}), \ s_1 \approx 0.0642,$ 0.1 all trajectories are just 0.05 before intersection with Σ_1 , **u** is a very narrow 0 u enclosure of the set of true -0.05 trajectories. 0 998 1 002 1 004 1 006 1 008 1 01
- z = φ₂(s₂, u) + Δ, s₂ = 0.1044, all trajectories has already passed the tangency area, u is relatively large and in consequence s₂ is also large. This results in a considerable overestimation.
- The final result: $\mathbf{y} = \varphi_2(0.2 s_1 s_2, \mathbf{z})$ is computed using formulas for solutions of linear systems.
- diam $(\mathbf{x}) = (0.0005, 0.008)$, diam $(\mathbf{y}) = (0.0065, 0.0104)$.
- when diam(\mathbf{x}) = (10⁻⁵, 10⁻⁵) then $s_2 \approx 0.0215$, diam(\mathbf{y}) = (6.63 \cdot 10⁻⁵, 1.92 \cdot 10⁻⁵) (reduced overestimation).

 x_{i}

• The state equation:

$$C_1 \dot{x}_1 = (x_2 - x_1)/R - g(x_1),$$

$$C_2 \dot{x}_2 = (x_1 - x_2)/R + x_3,$$

$$L \dot{x}_3 = -x_2 - R_0 x_3,$$

where

$$g(z) = G_b z + 0.5(G_a - G_b)(|z+1| - |z-1|)$$

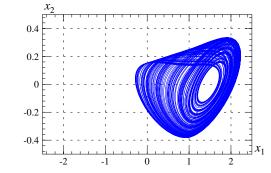
is a three segment piecewise linear characteristics.

• Parameter values: $C_1 = 1$, $C_2 = 8.3$, $G_a = -3.4429$, $G_b = -2.1849$, L = 0.06913, R = 0.33065, $R_0 = 0.00036$.

Roessler-type attractor

- Linear regions: $R_1 = \{x \in \mathbb{R}^3 : x_1 < -1\}, R_2 = \{x : |x_1| < 1\}$ and $R_3 = \{x : x_1 > 1\},$
- C^0 hyperplanes: $\Sigma_1 = \{x : x_1 = -1\}$ and $\Sigma_2 = \{x : x_1 = 1\}$,

- Roessler-type attractor,
- intersections with Σ_1 are not always transversal.

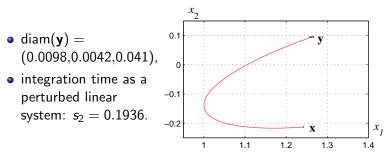


A (1) > A (2) > A

∃ >

Chua's circuit, rigorous integration along the tangency

- Example: find an enclosure of $\varphi(t, \mathbf{x})$ for t = 2 and $\mathbf{x} = ([1.2412, 1.2432], [-0.2141, -0.2121], [-4.7623, -4.7603]), diam(\mathbf{x}) = (0.002, 0.002, 0.002),$
- x has non-empty intersection with the numerically observed attractor and some trajectories based in x are tangent to Σ₁.



• the size of initial set is relatively large and the integration time is relatively long thus showing usefulness of the proposed method.

- We have studied rigorous integration methods for piece-wise linear systems.
- An algorithm handling the case of trajectories tangent to hyperplanes separating linear regions has been described.
- Several examples have been considered to show the effectiveness of this technique.
- The methods can be used without major modifications for rigorous integration of piece-wise smooth systems — one has to use standard techniques for rigorous integration of nonlinear systems in smooth regions.

・ロン ・回 と ・ 回 と ・ 回 と

- E. Hairer, S. Nørsett, and G. Wanner, Solving ordinary differential equations. I. Nonstiff problems. New York: Springer Verlag, 1993.
- P. Zgliczyński and T. Kapela, "A Lohner-type algorithm for control systems and ordinary differential inclusions," *Discrete and Continuous Dynamical Systems B*, vol. 11, pp. 365–385, 2009.
- L. Chua and G. Lin, "Canonical realisation of Chua's circuit family," *IEEE Trans. Circ. Syst.*, vol. CAS–37, no. 7, pp. 885–902, 1990.
- Z. Galias, "Mean value form for evaluation of Poincaré map in piecewise linear systems," in *Proc. European Conference on Circuit Theory and Design, ECCTD'03*, vol. I, Kraków, 2003, pp. 283–286.

・ロン ・回と ・ヨン・