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• Work done with Ching-Kai Chiu and 
Abhishek Roy

Stone, Chiu, Roy, J. Phys. A 44, 045001 (2011)
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Class T C P d=0 d=1 d=2 d=3 d=4 d=5 d=6 d=7
AIII 0 0 1 0 Z 0 Z 0 Z 0 Z
A 0 0 0 Z 0 Z 0 Z 0 Z 0
D 0 +1 0 Z2 Z2 Z 0 0 0 Z 0

DIII -1 +1 1 0 Z2 Z2 Z 0 0 0 Z
AII -1 0 0 Z 0 Z2 Z2 Z 0 0 0
CII -1 -1 1 0 Z 0 Z2 Z2 Z 0 0
C 0 -1 0 0 0 Z 0 Z2 Z2 Z 0
CI +1 -1 1 0 0 0 Z 0  Z2 Z2 Z
AI +1 0 0 Z 0 0 0 Z 0 Z2 Z2

BDI +1 +1 1 Z2 Z 0 0 0 Z 0 Z2

The pattern we wish to understand...

Qi, Hughes, Zhang, PRB 78 195424 (2008)
Schnyder, Ryu, Furusaki, Ludwig, PRB 78 195125 (2008)
Kitaev, AIP conf Proc. 1134, 22 (2009)
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• The patterns are usually understood via 
homotopy: 

πn+2(U(N)) = πn(U(N))

• Take the point of view that topology is hard, 
but representation theory is familiar.

πn+8(O(N)) = πn(O(N))
(Bott periodicity)

}
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q=0 1 2 3 4

p=1
2
3
4
5
6
7
8

D
DIII
AII
CII
C

CIII
AI

BDI

Z2 Z2 Z 0 0
0 Z2 Z2 Z 0
Z 0 Z2 Z2 Z
0 Z 0 Z2 Z2

0 0 Z 0 Z2

0 0 0 Z 0
Z 0 0 0 Z
Z2 Z 0 0 0

d=0 1 2 3 4

2 2 22 4 8
4 4 4 4 2 8
4 2 8 8 8 8 2
8 8 2 16 16 16
8 16 162 32 32
8 16 32 322 64
82 16 32 64 642

16 162 32 64 128

dpq

Can you see the pattern?
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The numbers are the dimensions of the irreducible 
representations of real orthogonal matrices        
obeying 

JiJj + JjJi = −2ηij

ηij = diag(+1, . . . ,+1︸ ︷︷ ︸
p entries

,−1, . . . ,−1︸ ︷︷ ︸
q entries

).

•Why real?

Ji
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CHC−1 = −H, C2 = ±I; T HT −1 = H, T 2 = ±I.

Antilinear discrete symmetries 

•Problem is that, in a vector space over the 
complex numbers, complex conjugation is not a 
basis-independent concept.

•Make everything real

CH∗C−1 = −H, C∗C = ±I, TH∗T−1 = −H, T ∗T = ±I.
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ϕ(λx) = λ∗ϕ(x)

A real structure is an antilinear map:

•Such a  map decomposes a complex vector space 
into a real vector space of twice the dimension:

V = W ⊕R iW

W = {x ∈ V : ϕ(x) = x}

where:

(un + ivn)en �→ unen + vn(ien)

•Let     be  a basis for    , then  en W

ϕ2 = Id
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Recover the complex vector space from the real 
space by introducing a complex structure. 

A complex structure on a real vector space is a linear map

J : V → V, J2 = −I

J →

⎛
⎜⎜⎜⎜⎜⎝

0 −1
1 0

0 −1
1 0

. . .

⎞
⎟⎟⎟⎟⎟⎠

ϕ →

⎛
⎜⎜⎜⎜⎜⎝

1
−1

1
−1

. . .

⎞
⎟⎟⎟⎟⎟⎠

ϕJ = −Jϕ• Now  antilinear    becomes linear with  ϕ
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J•The subgroup of           that commutes with 

 is:

O(2N)

O(2N) ∩ Sp(2N, R) = U(N)

a + ib → a

(
1 0
0 1

)
+ b

(
0 −1
1 0

)

=
(

a −b
b a

)
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On a complex vector space, an antilinear map 

χ(λx) = λ∗χ(x), χ2 = −I

is a quaternionic structure.

• The subgroup of            that commutes with U(2N)

U(2N) ∩ Sp(2N, C) = Sp(N) ≡ U(N, H)

χ

 is:

i �→
(

i 0
0 −i

)
, j �→

(
0 −1
1 0

)
, k �→

(
0 −i
−i 0

)
.

(these are 4-by-4 real, skew symmetric, matrices)
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•Rename             andJ → J1 χ → J2

•Now J2
1 = J2

2 = −I

•Antilinearity is J1J2 + J2J1 = 0

JiJj + JjJi = −2δij

•In other words:
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Sequence repeats with period 8: Bott periodicity!

Consider more anticommuting "complex structure" 
matrices: 

and the subgroups of             that commute with them. 

JiJj + JjJi = −2δij

O(16r)

. . .O(16r) ⊃ U(8r) ⊃ Sp(4r) ⊃ Sp(2r) × Sp(2r)

⊃ Sp(2r) ⊃ U(2r) ⊃ O(2r) ⊃ O(r) × O(r) ⊃ O(r) . . .

. . .O(16r) ⊃ U(8r) ⊃ Sp(4r) ⊃ Sp(2r) × Sp(2r)

⊃ Sp(2r) ⊃ U(2r) ⊃ O(2r) ⊃ O(r) × O(r) ⊃ O(r) . . .

We find:
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Cartan label Rq G/H
D R1 O(16r) × O(16r)/O(16r) 	 O(16r)

DIII R2 O(16r)/U(8r)
AII R3 U(8r)/Sp(4r)
CII R4 {Sp(4r)/Sp(2r) × Sp(2r)} × Z

C R5 Sp(2r) × Sp(2r)/Sp(2r) 	 Sp(2r)
CI R6 Sp(2r)/U(2r)
AI R7 U(2r)/O(2r)

BDI R0 {O(2r)/O(r) × O(r)} × Z

πn+m(Rq) = πn(Rq+m)

The topologist's view:

•We will take an algebraic view
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•Let Gn = {g ∈ O(16r) : gJi = Jig, i = 1, . . . , n}
gn = Lie(Gn)

gn = hn ⊕ mn•then

[hn, hn] ∈ hn, [hn, mn] ∈ mn, [mn,mn] ∈ hn.

• we also have that  

*SYMMETRIC SPACE*

•where Jn+1hnJ−1
n+1 = hn, Jn+1mnJ−1

n+1 = −mn
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•The Hamiltonians in the   -th  Altland-Zirnbauer 
class are     times elements of i

p
mp−2

Wednesday, June 15, 2011



⎛
⎜⎜⎜⎝

0 a12 a13 . . .
−a12 0 a23 . . .
−a13 −a23 0 . . .

...
...

...
. . .

⎞
⎟⎟⎟⎠ + i

⎛
⎜⎜⎜⎝

b11 b12 b13 . . .
b12 b22 b23 . . .
b13 b23 b33 . . .
...

...
...

. . .

⎞
⎟⎟⎟⎠

Example:  The class A1(Real symmetric matrices) 
p=7

h5 = o(2r) m5

G5 = U(2r), G6 = O(2r)
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•How can we  construct  useful matrices in       ?mn

Γi = Jn+1Jn+1+i ∈ mn i = 1, . . .

• Answer:

• Use these matrices to construct      
representative hamiltonians

•The Hamiltonians in the   -th  Altland-Zirnbauer 
class are     times elements of i

p

mp−2
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Γi = Jn+1Jn+1+i ∈ mn i = 1, . . .

ΓiΓj + ΓjΓi = −2δij

H(x) = i

d∑
i=1

xiΓi, |x|2 = 1

H(x)2 = I

What do we know?
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Topological or trivial?

H(x)2 = I•Know that

•Look at  the             eigenspace for 
each 

E = −1
x ∈ Sd−1

•Is the bundle of eigenspaces over the sphere trivial 
or not?

•Take irreducible representation of the Ji
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Sd−1 Sd
+•Can we extend bundle from          to       ? 

Sd
+

Sd−1

•If we can make  it with same size matrices:  trivial

•If we need bigger  matrices:  nontrivial

-- A bundle over a contractable space is trivial!•Why?

• Need a  Γd+1
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Momentum-like dimensions

CH(k)C−1 = −H(−k), C2 = ±I,

T H(k)T −1 = H(−k), T 2 = ±I

Γ̃i = Jn+1J̃n+1+iJ̃2
i = +I•Introduce             and set 

H(M,k) = iMΓ1 +
d∑

i=1

kiΓ̃i

Γ̃2
i = +I•Then              ,  and can set

M2 + |k|2 = 1, ⇒ (M,k) ∈ S1,d
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•Can we extend bundle from          to         ? 

• Need a      .  Not a Γ̃d+1Γ2

•Extra mass term         trivial⇒

S2,d
+

S2,d
+

S1,d

S1,d

Wednesday, June 15, 2011



q=0 1 2 3 4

p=1
2
3
4
5
6
7
8

D
DIII
AII
CII
C

CIII
AI

BDI

Z2 Z2 Z 0 0
0 Z2 Z2 Z 0
Z 0 Z2 Z2 Z
0 Z 0 Z2 Z2

0 0 Z 0 Z2

0 0 0 Z 0
Z 0 0 0 Z
Z2 Z 0 0 0

d=0 1 2 3 4

2 2 22 4 8
4 4 4 4 2 8
4 2 8 8 8 8 2
8 8 2 16 16 16
8 16 162 32 32
8 16 32 322 64
82 16 32 64 642

16 162 32 64 128

dpq

Now do  you see the pattern?
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•Complex representations

J1 → i, J1 → −i

•Inequivalent

(
0 1
1 0

)−1 (
0 −1
1 0

) (
0 1
1 0

)
=

(
0 1

−1 0

)
J1 →

(
0 −1
1 0

)
, J1 →

(
0 1

−1 0

)•Real  representations

Equivalent!
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q=0 1 2 3 4

p=1
2
3
4
5
6
7
8

D
DIII
AII
CII
C

CIII
AI

BDI

Z2 Z2 Z 0 0
0 Z2 Z2 Z 0
Z 0 Z2 Z2 Z
0 Z 0 Z2 Z2

0 0 Z 0 Z2

0 0 0 Z 0
Z 0 0 0 Z
Z2 Z 0 0 0

d=0 1 2 3 4

2 2 22 4 8
4 4 4 4 2 8
4 2 8 8 8 8 2
8 8 2 16 16 16
8 16 162 32 32
8 16 32 322 64
82 16 32 64 642

16 162 32 64 128

dpq

Can you see the pattern?
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A white lie

•The sizes of the       matrices are not those of 
the 

Γi

Ji

K = J1J2J3, M = J1J4J5, P = J1J6J7

•Why?  Because 

K2 = M2 = P 2 = I

mutually commute, obey

and commute with the Γi

•Need to divide by 2,4 or 8 
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p=1
2

5
6

7
8

2
4

2
4

22

4
4
42

8
8

3
4

42

8
8
82

8
16

8
16

82

16

8
8

16
16

162

32
32
322

32
64

82

16
16
162

32
32

64
64

642

128

q=0 1 2 3 4 0d 1d 2d 3d 4d

2
4

2
4

22

4
4
42

8
8

D
DIII

22

4
4
42

4
8

4
8

42

8
AII
CII

2
2

4
4

42

8
8
82

8
16

C
CI

12

2
2
22

4
4

8
8

82

16
AI

BDI

/1

/2

/4

/8

Each symmetry class w/ or w/o an extra mass term is divided by the same number
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Conclusions

•Can understand the periodic table from simple 
representation theory

•No need to understand K-theory first (but it helps)

•Do need to work with real representations (a bit 
harder than complex representation theory)

Wednesday, June 15, 2011



2

1

1

2

Wednesday, June 15, 2011


