

2248-2

Workshop and School on Topological Aspects of Condensed Matter Physics

27 June - 8 July, 2011

THE BOTT CLOCK AND TOPOLOGICAL INSULATORS BOTT PERIODICITY: TOPOLOGY AND HAMILTONIANS

Michael STONE

University of Illinois at Urbana-Champaign Loomis Laboratory of Physics IL-61801-3080 Urbana U.S.A.

Bott Periodicity: Topology and Hamiltonians

Michael Stone

Wednesday, June 15, 2011

 Work done with Ching-Kai Chiu and Abhishek Roy

Stone, Chiu, Roy, J. Phys. A 44, 045001 (2011)

The pattern we wish to understand...

Class	Т	С	Р	d=0	d=I	d=2	d=3	d=4	d=5	d=6	d=7
AIII	0	0	I	0	Z	0	Z	0	Ζ	0	Ζ
Α	0	0	0	Ζ	0	Z	0	Z	0	Z	0
D	0	+	0	Z ₂	Z ₂	Ζ	0	0	0	Ζ	0
DIII	- 1	+		0	Z ₂	Z ₂	Ζ	0	0	0	Ζ
All	- 1	0	0	Z	0	Z ₂	Z ₂	Ζ	0	0	0
CII	-	-		0	Ζ	0	Z ₂	Z ₂	Ζ	0	0
C	0	-	0	0	0	Ζ	0	Z ₂	Z ₂	Ζ	0
CI	+	-		0	0	0	Ζ	0	Z ₂	Z ₂	Ζ
AI	+	0	0	Z	0	0	0	Ζ	0	Z ₂	Z ₂
BDI	+	+	Ι	Z ₂	Ζ	0	0	0	Ζ	0	Z ₂

Qi, Hughes, Zhang, PRB 78 195424 (2008) Schnyder, Ryu, Furusaki, Ludwig, PRB 78 195125 (2008) Kitaev, AIP conf Proc. 1134, 22 (2009) • The patterns are usually understood via homotopy:

$$\pi_{n+2}(\mathbf{U}(N)) = \pi_n(\mathbf{U}(N)) \\ \pi_{n+8}(\mathbf{O}(N)) = \pi_n(\mathbf{O}(N)) \}$$
 (Bott periodicity)

• Take the point of view that topology is hard, but representation theory is familiar.

Can you see the pattern?

d _{pq}	q=0		2	3	4		d=0		2	3	4
p=1	2	2	2 ₂	4	8	D	Z ₂	Z ₂	Ζ	0	0
2	4	4	4	4 ₂	8	DIII	0	Z ₂	Z ₂	Z	0
3	4 ₂	8	8	8	8 ₂	All	Ζ	0	Z ₂	Z ₂	Z
4	8	8 ₂	16	16	16	CII	0	Ζ	0	Z ₂	Z ₂
5	8	16	16 2	32	32	С	0	0	Ζ	0	Z ₂
6	8	16	32	32 ₂	64	CIII	0	0	0	Ζ	0
7	8 ₂	16	32	64	64 ₂	AI	Ζ	0	0	0	Z
8	16	16 ₂	32	64	128	BDI	Z ₂	Ζ	0	0	0

The numbers are the dimensions of the irreducible representations of real orthogonal matrices J_i obeying

$$J_i J_j + J_j J_i = -2\eta_{ij}$$

•Why real?

Antilinear discrete symmetries

 $\mathcal{C}H\mathcal{C}^{-1} = -H, \quad \mathcal{C}^2 = \pm \mathbb{I}; \qquad \mathcal{T}H\mathcal{T}^{-1} = H, \quad \mathcal{T}^2 = \pm \mathbb{I}.$

 $CH^*C^{-1} = -H, \quad C^*C = \pm \mathbb{I}, \qquad TH^*T^{-1} = -H, \quad T^*T = \pm \mathbb{I}.$

•Problem is that, in a vector space over the complex numbers, complex conjugation is not a basis-independent concept.

Make everything real

A real structure is an antilinear map:

$$\varphi(\lambda \mathbf{x}) = \lambda^* \varphi(\mathbf{x}) \qquad \qquad \varphi^2 = \mathrm{Id}$$

•Such a map decomposes a complex vector space into a real vector space of twice the dimension:

$$V = W \oplus_R iW$$

where:

$$W = \{ \mathbf{x} \in V : \varphi(\mathbf{x}) = \mathbf{x} \}$$

•Let \mathbf{e}_n be a basis for W, then

$$(u_n + iv_n)\mathbf{e}_n \mapsto u_n\mathbf{e}_n + v_n(i\mathbf{e}_n)$$

Recover the complex vector space from the real space by introducing a complex structure.

A complex structure on a real vector space is a linear map

$$J: V \to V, \quad J^{2} = -\mathbb{I}$$

$$\varphi \to \begin{pmatrix} 1 & & & \\ & -1 & & \\ & & 1 & \\ & & & -1 & \\ & & & \ddots \end{pmatrix} \qquad J \to \begin{pmatrix} 0 & -1 & & & \\ 1 & 0 & & & \\ & & 0 & -1 & \\ & & 1 & 0 & \\ & & & \ddots \end{pmatrix}$$

• Now antilinear φ becomes linear with $\varphi J = -J\varphi$

The subgroup of O(2N) that commutes with J
 is: O(2N) ∩ Sp(2N, ℝ) = U(N)

$$a + ib \to a \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + b \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
$$= \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$$

On a complex vector space, an antilinear map

$$\chi(\lambda \mathbf{x}) = \lambda^* \chi(\mathbf{x}), \quad \chi^2 = -\mathbb{I}$$

is a quaternionic structure.

The subgroup of U(2N) that commutes with χ
 is: U(2N) ∩ Sp(2N, C) = Sp(N) ≡ U(N, H)

$$\mathbf{i} \mapsto \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \quad \mathbf{j} \mapsto \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad \mathbf{k} \mapsto \begin{pmatrix} 0 & -i \\ -i & 0 \end{pmatrix}.$$

(these are 4-by-4 real, skew symmetric, matrices)

- •Rename $J \rightarrow J_1$ and $\chi \rightarrow J_2$
- Now $J_1^2 = J_2^2 = -\mathbb{I}$
- •Antilinearity is $J_1J_2 + J_2J_1 = 0$

•In other words:

$$J_i J_j + J_j J_i = -2\delta_{ij}$$

Consider more anticommuting "complex structure" matrices:

$$J_i J_j + J_j J_i = -2\delta_{ij}$$

and the subgroups of O(16r) that commute with them.

We find:

 $\dots O(16r) \supset U(8r) \supset Sp(4r) \supset Sp(2r) \times Sp(2r)$

 $\supset \operatorname{Sp}(2r) \supset \operatorname{U}(2r) \supset \operatorname{O}(2r) \supset \operatorname{O}(r) \times \operatorname{O}(r) \supset \operatorname{O}(r) \dots$

Sequence repeats with period 8: Bott periodicity!

The topologist's view:

Cartan label	R_q	G/H
D	R_1	$O(16r) \times O(16r) / O(16r) \simeq O(16r)$
DIII	R_2	O(16r)/U(8r)
AII	R_3	U(8r)/Sp(4r)
CII	R_4	$\{\operatorname{Sp}(4r)/\operatorname{Sp}(2r)\times\operatorname{Sp}(2r)\}\times\mathbb{Z}$
C	R_5	$\operatorname{Sp}(2r) \times \operatorname{Sp}(2r) / \operatorname{Sp}(2r) \simeq \operatorname{Sp}(2r)$
CI	R_6	$\mathrm{Sp}(2r)/\mathrm{U}(2r)$
AI	R_7	U(2r)/O(2r)
BDI	R_0	$\{O(2r)/O(r) \times O(r)\} \times \mathbb{Z}$

$$\pi_{n+m}(R_q) = \pi_n(R_{q+m})$$

•We will take an algebraic view

•Let
$$G_n = \{g \in O(16r) : gJ_i = J_ig, i = 1, \dots, n\}$$

 $\mathfrak{g}_n = \operatorname{Lie}(G_n)$

•then $\mathfrak{g}_n = \mathfrak{h}_n \oplus \mathfrak{m}_n$

•where
$$J_{n+1}\mathfrak{h}_n J_{n+1}^{-1} = \mathfrak{h}_n$$
, $J_{n+1}\mathfrak{m}_n J_{n+1}^{-1} = -\mathfrak{m}_n$

• we also have that

 $[\mathfrak{h}_n,\mathfrak{h}_n]\in\mathfrak{h}_n,\quad [\mathfrak{h}_n,\mathfrak{m}_n]\in\mathfrak{m}_n,\quad [\mathfrak{m}_n,\mathfrak{m}_n]\in\mathfrak{h}_n.$

SYMMETRIC SPACE

•The Hamiltonians in the p-th Altland-Zirnbauer class are i times elements of \mathfrak{m}_{p-2}

Example: The class AI (Real symmetric matrices) P=7

$$G_5 = \mathrm{U}(2r), \quad G_6 = \mathrm{O}(2r)$$

 $\mathfrak{h}_5 = \mathfrak{o}(2r) \qquad \qquad \mathfrak{m}_5$

•The Hamiltonians in the p-th Altland-Zirnbauer class are i times elements of \mathfrak{m}_{p-2}

•How can we construct useful matrices in \mathfrak{m}_n ?

• Answer:

$$\Gamma_i = J_{n+1}J_{n+1+i} \in \mathfrak{m}_n \quad i = 1, \dots$$

• Use these matrices to construct representative hamiltonians

What do we know?

$$\Gamma_{i} = J_{n+1}J_{n+1+i} \in \mathfrak{m}_{n} \qquad i = 1, \dots$$

$$\Gamma_{i}\Gamma_{j} + \Gamma_{j}\Gamma_{i} = -2\delta_{ij}$$

$$H(\mathbf{x}) = i\sum_{i=1}^{d} x_{i}\Gamma_{i}, \quad |\mathbf{x}|^{2} = 1$$

$$H(\mathbf{x})^{2} = \mathbb{I}$$

Topological or trivial?

- •Know that $H(\mathbf{x})^2 = \mathbb{I}$
- •Look at the E = -1 eigenspace for each $\mathbf{x} \in S^{d-1}$
- •Is the bundle of eigenspaces over the sphere trivial or not?
- Take irreducible representation of the J_i

•Can we extend bundle from S^{d-1} to S^d_+ ?

•Why? -- A bundle over a contractable space is trivial!

- Need a Γ_{d+1}
- •If we can make it with same size matrices: trivial
- •If we need bigger matrices: nontrivial

Momentum-like dimensions

$$\mathcal{C}H(\mathbf{k})\mathcal{C}^{-1} = -H(-\mathbf{k}), \quad \mathcal{C}^2 = \pm \mathbb{I},$$

$$\mathcal{T}H(\mathbf{k})\mathcal{T}^{-1} = H(-\mathbf{k}), \quad \mathcal{T}^2 = \pm \mathbb{I}$$

•Introduce $\tilde{J}_i^2 = +\mathbb{I}$ and set $\tilde{\Gamma}_i = J_{n+1}\tilde{J}_{n+1+i}$ •Then $\tilde{\Gamma}_i^2 = +\mathbb{I}$, and can set $H(M, \mathbf{k}) = iM\Gamma_1 + \sum_{i=1}^d k_i\tilde{\Gamma}_i$ $M^2 + |\mathbf{k}|^2 = 1, \Rightarrow (M, \mathbf{k}) \in S^{1,d}$

Now do you see the pattern?

d _{pq}	q=0		2	3	4		d=0		2	3	4
p=1	2	2	2 ₂	4	8	D	Z ₂	Z ₂	Ζ	0	0
2	4	4	4	4 ₂	8	DIII	0	Z ₂	Z ₂	Z	0
3	4 ₂	8	8	8	8 ₂	All	Ζ	0	Z ₂	Z ₂	Z
4	8	8 ₂	16	16	16	CII	0	Ζ	0	Z ₂	Z ₂
5	8	16	16 2	32	32	С	0	0	Ζ	0	Z ₂
6	8	16	32	32 ₂	64	CIII	0	0	0	Ζ	0
7	8 ₂	16	32	64	64 ₂	AI	Ζ	0	0	0	Ζ
8	16	16 ₂	32	64	128	BDI	Z ₂	Ζ	0	0	0

Complex representations

$$J_1 \to i, \qquad J_1 \to -i$$

Inequivalent

•Real representations

$$J_{1} \to \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \quad J_{1} \to \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Equivalent!

Can you see the pattern?

d _{pq}	q=0		2	3	4		d=0		2	3	4
p=1	2	2	2 ₂	4	8	D	Z ₂	Z ₂	Ζ	0	0
2	4	4	4	4 ₂	8	DIII	0	Z ₂	Z ₂	Z	0
3	4 ₂	8	8	8	8 ₂	All	Ζ	0	Z ₂	Z ₂	Z
4	8	8 ₂	16	16	16	CII	0	Ζ	0	Z ₂	Z ₂
5	8	16	16 2	32	32	С	0	0	Ζ	0	Z ₂
6	8	16	32	32 ₂	64	CIII	0	0	0	Ζ	0
7	8 ₂	16	32	64	64 ₂	AI	Ζ	0	0	0	Z
8	16	16 ₂	32	64	128	BDI	Z ₂	Ζ	0	0	0

A white lie

•The sizes of the Γ_i matrices are not those of the J_i

•Why? Because

$$K = J_1 J_2 J_3, \quad M = J_1 J_4 J_5, \quad P = J_1 J_6 J_7$$

mutually commute, obey

 $K^2 = M^2 = P^2 = \mathbb{I}$

and commute with the Γ_i

Each symmetry class w/ or w/o an extra mass term is divided by the same number

Conclusions

•Can understand the periodic table from simple representation theory

•Do need to work with real representations (a bit harder than complex representation theory)

•No need to understand K-theory first (but it helps)

