Workshop and School on Topological Aspects of Condensed Matter

 Physics27 June - 8 July, 2011

THE BOTT CLOCK AND TOPOLOGICAL INSULATORS BOTT PERIODICITY:
TOPOLOGY AND HAMILTONIANS

Michael STONE

University of Illinois at Urbana-Champaign
Loomis Laboratory of Physics
IL-61801-3080 Urbana
U.S.A

Bott Periodicity: Topology and Hamiltonians

Michael Stone

ICTP Trieste, June 201।

- Work done with Ching-Kai Chiu and Abhishek Roy

Stone, Chiu, Roy, J. Phys.A 44, 04500 (20 II)

The pattern we wish to understand...

| Class | T | C | P | $\mathrm{d}=0$ | $\mathrm{~d}=1$ | $\mathrm{~d}=2$ | $\mathrm{~d}=3$ | $\mathrm{~d}=4$ | $\mathrm{~d}=5$ | $\mathrm{~d}=6$ | $\mathrm{~d}=7$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Alll | 0 | 0 | I | 0 | Z | 0 | Z | 0 | Z | 0 | Z |
| A | 0 | 0 | 0 | Z | 0 | Z | 0 | Z | 0 | Z | 0 |
| D | 0 | +1 | 0 | Z_{2} | Z_{2} | Z | 0 | 0 | 0 | Z | 0 |
| DIII | -I | +I | I | 0 | Z_{2} | Z_{2} | Z | 0 | 0 | 0 | Z |
| All | -I | 0 | 0 | Z | 0 | Z_{2} | Z_{2} | Z | 0 | 0 | 0 |
| CII | -I | -1 | I | 0 | Z | 0 | Z_{2} | Z_{2} | Z | 0 | 0 |
| C | 0 | -1 | 0 | 0 | 0 | Z | 0 | Z_{2} | Z_{2} | Z | 0 |
| Cl | +I | -1 | I | 0 | 0 | 0 | Z | 0 | Z_{2} | Z_{2} | Z |
| Al | +I | 0 | 0 | Z | 0 | 0 | 0 | Z | 0 | Z_{2} | Z_{2} |
| BDI | +I | +I | I | Z_{2} | Z | 0 | 0 | 0 | Z | 0 | Z_{2} |

Qi, Hughes, Zhang, PRB 78 I95424 (2008)
Schnyder, Ryu, Furusaki, Ludwig, PRB 78 I95I25 (2008)
Kitaev, AIP conf Proc. I I 34, 22 (2009)

- The patterns are usually understood via homotopy:

$$
\left.\begin{array}{l}
\pi_{n+2}(\mathrm{U}(N))=\pi_{n}(\mathrm{U}(N)) \\
\pi_{n+8}(\mathrm{O}(N))=\pi_{n}(\mathrm{O}(N))
\end{array}\right\}(\text { Bott periodicity })
$$

- Take the point of view that topology is hard, but representation theory is familiar.

Can you see the pattern?

d_{pq}	$\mathrm{q}=0$	1	2	3	4		d=0	1	2	3	4
$\mathrm{p}=1$	2	2	22	4	8	D	Z_{2}	Z_{2}	Z	0	0
2	4	4	4	42	8	DIII	0	Z_{2}	Z_{2}	Z	0
3	42	8	8	8	82	All	Z	0	Z_{2}	Z_{2}	Z
4	8	82	16	16	16	CII	0	Z	0	Z_{2}	Z_{2}
5	8	16	162	32	32	C	0	0	Z	0	Z_{2}
6	8	16	32	322	64	CIII	0	0	0	Z	0
7	82	16	32	64	642	AI	Z	0	0	0	Z
8	16	162	32	64	128	BDI	Z_{2}	Z	0	0	0

The numbers are the dimensions of the irreducible representations of real orthogonal matrices J_{i} obeying

$$
\begin{gathered}
J_{i} J_{j}+J_{j} J_{i}=-2 \eta_{i j} \\
\eta_{i j}=\operatorname{diag}(\underbrace{+1, \ldots,+1}_{p \text { entries }}, \underbrace{-1, \ldots,-1}_{q \text { entries }}) .
\end{gathered}
$$

-Why real?

Antilinear discrete symmetries

$$
\begin{array}{rll}
\mathcal{C} H \mathcal{C}^{-1}=-H, \quad \mathcal{C}^{2}= \pm \mathbb{I} ; & \mathcal{T} H \mathcal{T}^{-1}=H, \quad \mathcal{T}^{2}= \pm \mathbb{I} \\
C H^{*} C^{-1}=-H, \quad C^{*} C= \pm \mathbb{I}, & T H^{*} T^{-1}=-H, \quad T^{*} T= \pm \mathbb{I} .
\end{array}
$$

- Problem is that, in a vector space over the complex numbers, complex conjugation is not a basis-independent concept.
- Make everything real

A real structure is an antilinear map:

$$
\varphi(\lambda \mathbf{x})=\lambda^{*} \varphi(\mathbf{x}) \quad \varphi^{2}=\operatorname{Id}
$$

- Such a map decomposes a complex vector space into a real vector space of twice the dimension:

$$
V=W \oplus_{R} i W
$$

where:

$$
W=\{\mathbf{x} \in V: \varphi(\mathbf{x})=\mathbf{x}\}
$$

- Let \mathbf{e}_{n} be a basis for W, then

$$
\left(u_{n}+i v_{n}\right) \mathbf{e}_{n} \mapsto u_{n} \mathbf{e}_{n}+v_{n}\left(i \mathbf{e}_{n}\right)
$$

Recover the complex vector space from the real space by introducing a complex structure.

A complex structure on a real vector space is a linear map

$$
\begin{array}{cc}
J: V \rightarrow V, \quad J^{2}=-\mathbb{I} \\
\varphi \rightarrow\left(\begin{array}{ccccc}
1 & & & & \\
& -1 & & & \\
& & 1 & & \\
& & & -1 & \\
& & & & \ddots
\end{array}\right) & J \rightarrow\left(\begin{array}{rrrrr}
0 & -1 & & & \\
1 & 0 & & & \\
& & 0 & -1 & \\
& & 1 & 0 & \\
& & & & \ddots
\end{array}\right)
\end{array}
$$

- Now antilinear φ becomes linear with $\varphi J=-J \varphi$
- The subgroup of $\mathrm{O}(2 N)$ that commutes with J is: $\quad \mathrm{O}(2 N) \cap \mathrm{Sp}(2 N, \mathbb{R})=\mathrm{U}(N)$

$$
\begin{aligned}
a+i b & \rightarrow a\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)+b\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right) \\
& =\left(\begin{array}{rr}
a & -b \\
b & a
\end{array}\right)
\end{aligned}
$$

On a complex vector space, an antilinear map

$$
\chi(\lambda \mathbf{x})=\lambda^{*} \chi(\mathbf{x}), \quad \chi^{2}=-\mathbb{I}
$$

is a quaternionic structure.

- The subgroup of $\mathrm{U}(2 N)$ that commutes with χ is: $\quad \mathrm{U}(2 N) \cap \operatorname{Sp}(2 N, \mathbb{C})=\operatorname{Sp}(N) \equiv \mathrm{U}(N, \mathbb{H})$

$$
\mathbf{i} \mapsto\left(\begin{array}{rr}
i & 0 \\
0 & -i
\end{array}\right), \quad \mathbf{j} \mapsto\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad \mathbf{k} \mapsto\left(\begin{array}{cc}
0 & -i \\
-i & 0
\end{array}\right) .
$$

(these are 4-by-4 real, skew symmetric, matrices)
-Rename $J \rightarrow J_{1}$ and $\chi \rightarrow J_{2}$

- Now $J_{1}^{2}=J_{2}^{2}=-\mathbb{I}$
- Antilinearity is $J_{1} J_{2}+J_{2} J_{1}=0$
- In other words:

$$
J_{i} J_{j}+J_{j} J_{i}=-2 \delta_{i j}
$$

Consider more anticommuting "complex structure" matrices:

$$
J_{i} J_{j}+J_{j} J_{i}=-2 \delta_{i j}
$$

and the subgroups of $\mathrm{O}(16 r)$ that commute with them.

We find:

$$
\begin{gathered}
\ldots \mathrm{O}(16 r) \supset \mathrm{U}(8 r) \supset \mathrm{Sp}(4 r) \supset \mathrm{Sp}(2 r) \times \mathrm{Sp}(2 r) \\
\supset \mathrm{Sp}(2 r) \supset \mathrm{U}(2 r) \supset \mathrm{O}(2 r) \supset \mathrm{O}(r) \times \mathrm{O}(r) \supset \mathrm{O}(r) \ldots
\end{gathered}
$$

Sequence repeats with period 8: Bott periodicity!

The topologist's view:

Cartan label	R_{q}	G / H
D	R_{1}	$\mathrm{O}(16 r) \times \mathrm{O}(16 r) / \mathrm{O}(16 r) \simeq \mathrm{O}(16 r)$
DIII	R_{2}	$\mathrm{O}(16 r) / \mathrm{U}(8 r)$
AII	R_{3}	$\mathrm{U}(8 r) / \mathrm{Sp}(4 r)$
CII	R_{4}	$\{\mathrm{Sp}(4 r) / \mathrm{Sp}(2 r) \times \mathrm{Sp}(2 r)\} \times \mathbb{Z}$
C	R_{5}	$\mathrm{Sp}(2 r) \times \mathrm{Sp}(2 r) / \mathrm{Sp}(2 r) \simeq \mathrm{Sp}(2 r)$
CI	R_{6}	$\mathrm{Sp}(2 r) / \mathrm{U}(2 r)$
AI	R_{7}	$\mathrm{U}(2 r) / \mathrm{O}(2 r)$
BDI	R_{0}	$\{\mathrm{O}(2 r) / \mathrm{O}(r) \times \mathrm{O}(r)\} \times \mathbb{Z}$
$\pi_{n+m}\left(R_{q}\right)=\pi_{n}\left(R_{q+m}\right)$		
\bullet We will take an algebraic view		

-Let $\quad G_{n}=\left\{g \in \mathrm{O}(16 r): g J_{i}=J_{i} g, i=1, \ldots, n\right\}$

$$
\mathfrak{g}_{n}=\operatorname{Lie}\left(G_{n}\right)
$$

-then $\quad \mathfrak{g}_{n}=\mathfrak{h}_{n} \oplus \mathfrak{m}_{n}$

- where $\quad J_{n+1} \mathfrak{h}_{n} J_{n+1}^{-1}=\mathfrak{h}_{n}, \quad J_{n+1} \mathfrak{m}_{n} J_{n+1}^{-1}=-\mathfrak{m}_{n}$
- we also have that
$\left[\mathfrak{h}_{n}, \mathfrak{h}_{n}\right] \in \mathfrak{h}_{n}, \quad\left[\mathfrak{h}_{n}, \mathfrak{m}_{n}\right] \in \mathfrak{m}_{n}, \quad\left[\mathfrak{m}_{n}, \mathfrak{m}_{n}\right] \in \mathfrak{h}_{n}$.
SYMMETRIC SPACE
-The Hamiltonians in the p-th Altland-Zirnbauer class are i times elements of \mathfrak{m}_{p-2}

Example: The class AI (Real symmetric matrices) $p=7$

$$
G_{5}=\mathrm{U}(2 r), \quad G_{6}=\mathrm{O}(2 r)
$$

$$
\left(\begin{array}{cccc}
0 & a_{12} & a_{13} & \ldots \\
-a_{12} & 0 & a_{23} & \ldots \\
-a_{13} & -a_{23} & 0 & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)+i\left(\begin{array}{cccc}
b_{11} & b_{12} & b_{13} & \ldots \\
b_{12} & b_{22} & b_{23} & \ldots \\
b_{13} & b_{23} & b_{33} & \ldots \\
\vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

$$
\mathfrak{h}_{5}=\mathfrak{o}(2 r)
$$

\mathfrak{m}_{5}
-The Hamiltonians in the p-th Altland-Zirnbauer class are i times elements of \mathfrak{m}_{p-2}

- How can we construct useful matrices in \mathfrak{m}_{n} ?
- Answer:

$$
\Gamma_{i}=J_{n+1} J_{n+1+i} \in \mathfrak{m}_{n} \quad i=1, \ldots
$$

- Use these matrices to construct representative hamiltonians

What do we know?

$$
\begin{aligned}
& \Gamma_{i}=J_{n+1} J_{n+1+i} \in \mathfrak{m}_{n} \quad i=1, \ldots \\
& \Gamma_{i} \Gamma_{j}+\Gamma_{j} \Gamma_{i}=-2 \delta_{i j} \\
& H(\mathbf{x})=i \sum_{i=1}^{d} x_{i} \Gamma_{i}, \quad|\mathbf{x}|^{2}=1 \\
& H(\mathbf{x})^{2}=\mathbb{I}
\end{aligned}
$$

Topological or trivial?

- Know that $H(\mathbf{x})^{2}=\mathbb{I}$
-Look at the $E=-1$ eigenspace for each $\mathrm{x} \in S^{d-1}$
- Is the bundle of eigenspaces over the sphere trivial or not?
-Take irreducible representation of the J_{i}
- Can we extend bundle from S^{d-1} to S_{+}^{d} ?
-Why? -- A bundle over a contractable space is trivial!

- Need a Γ_{d+1}
- If we can make it with same size matrices: trivial - If we need bigger matrices: nontrivial

Momentum-like dimensions

$$
\begin{array}{cc}
\mathcal{C} H(\mathbf{k}) \mathcal{C}^{-1}=-H(-\mathbf{k}), & \mathcal{C}^{2}= \pm \mathbb{I}, \\
\mathcal{T} H(\mathbf{k}) \mathcal{T}^{-1}=H(-\mathbf{k}), & \mathcal{T}^{2}= \pm \mathbb{I}
\end{array}
$$

- Introduce $\tilde{J}_{i}^{2}=+\mathbb{I}$ and set $\quad \tilde{\Gamma}_{i}=J_{n+1} \tilde{J}_{n+1+i}$
- Then $\tilde{\Gamma}_{i}^{2}=+\mathbb{I}$, and can set

$$
\begin{gathered}
H(M, \mathbf{k})=i M \Gamma_{1}+\sum_{i=1}^{d} k_{i} \tilde{\Gamma}_{i} \\
M^{2}+|\mathbf{k}|^{2}=1, \quad \Rightarrow(M, \mathbf{k}) \in S^{1, d}
\end{gathered}
$$

- Can we extend bundle from $S^{1, d}$ to $S_{+}^{2, d}$?

- Needa Γ_{2}. Nota $\tilde{\Gamma}_{d+1}$
-Extra mass term \Rightarrow trivial

Now do you see the pattern?

d_{pq}	$\mathrm{q}=0$	1	2	3	4		d=0	1	2	3	4
$\mathrm{p}=1$	2	2	22	4	8	D	Z_{2}	Z_{2}	Z	0	0
2	4	4	4	42	8	DIII	0	Z_{2}	Z_{2}	Z	0
3	42	8	8	8	82	All	Z	0	Z_{2}	Z_{2}	Z
4	8	82	16	16	16	CII	0	Z	0	Z_{2}	Z_{2}
5	8	16	162	32	32	C	0	0	Z	0	Z_{2}
6	8	16	32	322	64	CIII	0	0	0	Z	0
7	82	16	32	64	642	AI	Z	0	0	0	Z
8	16	162	32	64	128	BDI	Z_{2}	Z	0	0	0

-Complex representations

$$
J_{1} \rightarrow i, \quad J_{1} \rightarrow-i
$$

- Inequivalent
-Real representations

$$
\begin{aligned}
& J_{1} \rightarrow\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), \quad J_{1} \rightarrow\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right) \\
& \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{-1}\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

Equivalent!

Can you see the pattern?

d_{pq}	$\mathrm{q}=0$	1	2	3	4		d=0	1	2	3	4
$\mathrm{p}=1$	2	2	22	4	8	D	Z_{2}	Z_{2}	Z	0	0
2	4	4	4	42	8	DIII	0	Z_{2}	Z_{2}	Z	0
3	42	8	8	8	82	All	Z	0	Z_{2}	Z_{2}	Z
4	8	82	16	16	16	CII	0	Z	0	Z_{2}	Z_{2}
5	8	16	162	32	32	C	0	0	Z	0	Z_{2}
6	8	16	32	322	64	CIII	0	0	0	Z	0
7	82	16	32	64	642	AI	Z	0	0	0	Z
8	16	162	32	64	128	BDI	Z_{2}	Z	0	0	0

A white lie

- The sizes of the Γ_{i} matrices are not those of the J_{i}
-Why? Because

$$
K=J_{1} J_{2} J_{3}, \quad M=J_{1} J_{4} J_{5}, \quad P=J_{1} J_{6} J_{7}
$$

mutually commute, obey

$$
K^{2}=M^{2}=P^{2}=\mathbb{I}
$$

and commute with the Γ_{i}

- Need to divide by 2,4 or 8

	q = 0	I	2	3	4			0d	Id	2 d	3d	4d
$p=1$	2	2	22	4	8	/1	D	2	2	22	4	8
2	4	4	4	42	8		DIII	4	4	4	42	8
3	42	8	8	8	82	/2	All	22	4	4	4	42
4	8	82	16	16	16		CII	4	42	8	8	8
5	8	16	162	32	32	/4	C	2	4	42	8	8
6	8	16	32	322	64		Cl	2	4	8	82	16
						18						
7	82	16	32	64	642		AI	12	2	4	8	82
8	16	162	32	64	128		BDI	2	22	4	8	16

Each symmetry class w/ or w/o an extra mass term is divided by the same number

Conclusions

- Can understand the periodic table from simple representation theory
-Do need to work with real representations (a bit harder than complex representation theory)
- No need to understand K-theory first (but it helps)

