Mid-Latitude Transient fluctuations in the atmosphere -

baroclinic instability, storm tracks and their transports

(or: How do they transport energy ?)

-- Barotropic and Baroclinic instability of zonally averaged basic state

-- Local zones of high baroclinicity (vertical shear) influences locus of
storms (storm tracks)

-- Method of statistically focusing on baroclinic disturbances

-- Structure of synoptic disturbances is such as to transport heat and
moisture

-- Estimates of growth rates

-- Difference in behavior of cyclones and anticyclones

-- Feedback of baroclinic high frequency fluxes of heat and
momentumto the time mean general circulation

-- The origin of the Ferrel Cell (or at least one origin)
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Sub-tropical jets are present in
both hemispheres.

The vertical wind shear is
maximum at those latitudes
where d[T]/dy is most negative
(thermal wind relationship)

pressure

The jets shift poleward in
summer, equatorward in winter
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Note the easterlies in the
tropics. Since the surface wind
— == .| acts as a stress on the surface,
the distribution of sutrface
easterlies and westerlies is
connected to the angular
momentum budget of the

earth-atmosphere system.
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Instability of zonally symmetric basic states to small wave-like
perturbations

Barotropic instability:
- Growth of kinetic energy of eddies from zonal mean momentum [u]
- Necessary conditions for barotropic instability:
One possibility it that the meridional gradient of barotropic potential
vorticity ([3 — [u],,) changes sign in the interior
This does not usually happen!

-Baroclinic instability:

- Growth of eddy available potential and kinetic energy from available potential
energy of the full zonal mean state [u], [T]

- Necessary condition is that meridional gradient of (quasi-geostrophic) potential
vorticity change sign in the interior: This does happen!



1 Quasi-geostrophic potential vorticity

The meridional gradient of potential vorticity in quasi-geostrophic
dynamics is:

% - —li Uu| Cos
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where 4 is the sine of latitude, ¢ latitude, €2 the rotation frequency
of the earth about its axis, a the earth’s radius, P = p/py, and

Z = H log (%) with H = 10 km, and py = 1000 ~hPa. The static
stability S is:
dl] R
S=—+ =T 3
7+ 3)

where R is the gas constant and C), the specific heat of air at constant
pressure.
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Application to the observed atmosphere? What do we use for the basic state?

(a) Even ignoring stationary waves, a zonally symmetric atmosphere without transient
eddies could not exist, because such an atmosphere would be baroclinically
unstable to wave-like disturbances — which would grow in the presence of a strong
temperature gradient, and would act to reduce that temperature gradient.

(b) The final *statistical* equilbrium would have transient waves growing and
decaying, and a smaller temperature gradient (i.e. the one that we observe).

(c) But even this temperature gradient is unstable some places and at same times.
(d) So the basic state of relevance is probably the observed time mean.
(e) Furthermore, the instabilities of greatest interest are not those of the zonally

averaged time mean, but of the local time mean. Here there *is* some relevance
for barotropic instability.
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More complete indicator of
baroclinically unstable
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Baroclinic Transient Fluctuations
(periods of 2-10 days)
“Storm Tracks”

300 hPa filtered v-wind variance gives one indication
of where baroclinic activity is the strongest.

In NH winter, see strong activity downstream and
poleward of maximum shear. (In SH there we see no
correspondence between longitude of maximum
baroclinic activity and longitude of maximum u).

Measured by focus on fluctuations with time scales of
2 - 10 days:

- For each point and each winter (or summer),

remove signalof the annual cycle in meridional wind v. £

- Apply digital filter to anomalies to retain only
periods of 2 to 10 days (approximately).

- Compute variance of filtered anomalies for
each of 18 winters: 1981/82 - 1998/99 from NCEP
reanalysis (or 18 summers: 1982-1999).

- Average variance map over 18 seasons
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http://www.people.fas.harvard.edu/~pkatai/midlat_structure.htm
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Baroclinic Transient Fluctuations:
Their role in the general circulation.

. . . 301
Meridional transport of sensible heat
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850 hPa covariance between filtered v-wind and
temperature T gives another indication of where
baroclinic activity is the strongest. This shows a major
contribution to the poleward flux of sensible
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Baroclinic Transient Fluctuations:
Their role in the general circulation.
Meridional transport of moisture

850 hPa covariance between filtered v-wind and
moisture q gives an alternate indication of where
baroclinic activity is the strongest. Compared to the
heat flux, the maxima are further equatorward. Please
note the continental extensions of the maximum flux
over Asia and especially eastern North America.
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Units: g (water)
per kg (air)

[q] vs. p from NCEP reanalysis: DJF mean, JJA mean
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Specific humidity:
typical value in
tropics = 0.02 kg/kg



Upward sensible heat transport

Hi Freq wt cov 700 NCEP [u] contour
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Relationship between Cyclone Tracks, Anticyclone Tracks and Baroclinic Waveguides

JOHN Mt WALLACE AND GYU-HO LiMm

Department of Atmospheric Sciences, University of Washington, Seattle, Washington
/

MAURICE L. BLACKMON
National Center for Atmospheric Research, Boulder, Colorado
(Manuscript received 24 March 1987, in final form 4 September 1987)

(1) Statistical estimate of average growth rates
(2) The difference in the behavior of cyclones and anti-cyclones



Simple statistical analysis of *average* growth rates of barclinic disturbances
at a single grid point in mid-latitiudes (westerly flow)

(a) Form the filtered series of geopotential height Z

(b) Remove seasonal mean of Z to obtain Z’, and divide by its temporal standard deviation
(o) to obtain z=27"/ 0. This is called a standardized series.

(c) Compute the lag correlation of zs at this point with all other grid points a day earlier (lag
=-1) and a day later (lag = +1)

(c) Forlag=-1, you will find the maximum correlation occurs at an upstream point — call
the standardized series at this grid point zu

(d) Forlag=+1, you will find the maximum correlation occurs at a downstream point — call
this series zd

(e) Then form the linear regressions:

zu=az+eu o isthe regression coefficient eu the error to be minimized

zd=p z+¢ed
(f) The growth rate, or estimated rate of amplification at our single grid point is then given
by:

B-a)/2 (units are meters/day)



Note the rate of amplification in the portions of the storm tracks downstream from

the jet maxima (largest vertical shear) tends to be negative!

In these regions baroclinic disturbances decay!

-

Lty

negative contours are dashed.

FIG. 10. Rate of amplification or decay of moving disturbances in the highpass-filtered (left panel) 1000 and (right panel) 500 mb height

field as inferred from the method described in section 4d. Contour interval 2 m of geopotential height per day;



Distingushing evolution of anticylones (high pressure systems) from cyclones (low pressure
systems). A simple method.

Cyclones:
Find all dates at which the filtered 1000 hPa height field at one grid point are more than
two standard deviations below normal:

2'<2s
Then average the maps obtained for those dates, and also the dates 2 days previously, 1
day previously, 1 day subsequently and 2 days subsequently.
This gives you an average evolution of a low pressure system

Anticyclones:
Find all dates at which the filtered 1000 hPa height field at one grid point are more than
two standard deviations above normal:

2’ >2s
Then average the maps obtained for those dates, and also the dates 2 days previously, 1
day previously, 1 day subsequently and 2 days subsequently.
This gives you an average evolution of a high pressure system
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HIGHS MOVE
EQUATORWARD

Grid point is
40N 70W
(near NYC)
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FI1G. 14. Composite maps for the unfiltered 1000 mb height field based on key dates at which highpass-filtered 1000 mb height at the base
gridpoint (40°N, 70°W) is more than two standard deviation below zero (left panels) and above zero (right panels). Lag in days, relative to
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Feedback of baroclinic high frequency fluxes of heat and momentum to
the time mean general circulation
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Horizontal Heat transport by baroclinic waves tends to smooth out temperature gradient

Hi Freq vT cov 850 NCEP [T] CI=5K
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Horizontal transport of eastward momentum by baroclinic waves tends to move jets poleward

Hi Freq uv cov 200 NCEP [u] contour
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“Direct” effect of baroclinic waves on zonal mean of temperature [T} and barotropic
component of [u]:

an_ 1
or " acos(¢) do

&[I/J] -2 1 0 NE=
o T \Y 2cos(@) 90 ([v C]cos(qb))

([\/'—T']cos(qb))

There is also an “indirect” effect due to the mean meridional circulation induced by
the baroclinic waves (we will see an example of this later)
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Induced mean meridional circulations
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(a)

Fi1G. 6a. Nine-winter average 500 mb zonal wind speed; con-
tour interval 4 m s7!. See text (Section 8d) for interpretation
of letters (a) and (b) on periphery of figure.
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Same sense as Ferrel Cell
Meridional circulation

wind relationship by
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F16. 15. Schematic illustration showing relationship between
the jet streams (denoted by the letter J), the time-mean circu-
lation transverse to the jet streams (continuous thin line with
arrows), and the band-pass eddy fluxes of westerly momentum
at the jet stream level (heavy white arrows) and heat at the
850 mb levele(héavy Black drroWw); dm lcross séctions (a) upstream
and (b) downstreadim froms the'jet cores.
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Okm

F16.3.18  Schematic diagram showing a sloping, three- dimensional isentropic surface and its relationship
to developing high (H) and low (L) pressure centers. Schematic contours on the bax bottom illustrate the

surface pressure pattern. The double-shafted arrows show the meridional motion of air parcels in the warm
and cold air sectors.

From: “Global Atmospheric Circulations: Observations and Theories”, Richard Grotjahn

Oxford University Press, New York, 1993
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