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• Spin-dependent interactions :

• Spin 1 electronic ground state for Na

• All Zeeman components can be trapped in optical traps

Spin F=1 polar condensates

F=1

mF=0mF=-1 mF=+1

 Spins fluctuate in a plane perpendicular 
to a particular direction n (director)
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Magnetic field
F=1

mF=0

mF=-1 mF=+1

Current experiments work in a different regime of conserved magnetization :

 Linear Zeeman shift acts only as a constant offset

 Magnetic field enters through the quadratic Zeeman shift Eq

Unpolarized gas : mz = (N+1-N-1)/N=0 Partially polarized gas : mz >0

populations : ≈
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x tends to mz for large Eq >> gsn

W. Zhang, S. Yi and L. You, NJP 2003
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Double condensation for ideal spin-1 gases 
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Double condensation for ideal spin-1 gases
with quadratic Zeeman shift 

qB2/Tc0 =2

m=+1 condensed

m=0,+ 1 condensed

m=0 condensed

Second critical temperature :

Chemical potentials :
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Free energy : G = E − μN − η′Mz + Eq(N+1 + N−1)

μ+1 = μ + η − Eq

μ0 = μ

μ−1 = μ − η − Eq

μ+1 = μ + η − Eq = 0
μ0 = μ = 0

μ−1 = −2Eq < 0



All-optical evaporation
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• Crossed-dipole trap (CDT) loaded from laser-cooled atoms

• Trap size ~ 8 microns

spinor BEC with ~104 atoms in ~3 s evaporation

• Trap frequency : /2 ~ 2 kHz @ Tc

• Critical temperature : Tc~ 2 K 

• Chemical potential : ~ 300 nK @ low T

• Spin-dependent energy : gsn~ 10 nK @ low T

D. Jacob et al., NJP 2011



• Stern-Gerlach imaging

release the atoms from the trap

apply magnetic gradient to give spin-dependent momentum kick (equivalent to 
Stern-Gerlach experiment)

take absorption picture 

Experimental procedure

m=+1 m=0 m=-1

no bias bias 0.8 G bias 3.2 G

• Extract temperature, condensate fraction from bimodal fits
• Vary initial magnetization using spin-sensitive evaporation (magnetic gradient added to optical trap)



Closer look at condensed fractions (preliminary)

B=0 G
Mz=0.05(0.1)

B=0.33 G
Mz=0.5(0.1)

m=+1 m=+1 

m=0 m=0 
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Temperature ( K) Temperature ( K)
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Preliminary results for Tc

B=0 G
Eq/T*=0

B=0.33 G
Eq/T*=10-2

B=1.3 G
Eq/T*=3.10-2

•Observation of double condensation

•Qualitative behavior agrees with 
theory

•Currently refining data analysis and 
calibrations
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1. Sodium experiment : thermodynamics of polar spinor condensates

2. Artificial gauge fields for ultracold atoms

- Quantum Hall Effect

- From rotations to laser-induced artificial magnetism

- Hofstadter regime : strong artificial fields in optical lattices

- practical implementation with Yb atoms

Review article on artificial gauge potentials :

Jean Dalibard, Fabrice Gerbier, Gediminas Juzeli nas, Patrik Öhberg, arXiv:1008.5378



Orbital magnetism for cold atoms ?

CM phenomena emerge from electronic properties: spin or charge.

Atoms have spin: Zeeman effect, spin magnetism ...

Atoms don’t have charge: no orbital magnetism

In this talk I will present an experimentally realistic method to produce strong 
artificial magnetic fields for ultracold atoms in optical lattices:

use the specific properties of  Ytterbium (or alkaline earth) atoms to 
realized internal state dependent sublattices coherently coupled by laser 
beams

optical superlattice

Possible prospects:

• quantum Hall states for bosons or fermions

• Josephson junction arrays (full or partial magnetic frustation)

• non-Abelian gauge fields ...

Sorensen et al. PRL 2005
Hafezi et al., PRA 2007
Palmer & Jaksch, PRL 2006
Palmer, Klein & Jaksch, PRA 2008 
Möller & Cooper, PRL 2009

Osterloh et al. PRL 2005 
Goldman, Lewenstein et al., PRA 2008



Quantum Hall effect

• 2D electron “gases” (very pure semiconductors) in Hall geometry:

large perpendicular magnetic field

Hall current perpendicular to applied voltage

• Around certain “magic” values of magnetic field (QH plateaux) :

Longitudinal resistance vanish (without superconductivity)

Hall resistance assumes quantized values

Transverse resistance

Longitudinal resistance

σH = n
e2

h



Fractional quantum Hall states

 Integer quantum Hall effect at fractional filling factor  =1,2,3, ...

• can be explained by a model of non-interacting electrons (filled Landau levels)

 Fractional quantum Hall effect at fractional filling factor  =1/3, ...

Many-particle physics enters : 
• all single-particle states (Landau levels) are degenerate
• the system is only governed by (Coulomb) interaction

• gapped, incompressible liquid 
• Elementary excitations are anyons (any-ons= neither fermions nor bosons)

• carry fractional charge e
• obey fractional statistics (anyons = neither fermions nor bosons)

• No order parameter as in ordinary ordered phases
• topological order :  is robust wrt variations of the microscopic hamiltonian, provided the 
energy gap remains finite

key ingredients: strong electron-electron interactions and strong magnetic field

Filling factor :
# of particles

# of magnetic flux quanta
ν =

n2d(
eB
h

) =
N

Nflux
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Rotating quantum gases

ENS- 
K. Madison et al., PRL 1999

MIT
J. Abo-Shaeer et al., Nature 2000

BEC in a harmonic potential rotating at angular frequency  :

Slow rotations: nucleation of vortices, vortex lattices, etc...

Vortex lattice density

mv × Ω → ev × Beff

Analogy between the Coriolis and Lorentz forces

JILA, ENS, MIT, Oxford, NIST, Rochester, Arizona,...

Cooper,  Adv . Physics (2009)

Bloch, Dalibard, Zwerger, RMP 2009

H =
(p − qA)2

2m
+

1
2
m

(
ω2

trap − Ω2
)
r2

nv =
mΩ
h



Rotating quantum gases

ν =
n2d

nv
� 6

Filling fraction

|Ω − ωtrap| � ωtrapFast rotations: 

• vortex lattice melts: emergence of strongly correlated phases

• bosonic cousins of electronic Fractional Quantum Hall Phases 

Experimentally challenging:

• center of mass instability for = trap

• very sensitive to residual static anisotropies of the trap (time-dependent in rotating frame)

• very small gap ~0.05  ( : chemical potential)

see Cooper, Adv . Physics (2008)
Bloch, Dalibard, Zwerger, RMP 2009

Sinova et al., PRL 2003



Aharonov-Bohm effect

B

• Key concept:  Aharonov-Bohm phase

Phase accumulated by a charged particle revolving around a magnetic flux tube

Ψ(θ + 2π) = ei e
�

H
A·dlΨ(θ) = ei e

�

R R
B·dSΨ(θ)

Simulating a magnetic field is equivalent to changing the phase of the wavefunction

Condition: finite “flux” on a closed surface 

= non-zero phase around any closed contour: equivalent to Berry’s geometric phase 

Early ideas by Berry, Wilczek; in the context of cold atoms: Olshanii & Dum, Ho (1996) 



Dressed states and geometric phases

Atom with 2 internal states a and b

Atom-laser interaction

|−〉r = − sin
(

θ

2

)
ei φ

2 |a〉 + cos
(

θ

2

)
e−i φ

2 |b〉.

Dressed states = eigenstates of H

Lowest dressed state :

cos[θ] = − δL√
δ2
L + Ω2

R

,

a

b

δL

ΩR

Adiabatic or diabatic (  pulse) passage from a to b : |Ψ〉 = |a〉 → e−iφ|b〉

H =
( −δL/2 �ΩR

2 eiφ

�ΩR

2 e−iφ δL/2

)
d · E =

�ΩR

2
eiφ

laser phase



“Dressed states”= local eigenstates of atom-field coupling

Dressed states and geometric phases

Atom with 2 internal states  in non-uniform laser field

b

x
a

|−〉r = − sin
(

θ

2

)
ei φ

2 |a〉 + cos
(

θ

2

)
e−i φ

2 |b〉.

H =
p2

2m
+

(
−δL(r)/2 �ΩR(r)

2 eiφ(r)

�ΩR(r)
2 e−iφ(r) δL(r)/2

)

geometric vector potential
(Berry connection) A = i�〈−|∇|−〉 =

�∇φ

2
cos(θ)

geometric scalar potential Dutta et al., PRL 1999

H− =
(p − A)2

2m
+ V−(r) + Φ(r)

Assumption: The atom follows adiabatically        :  adiabatic elimination of state      |−〉r |+〉r

cos[θ(r)] = − δL(r)√
δL(r)2 + Ω(r)2



Dressed states and geometric phases

Atom following dressed state        in non-uniform laser field

b

x
a

H− =
(p − A)2

2m
+ V−(r) + Φ(r)

A = i�〈−|∇|−〉 =
�∇φ

2
cos(θ)

Many proposals in various geometries for realistic alkali atoms
Bloch, Dalibard, Zwerger, RMP 2009
Juzeliunas et al., PRA 73  (2006); PRA 71(2005)
Cheneau et al., EPL. 83 (2008)
Günter, et al., PRA 79 (2009)
Spielman, PRA 2009 

e.g.

|−〉r

cos[θ(r)] = − δL(r)√
δL(r)2 + Ω(r)2

Vector potential :

To obtain a non-zero vector potential, one needs :
• a spatially varying phase 
• a spatially varying mixing angle
• with non-collinear gradients

Beff = ∇× A =
�

2
∇ [cos(θ)] ×∇φEffective magnetic field :



NIST experiment

• Raman coupling in F=1 manifold of Rb

• Additional magnetic field gradient along y

uniform Rabi frequency

spatially varying Raman detuning

• Observed several (~10 vortices) created in the gas

• no ordering in Abrikosov lattice (spontaneous emission limits lifetime to 1.4 s)

Lin et al., PRL 2009; Nature 2010
Spielman, PRA 2009



Strength of artificial magnetic field

Order of magnitude of vector potential:

Order of magnitude of magnetic field:

Maximum magnetic field:

Vortex density

Particle density ~1 atom/site

Filling factors n2d/nv~1 and quantum Hall states (for strong interactions) within reach !

n2d ∼ 1
λ2

L

Achievable when laser intensity/detuning varies on the scale of an optical wavelength L: 

optical lattices !

nv =
2Beff

h
∼ 1

λ2
L

cos[θ(r)] = − δL(r)√
δL(r)2 + |Ω(r)|2 ,

|A| ∼ �kL

|Beff | ∼ �kL|∇θ|

|Beff |max ∼ �k2
L
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Landau gauge:

Finite flux:
∫

�
A · dl = Bdxdy

Harper hamiltonian : lattice and magnetic field

HHarper = −J
∑
〈r,r′〉

eiφr,r′ ĉ†r′ ĉr + h.c.

Harper hamiltonian:

Harper, 1956; Azbel 1964; Hofstadter, 1976;
Thouless et al., 1983;  Kohmoto; Osadchy-Avron 2001...

φr,r′ =
e

�

∫ r′

r

A · dl

∑
�

φr,r′ = 2πα

φr,r+dex
= 2π eBdxy

h = 2πα y
dy

Aharonov-Bohm phase:

A =

⎛
⎝By

0
0

⎞
⎠ ∫ x+d

x

Axdx = Bdxy



Hofstadter’s butterfly:
interplay between lattice and vector potentials

HHarper = −J
∑
〈r,r′〉

eiφr,r′ ĉ†r′ ĉr + h.c.

∑
�

φr,r′ = 2πα

Landau gauge:

φr,r′ = 2παy, for r′ = r + ex,

= 0, for r′ = r + ey

Finite flux:

Flux 

Energy E
0-4J 4J

1/2

1

0

When =p/q rational:

• q sub-bands, width <<8J

• Recursive structure, discovered 
by Azbel and Hofstadter

• Very different from Landau levels 
(recovered for <<1)

Harper hamiltonian:

Harper, 1956; Azbel 1964; Hofstadter, 1976;
Thouless et al., 1983;  Kohmoto; Osadchy-Avron 2001...



Signature of the presence of a gauge potential

Non-interacting bosons: momentum distribution

Non-interacting fermions: spatial distribution

=1/3

=1/3, EF=0

Numerical solutions including an additional harmonic trap



The Jaksch & Zoller scheme (1)

Spin-dependent lattice for alkalis:

• Atoms with two internal (hyperfine) states a and b

•Spin-dependent 2D lattice:

Lattice potential along y state-independent

Lattice potential along x state dependent: 

- a trapped at potential minima

- b trapped at potential maxima

- no free tunneling

Mimic the Aharonov-Bohm effect using laser-induced tunneling in an optical lattice

Jaksch & Zoller, NJP (2003) also: Mueller, PRA 2004; Sorensen et al., PRL 2005

optical flux lattices : Cooper, PRL 2010



Laser-induced tunnel matrix element

The Jaksch & Zoller scheme (1)

• Atoms with two internal (hyperfine) states a and b

•Spin-dependent 2D lattice:

Lattice potential along y state-independent
-  free tunneling

Lattice potential along x state dependent: 

- a trapped at potential minima
- b trapped at potential maxima
- no free tunneling

Mimic the Aharonov-Bohm effect using laser-induced tunneling in a spin-dependent optical 
lattice

Jaksch & Zoller, NJP (2003)

∝ �ΩLeiqLy

also: Mueller, PRA 2004; Sorensen et al., PRL 2005

optical flux lattices : Cooper, PRL 2010



Single laser configuration: 
staggered magnetic field

Phase factor picked around a loop:

Phase factor picked around a neighboring loop:

The phase per plaquette alternates from one column to the next: staggered magnetic field

 completely different level structure than uniform field

=1/2 (“full magnetic frustration”): Dirac point @ ( /2, /2)

Wang & Gong, PRB 74 (2006)

Hou, Yang, Liu, PRA 74 (2006)

Laser wavevector along y axis: r = (n, m) × dkL · r = 2παm

|Ψ〉loop =
(
ei2πα(m−1)

)∗
ei2παm|Ψ〉0 = ei2πα|Ψ〉0

|Ψ〉n−loop = ei2πα(m−1)
(
e−i2παm

)∗ |Ψ〉0 = e−i2πα|Ψ〉0



Flux rectification: uniform magnetic field

V2

V1

Modulate energy levels with period 2dx:



Flux rectification: uniform magnetic field

Modulate energy levels with period 2dx:

• Flux rectification by alternating wavevectors 

•Modulation of energy levels done in practice by 
an additional superlattice potential:

VSL(x) = V2 cos(πx/4dx + ϕ)2

V2

V1

F. Gerbier & J. Dalibard, NJP (2010)
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Practical problems 

Practical issues with spin-dependent lattices for alkalis:

• small detunings, entailing (relatively) large spontaneous 
emission

marginal for Rb, not feasible for other atoms        
(incl. fermions K, Li)

• a and b must have different magnetic moments

high sensitivity to stray magnetic fields, 

coherence times ~ ms

F. Gerbier & J. Dalibard, NJP (2010)

lattice depth 10 ER       L=( D1+ D2)/2

Ytterbium atoms (or alkaline-earth) allow to overcome these limitations

D2

D1
L



Ytterbium

1  Internal state manipulation using ultra-
narrow (1S0-3P0) transition 

 “doubly forbidden” lifetime >20 s !

 weak coupling in presence of hyperfine 
or Zeeman interactions

 optical atomic clocks

2  broad (1S0-1P1) and narrow (1S0-3P1) 
transitions for laser cooling

3  weak sensitivity to magnetic fields (nuclear 
magneton) 

Bosons (spin 0): 170 Yb, 172 Yb, 174 Yb, 176 Yb

Fermions: (spin 1/2) 171 Yb, (spin 5/2) 173 Yb

quantum degeneracy reached at 
Kyoto University for all isotopes

Y. Takahashi & coworkers



• Optical trap potential:

• At magic wavelength (~760 nm): 

optical potentials attractive, identical for ground 
and excited states (atomic clocks)

• At anti-magic wavelength (~1.1 m): 

optical potentials is attractive for ground state 
atoms, repulsive for excited states atoms 

State-dependent lattices

Vdip = −1
2
α(λL)|E|2

dynamic polarisability

x lattice: am

y lattice: m

e g



Non-abelian gauge potentials

Yb: spin=fictitious “color” charge171

matrices

{g1, g2} → eiM̂·d{e1, e2}

M̂x, M̂y : 2 × 2

g-1/2

g+1/2

e-1/2

e+1/2

x

y

• Can be used to simulate spin-orbit 
coupling as in semiconductors (topological 
insulators)

• Big question : Do non-Abelian gauge 
fields give rise to non-Abelian anyons ?



• Different methods to realize an effective artificial magnetic field for neutral atoms

Rotation
Space-dependent dressed states
Laser coupling in spin-dependent optical lattices : 

- regime of strong fields and strong interactions 
- realistic experimental proposal with Yb (or alkaline earth) atoms

Towards quantum Hall states

• Atomic fractional quantum Hall states on a lattice: 

analogue of continuum states exist

completely novel quantum Hall phases that arise only on a lattice (composite fermions 
theory of Möller & Cooper, PRL 2009)

Big question : how to characterize topological order if present ?

• More exotic lattices: for example T3 or “dice” lattice 

- =1/2: three flat bands             

- =1/3: exotic vortex liquids      Burkov & Demler, PRL 2006

Sorensen et al. PRL 2005;Hafezi et al., PRA 2007
Palmer & Jaksch, PRL 2006; Palmer, Klein & Jaksch, PRA 2008 
Möller & Cooper, PRL 2009 

Vidal et al. PRL 2009
Rizzi et al., PRB 2006



Outline

• Quantum Hall Effect

• From rotations to artificial magnetism for ultracold atoms 

• Practical implementation of a strong, artificial field : Yb in optical superlattices

• Exotic geometry : T3 lattice



Dice lattice
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Dice lattice

g atoms: coordination 6

e atoms: coordination 3



Dice lattice

g atoms: coordination 6

e atoms: coordination 3



Aharonov-Bohm cages

Single-particle localisation due to 
destructive interferences @ =1/2

(2 )

Prediction :  Vidal et al., PRL 1998

Observed in Abilio et al., PRL 1999 
in superconducting Josephson 
junction arrays

0

2

3

1

Probability amplitudes : A013 =-A023

No transport  (for non-interacting particles) due Aharonov-Bohm phases
causing destructive interferences at “full magnetic frustration”



single-particle spectrum of the dice lattice

Three non-dispersive bands @  =1/2: large single-particle degeneracy

Expect strongly correlated states to emerge even for (relatively weak) interactions



What to expect from the dice lattice ?

• Theory : 

Vortex liquid @  =1/2 (or even glassy behavior ?)

Unconventional vortex state @  =1/3 (vortex form resonating 
valence bonds)

New insulating phase  (Aharonov-Bohm insulator) ?

• Experiments on Josephson-junction arrays (Grenoble) :

 Vortex liquid (?) @  =1/2, ordered vortex lattice @  =1/3

role finite range of interactions ? finite size ? glassy dynamics ?

Rizzi et al., PRA 2005

Burkov & Demler, PRL 2006

Korshunov, PRL 2001, PRB 2002
Cataudella & Fazio, EPL 2003

Serret et al., EPL 2003




