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THINKING ABOUT DISORDER
•Depending on your point of view, disorder is either

a lamentable reality in material systems; to be eliminated 
in the pursuit of ever more pure samples

yet another interesting knob to turn (in the same vein as 
competing interactions, external fields, etc.)

• Taking the more optimistic perspective, we ask:

‣ can disorder stabilize interesting quantum phases?

‣ can it drive nontrivial zero-temperature transitions?



TALK OUTLINE
•What happens when we disorder an antiferromagnet?

• Focus here on non-frustrated systems

• Spin models with site dilution or disordered nearest-neighbour 
exchange couplings; large-scale, unbiased simulations possible

• Random singlet (RS) phase in the linear chain + RG picture

• Generalization to higher dimensions (large N construction)

• Test stability of RS states with quantum Monte Carlo

?



LATTICE MODELS

tight-binding picture
of orbital overlaps

two-state basis for 
localized S=1/2 spins

2

2j− 1



EXCHANGE INTERACTION

Pauli exclusion

strong Coulomb
repulsion

effective coupling

|φij� =
1√
2

�
| ↑i↓j� − | ↓i↑j�

�

P̂ij = |φij��φij| = 1
4 − Si · Sj

Jij > 0



SINGLET PRODUCT STATES

• for each static singlet tiling,

• only 1/z of the n.n couplings 
can be satisfied at a time

• degeneracy lifted by quantum 
fluctuations

E =
1

z
× zN

2
×

�
−3J

4

�
= −3JN
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SINGLET FLUCTUATIONS

• “off-diagonal” processes induce singlet rearrangements

• generate bonds of all odd Manhattan lengths (connecting sites 
in the A and B sublattices)

E/N =−0.375J

↓
−0.669J

e.g., on the square lattice:



NÉEL ORDER
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• system-spanning bonds proliferate (communicating spin-spin 
correlations over long distances)

•many relevant configurations contribute to the ground state



NÉEL ORDER

Ĥ = −J

�

�i,j�

P̂ij = J

�

�i,j�

Si · Sj + const.

ni = lim
S→∞

Si�
S(S+ 1)

E = J
�

�i,j�

ni · nj

• Continuously connected to the large S limit:



NÉEL ORDER

•Non-frustrated S=1/2 spin models 

•Nearest-neighbour exchange 
interactions on a bipartite lattice

•Néel order is a generic feature 
when the coordination is greater 
than 2



MEAN-FIELD PICTURE

low coordination

high coordination

conventional AFM
order is favoured

C(r) =
(log r)1/2

r

C(r) = const.+
1

r



CRYSTALLINE ENVIRONMENT

• (discrete) translational 
invariance implies that
(crystal) momentum is 
a good quantum 
number

• existence of well-
defined wavevectors is 
crucial to most 
analytical approaches



QUENCHED DISORDER

lattice 
mismatch

substitutional defects

interstitial defects



QUENCHED DISORDER

L

all patches are equivalent all patches are unique



QUENCHED DISORDER

• requires brute-force averaging

• limit is doubly infinite: patch size 
and number of realizations



DISORDERED SPIN MODELS
Site dilution

Random exchange
S=1/2 degrees 

of freedom



SITE DILUTION EFFECTS

2, 3, and 4 neighbours

• Creation of orphan clusters (finite in 
size and disconnected from the 
spanning cluster or “backbone”)

• Fluctuations in local coordination

• Increasingly disruptive in low dimension 
(cuts the linear chain entirely)



CLASSICAL PERCOLATION

p = 0.2 p = pc
.
= 0.407 p = 0.6

few orphans mostly orphans all orphans



PERCOLATION

• percolating cluster has fractal 
dimension 91/48

• average coordinate is 2.5 (<3)



BLOBS AND FILAMENTS

quasi-two-
dimensional 
blobs

quasi-one-
dimensional 

filaments



BLOBS AND FILAMENTS

cluster flip

• does the percolating cluster support magnetic order?



PHASE DIAGRAM?

bulk

intervening phases

nontrivial critical exponents

continuous first-order

on the 
largest 
cluster
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TRIVIAL RESULT
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TOO BLUNT AN INSTRUMENT

• Random site dilution is not disruptive enough:

‣ it’s not able to kill magnetic long-range order

‣ AFM is too robust on regular lattices in dimension ≥ 2

• At the same time, it is far too disruptive:

‣ quickly breaks the system into disjoint pieces (esp. 1D)

‣ classical percolation dominates at transitions



RANDOM SINGLET PHASE

• S=1/2 quantum Heisenberg model on the linear chain is 
unstable to even infinitesimal exchange disorder

• The existence and nature of the resulting random singlet 
phase is established by real-space RG analysis (decimation)

•Not applicable to lattices with coordination z > 2

•Numerical simulations indicate that AFM order is robust with 
respect to exchange disorder



REAL-SPACE DECIMATION

• at each stage, form a singlet 
across the strongest bond

• new effective coupling via 
perturbation theory

• unique pattern of singlet 
bonds        at infinite-
randomness fixed point

Dasgupta and Ma, PRB 22, 1305 (1980)
Fisher, PRB 50, 3799 (1994)
Rafael and Moore, PRL 93, 260602 (2004)

J0

J�
2 :=

J1J3

J2

J1

J2

J3

J4

J�
2

H[L, {Jij}]→ H[L− 2, {J�
ij}]

J�
2

J0 J4

|RS�



RESULTING RG FLOW

• All initial distributions flow to a singular
 

• Strong-disorder properties are universal

P(J)

J

C(r) ∼ 1

r2

P(J) ∼ J−1+1/D

→ 1/J

D→∞



TRUE GROUND STATE

+

+

+

+
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e−τ Ĥ|RS� =
random singlet 
configuration

bond 
fluctuations
that are negligible
(QMC)



SQUARE-LATTICE QMC

Laflorencie et al., PRB 73, 060403(R) (2006)
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• simulations reveal no critical value of D



SU(N) GENERALIZATION

• bond rearrangements (off-diagonal elements of H) suppressed

Kawashima and Tanabe, PRL 98, 057202 (2007)
Beach et al., PRB 80, 184401 (2009)

1

N

1

N

tune this to 
small values



SU(N) GENERALIZATION

⊗ ⊕

N − 1

N

...
...

...

=

A B

• enlarge group symmetry

• place the fundamental rep 
on one sublattice and its 
conjugate on the other



SU(N) GENERALIZATION

1
2

1
2S + 1

N = 2S + 1

Pij =
�

t(Si · Sj − Et)�
t(Es − Et)

=
2S�

j=1

�
1− 2

�
S(S + 1) + Si · Sj

j(j + 1)
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Pij =
1
4
− Si · Sj

Pij =
1
3
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(Si · Sj)2 − 1
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...

(S = 1
2 )

(S = 1)



SUPPRESSING AFM ORDER
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BOND SNAPSHOT

N = 2 N = 7



N = 2 N = 7

b-b corr

bb-b corr



“CONTINUOUS N”
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EMERGENT U(1) SYMMETRY
Dy

Dx

Da =
∑

r

(−1)r·âSr · Sr+â (a = x, y)



EMERGENT U(1) SYMMETRY
Dy

Dx

Da =
∑

r

(−1)r·âSr · Sr+â (a = x, y)

Z4 → U(1)



DIMER ORDER HISTOGRAMS

N = 4.5 N = 5

N = 5.5 N = 6



DIMERS AND MONOMERS

• in the 1/N=0 limit, long 
bonds have no meaning

• resulting classical system of 
short-ranged dimers and 
monomers



CLASSICAL ENERGY 
MINIMIZATION

• simulated annealing using worm-like moves



ELIMINATION OF MONOMERS

• low-energy configurations contain few monomers

• the remaining ones are largely uncorrelated



RECONNECTING LONG 
BONDS

Jeff
ij ∼

�
1√
N

�Lij−1

J1J3J5 · · · J2k+1

J2J4 · · · J2kNk

• effective coupling derived 
from perturbation theory

• decays exponentially in the 
Manhattan length



1/N=0+ CONSTRUCTION

•Well-defined infinite randomness limit

•D < ∞ configurations easily obtained via classical energy 
optimization (highly reproducible)

• Long bonds: reconnect monomers closest to farthest

• Correlation functions (1/r2d powerlaw) determined by 
geometric considerations alone



1/N=0+ LINEAR CHAIN

Alikeness

Disorder strength D

well-defined infinite 
randomness limit

L=512



1/N=0+ LINEAR CHAIN

Disorder strength D

Energy

1

2
Jtyp =

1

2
e−D

1

2
Jave =

1

2(D+ 1)

strongest-to-weakest
simulated annealing



1/N=0+ LINEAR CHAIN

Monomer
fraction

strongest-to-weakest
simulated annealing

Disorder strength D



1/N=0+ LINEAR CHAIN

0.275

r2

L=512
D=10

C(r)

r



1/N=0+ LINEAR CHAIN

0.275

r2

L=512
D=3

C(r)



1/N=0+ LINEAR CHAIN

L=512
D=0.8

C(r)
0.275

42 + r2



1/N=0+ SQUARE LATTICE

Alikeness

Disorder strength D

well-defined infinite 
randomness limit

L2=32!32



1/N=0+ SQUARE LATTICE

Disorder strength D

Energy
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strongest-to-weakest
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1/N=0+ SQUARE LATTICE

Monomer
fraction

strongest-to-weakest
simulated annealing

Disorder strength D



1/N=0+ SQUARE LATTICE

L2=32!32
D=10

C(r)

r

0.2

r4



1/N=0+ SQUARE LATTICE

L2=32!32
D=3

C(r)

r

0.2

r4



1/N=0+ SQUARE LATTICE

L2=32!32
D=2

C(r)

r

0.2

r4



1/N=0+ SQUARE LATTICE

L2=32!32
D=1

C(r)
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MONTE CARLO LOOPS

�RS|e−τHOe−τH|RS�
�RS|e−2τH|RS�

|RS�

�RS|

�RS|e−τ

e−τ |RS�



IMAG. TIME EVOLUTION
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QMC COMPARISON
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QMC COMPARISON

τ = 0.01

τ = 5.12

τ = 163.84

C(r)

r

τ = 0 (RS)
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QMC COMPARISON
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QMC COMPARISON

τ = 0 (RS)

τ � τ∗
C(r)

r

L=32
D=5
N=5
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PHASE DIAGRAM

C(r) ∼ 1

r4
=

1

r2d
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