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 Some motivations

Entanglement concepts & tools for studying 
many-body systems 

Entanglement spectra of Heisenberg ladder

Boundary Hamiltonians for Heisenberg ladders 
and with PEPS - “Holographic Principle”

OUTLINE

D.P., PRL 105, 077202 (2010)

- 2D AKLT
- 2D transverse field Ising
- Kitaev code (LRE)
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Edge states in (topological) FQH systems

A

B
Li & Haldane

PRL 2008
Lauchli et al., 2009

L

L

Boundaries in Condensed Matter Systems

Also topological insulators, etc...



Entanglement Concepts: 

The basis of Quantum Information Science

Historically associated to seminal work:
Einstein A, Podolsky B, Rosen N (1935). "Can Quantum-Mechanical Description of 
Physical Reality Be Considered Complete?".  Phys. Rev. 47 (10): 777–780. 

Schrödinger E (1935). "Discussion of probability relations between separated systems". 
Mathematical Proceedings of the Cambridge Philosophical Society 31 (04): 555–563.

J. S. Bell (1964). "On the Einstein- Poldolsky-Rosen paradox"

Entangled states as a new “non-classical” ressource: 

- Quantum information
- Quantum computing
- Quantum Cryptography

Powerful tools to understand correlated systems ?



Entanglement Concept 

A

BEA ⊗ EB

separable state

More general case:

Hilbert space:

|Ψ〉
A
⊗ |Φ〉

B

|Ψ〉
AB

=
∑

i,j

cij |i
〉

A
⊗ |j >B

entangled state

Exemple:
1√
2
(| ↑ 〉

A
⊗ | ↓ 〉

B
− | ↓ 〉

A
⊗ | ↑ 〉

B
) singlet state !

Maximally entangled state 
(equiv. to Bell state for qubits)



Reduced density matrix
P. Dirac (1930)

A

B

|Ψ〉 ∈ EA ⊗ EB ρ = |Ψ〉〈
Ψ| projector

ρA =
∑

j

〈
j|B (|Ψ〉〈

Ψ|) |j〉
B

= TrB ρDefinition:

1√
2
(| ↑ 〉

A
⊗ | ↓ 〉

B
− | ↓ 〉

A
⊗ | ↑ 〉

B
)Example of entangled state:

ρA = (1/2)(| ↑ 〉
A

〈 ↑ |A + | ↓ 〉
A

〈 ↓ |A)

“mixed” ensembleIn general: ρA =
∑

i

λ2
i |i

〉
A

〈
i|A



Levin & Wen, 2006
Kitaev & Preskill, 2006

Entanglement Entropy 

Sentanglement = −Tr{ρA ln ρA}

Reduced density matrix:  ρA = TrB |Ψ〉〈
Ψ|

(Von Neumann) 

A quantitative measure of 
entanglement

“area” law 

d=2:          (perimeter)
d=1 or critical: ?

∝ L

Sentanglement ∝ Ld−1



Example: segment entanglement 

l

SVN ∝ c ln l

1D critical (spin) chain

central charge (universality class)

L � 1

B B

A



ρA = exp (−ξ̂)

i

rewrite the weights as: λi = exp (−ξi/2)

Rewrite         as thermal density matrixρA

β = 1/T inverse temperature

ρA =
∑

i

λ2
i |i

〉
A

〈
i|A

ρ(T ) =
1
Z

exp (−βH) =
∑

α

exp (−βeα)|α〉〈
α|



“Haldane” Conjecture:

Precise correspondence between 
the entanglement spectrum of a 
FQH system (with LRE)  
partitioned into two sub-systems 
linked by some “edge” and the 
true edge spectrum 

Questions: 
 

- Is the ES always connected to the edges/boundary ?
- How does it reflect bulk properties ?

A

B
Li & Haldane, 2008



c=1 CFT

Entanglement spectrumA simple example:
the 2-leg antiferromagnetic 

spin “ladder”

D.P., PRL 105, 077202 (2010)

A sub-sytem



2-leg ladder
Cirac, D.P., Schuch, Verstraete, PRB (2011)

A precise characterization 
of the “boundary hamiltonien” 

is in fact possible !
Exponential decay !

ρA = exp (−Hb)



Jleg = 0 → Tθ = ∞
Jrung = 0 → Tθ = 0

D.P., PRL 105, 077202 (2010)

Jrung = sin θ

Jleg = cos θ

Heisenberg ladder

Hb

Effective temperature



Extend to long cylinders with Nh legs ?

“bulk”
boundary

A B

Nh → ∞ ?



Tensor Network approaches

Matrix Product States (1D) :

|Ψ〉
=

∑

I

cI |i1, i2, ..., iNh

〉

....1 2 3 Nh

i

M i
α1,α2 D×D matrix

cI =
∑

α

Li1
α1

M i2
α1α2

... M
iNh−1
α

Nh−2α
Nh−1

R
iNh
α

Nh−1

= tr{Li1M i2 ... M iNh−1RiNh}
Equivalent to DMRG !!

D ~ m parameter controling the DMRG truncation

ik = −S,−S + 1, ... , S − 1, S

I. Cirac
F. Verstraete

G. Vidal



Tensor Network for d=2 (and higher): 
Projected Entangled Paired States (PEPS)

“contract” product of tensors



Basic formula:

σ2
b

lA = Nh/2

ρA

ρA = Uσ2
bU†

isometry: maps 2D onto 1D

“leaves” on the boundary

Holographic framework

Consequence: expect area law !



Boundary theories: main message

* gapped systems (AKLT):
                         is short-range

* approaching a critical point 
(deformed AKLT or Ising PEPS):
                    becomes long-range

* for topological GS (toric code): 
        LR entanglement =>       non-local 

Hb

Hb

Hb

Can we only describe gapped systems ?

To what extend      is a local Hamiltonian ?Hb



Application to AKLT  ladders

Si = zi/2

HAKLT =
∑

<ij>

PSi+Sj

Nh = 2

PEPS 
representation

D=2  !

(Affleck-Lieb-Kennedy-Tasaki)

Nh# of legs from 2 to ∞



c=1 CFT

Entanglement spectra of AKL ladders/cylinders



Finite size Nh-leg AKLT ladders

Hb =
∑

n

hn

∑



Finite size scaling (“brute force” contractions)

         ... and approximate (“cheaper”) methods



Critical point:

Deformed AKLT model

breaks SU(2) down to U(1)

(dr+1/d2)1/2 ∼ exp (−r/ξb)



Quantum Ising PEPS

disordered
 phase

effective transverse field

a0(−1/2) = a1(1/2) = cos θ
a1(−1/2) = a0(1/2) = sin θ

(dn/d1)1/2 ∼ exp (−n/ξb)



A simple example: the Kitaev code model

PEPS 
representation

What happens for topological ordered states ? 

D=2 !



+ fixing the left and right BC B & B’: 

B L R B’

_
_
_

_
_

_

_

__
_
_
_
_

_

_

open ends B & B’

Hl = −sign(sin θ)X⊗Nv

Non-local boundary Hamiltonian !



Conclusion and outlook

* natural mapping between bulk and boundary
        properties of bulk reflected in the property of 
the boundary Hamiltonian
        property of the bulk can be “read off” the 
property of 

* extension to arbitrary region in the lattice possible

* extension to models leading to higher spin      (like 
S=1) e.g. RVB PEPS (D=3 on Kagome)

* extensions to fermions, anyons, ...

Hb

Hb

Hb


