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Physical systems are generally inhomogeneneous, homogeneous

systems are often an ideal limit of experimental conditions.

General issue: How quantum and thermal critical behaviors
develop in the presence of external space-dependent fields

Ex.: interacting particles trapped within critia wod%
a limited region of space by an external

potential, such as in experiments of

trap
Bose-Einstein condensation in diluted atomic vapors and of cold atoms in

optical lattices — interplay between quantum and statistical behaviors

Trap-size scaling provides a framework to describe the thermal and
quantum critical behaviors of particle systems confined by an external
field (M.Campostrini, EV, PRL 102,240601,2009; PRA 81,023606,2010)



Finite-T transition related to the Bose-

Einstein condensation in interacting
gases, experiments show an increasing correla-
tion length compatible with a continuous tran-
sition (Donner, etal, Science 2007). Moreover,
experimental evidences of the Kosterlitz-Thouless

transition in 2D (e.g., Hung etal, Nature 2010)

Quantum Mott insulator to superfluid
transitions and different Mott phases (where
the density is independent of i) have been ob-
served in many experiments with ultracold
atomic gases loaded in optical lattices (arrays
of microscopic potentials induced by ac Stark ef-

fects of interfering laser beams)
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A common feature is a confining potential, which can be varied to achieve

different spatial geometries, allowing also to effectively reduce the spatial dims



A classical example:

The lattice gas model in a confining field V(r) = (|7]/1)?,
Higas = —4J ) _pipj — 1Y pi+ » 2V (ri)pi,
(i7) ¢ z

where p; = 0,1 whether the site is empty or occupied.

Far from the origin (p.) — 0 (as (pz) ~ e=2V(#)), thus particles are trapped.

It can be exactly mapped to a standard Ising model:

H:—JZSng‘—i—hZSi—ZV(H)Si, s; =1 —2p;, h=2qJ + pn/2
(i5) g i

In the absence of the trap, liquid-gas transition and Ising critical behavior

with a diverging length scale, at T'="T, and yu = pu. = —4qJ (h = h. = 0).

No diverging length scale in the presence of the confining potential

How is the critical behavior distorted by the trap, and recovered in

the limit [ — oco?



A quantum example:

Atomic gases loaded in optical lattices are generally described
by the Bose-Hubbard (BH) model with a confining potential

J
(25) .
where n; = b,:.rbi, V(r) = vPrP, and the trap length scale [ = Jl/p/v

The trapping potential strongly affects the critical behavior at
the Mott transitions and within the superfluid phases: correlation

functions are not expected to develop a diverging length scale.

A theoretical description of the critical correlations in trapped

systems is important for experimental investigations.



In a trap, correlations do not develop a diverging length scale.

The critical behavior of the homoge- citid Wc’des
neous system is observed around the
middle of the trap only when £ < li,ap

A
trap

If £ 2 livap, it gets distorted by the trap, although it may still show
universal effects controlled by the universality class of the transition

of the unconfined system.

These universal effects are described by the trap-size scaling
theory, resembling the finite-size scaling theory in critical
phenomena, but characterized by a further nontrivial trap critical

exponent v , which describes how the critical length scale & depends on the

0

trap (the above naive relations in

trap size at criticality, i.e., f ~ [

magenta thus become respectively & < lfrap and £ 2 lfrap )



Plan of the rest of the talk:
e Trap-size scaling at thermal transitions
e Lattice gas models, static and dynamics
e Finite-7' transitions at the formation of BEC in interacting gases

® TSS at T' = 0 quantum transitions in D-dim quantum systems
(described by (D + z)-dim QFT’s)
e The XY chain in the presence of a space-dependent transverse

field, as a laboratory model

e The Bose-Hubbard (BH) model, describing cold bosonic atoms in

optical lattices, at equilibrium and off-equilibrium



Critical behavior of homogeneous systems, scaling law
—d
fsing(u]_’UQ’...,/LLk’...) :b fsjng<by1U1,by2U2,...,bkak,...>

ur are nonlinear scaling fields (analytic functions of the model parameters)

In a standard continuous transition: two relevant scaling fields
ur ~t=T/T. — 1 (with y; = 1/v) and up ~ h (external field, with
yn = (d — 2+ 1n)/2), and irrelevant u; (¢ > 3) with y; < 0.

When u;,t — 0 and up,h — 0
Fang = & [f(RE™) + & fu(hE") +...] vt

O(£™%) arises from the leading irrelevant us, and w = —ys.

Finite-size scaling in a finite system
fsing(ul, ug, . .. ,L) = b_dfsing(bylul, byQ’UJQ, c o ey L/b)

thus Faing (e, up) = L_dfsing(Lytut, LY up)



Trap-size scaling (TSS) in the presence of the confining potential
V(r) =v"|r", [l =1/v is the trap size

Ex.: Higas = _4“72(13’) PiPj — Mzi Pi + ZZ 2V("“’L’)Pi with p; = 0,1

TSS Ansatz to allow for the confining potential:
F(ug, Uh, U, ) = b “F(ueb?, upb¥™, u,b?", 2 /b)
where y: = 1/v, yn = (d+ 2 — n)/2, while y, must be determined.

Then, fixing u,bY" = 1, and defining the trap exponent 0=1 / Yo,

TSS F = 1" F (u 0% up %% o17?)
resembling FSS: Faing (ue, up) = L_dfsing (ue LYt up LY") | with L — 1°

Critical dynamics by adding the time dependence through the scaling
variable tl_ze (Costagliola, EV, arXiv:1107.0815)

Finite-size effects by adding Ll_e (de Queiroz, etal, PRE 81,051122,2010)



The correlation length & around the middle of the trap, or any

generic length scale associated with the critical modes, behaves as

=Xy, X(y)~y for y—0

The trap induces a critical length scale & ~ 19 at t =0.

A generic quantity S is expected to asymptotically behave as

S =170 f (1", xl=0) = 170% fo(&17°, 2l ™7)

The hard-wall limit, p — oo of V() = (|#]/1)?, — homogeneous
system of size L = 21 with open boundary conditions.

Standard finite size scaling for p — oo, thus lim,_...0 = 1 (in FSS the RG

dimension of the size L is yr, = —1, since £ ~ L at T,)



The trap exponent 6 can be computed by analyzing the RG
properties of the corresponding perturbation at the critical point.

In the lattice gas model, Hrgas = —4J >y pip; — 125 pi + 2, 2V (73) pi,
the trapping potential is coupled to the order parameter, thus

Py = [d%zV(z)p(x) to Hys = [d%x [(0u9)* + 1¢* + up?].
Using scaling relations (yy =p/0 —p=d—yg, yp = (d—2+1n)/2) —
0=2p/(d+2—n+2p), p=2:6=16/31, 0.4462, 2/5 in 2,3 and 4D.

0 T T T T T

< L=8
L % s L=16 |
¢ o =32
Go(x) = (popz) — (po)(px) 4 e, o %
26y 0/v _1—6 InG,| Yo T LEes
=1 ¢ fo(t17"", xl™") -
a "%, ) i
Results of MC simulations: Go(z) = | - .
l4/3lGo(CE) vs ¢l 16/31 44 T, 00 02 04 I_l%glx 08 10 12

Relaxational dynamics: time scale diverging as 7 ~ 1% where z is the

dynamic exponent; confirmed by MC simulations with z = 2.170(6).



Finite-1T transitions in interacting Bose gases and BEC

The condensate wave function W(x) provides the U(1) symm complex

order parameter of the transition, thus expected to belong to
the XY universality class: Hxy = [d% (|0,¥]* + r|¥|* + u|¥[|*)
v =0.6717(1), n = 0.0387(1) in 3D, shared with the superfluid transition in

4He, superconductor transitions, transition in easy-plane magnets, etc...

No real BEC in 2D, but a finite-T" Kosterlitz-Thouless transition with an
exponential behavior of £, formally v — oo, to a quasi-long range order phase
with one-body correlation functions decaying algebraically

In a harmonic trap, the confining potential V (z) = v*z* = (z/1)? is

coupled to the particle density, giving rise to Py = [ d°z v*|z|*|¥(z)]>.

By scaling arguments: 6 = 1/yv — 2V/(1 -+ 2V), thus
0 = 0.57327(4) in 3D (v =o0.6717(1)) and = 1 in 2D (v = o), for

comparison, § = 1/2 for a Gaussian theory (v = 1/2)



Experimental results for a trapped Bose
gas at BEC (Donner, etal, Science 2007)
showed an increasing correlation length,
leading to the estimate v = 0.67(13) by
fitting to & ~ t7" (to be compared with
vxy = 0.6717(1)).
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Trap effects are negligible when ¢ < cl?, but relevant when & ~ [°.

However, exp results are not sufficiently precise to show trap effects,

(analogously to the experimental evidences of the KT transition in 2D)

Experiments may probe TSS, by varying the trapping potential and
matching the trap-size dependence of the T'SS Ansatz, analogously to
experiments probing FSS behavior in 4He at the superfluid transition.

One may exploit T'SS, using it to infer the critical exponents from the

data, analogously to F'SS techniques to determine the critical parameters.



Quantum 7 = 0 transitions driven by quantum fluctuations:
quantum critical behavior with a peculiar interplay between

quantum and thermal fluctuations at low T
Nonanaliticity of the ground-state energy, where the gap A vanishes

Continuous QPT —— diverging length scale &, and scaling properties.

Ex: the Ising chain in a transverse field His, = —J ), 0011 — po;
p — oo — ground state=][, | Ts)
pu =0 — two degenerate ground states [ [, | —:) and [, | <)

These phases extend to finite ¢, quantum transition at . / J =1,

between quantum paramagnetic and ordered phases

2D Ising quantum critical behavior with A ~ 71 ~ |u — p|



A QPT is generally characterized by a relevant parameter p, with
RG dimensions y,, = 1/v, and dynamic exponent z:

§~ |pl[™, A~ ||~ 77, L= L — [l
Scaling law of the free energy F'(u,T) = b_(d+z)F(,ELbl/V, TH?)

critial modes

A trapping potential significantly changes the
phenomenology of QPT: correlations are not ex-

pected to develop a diverging length scale.
trap

T'SS to describe how critical correlations develop in large traps.

Scaling Ansatz in the presence of the trap V(r) = vPrP = (r/1)P:

F(p, T, v,z) =b" W2 p(abve TH* vb¥, x/b)



F = Z_0<d+Z)F([Ll0/V, Tlez, $Z_0) where V = 1/yﬂ and 0 = 1/yv
For example, T'SS of the gap and the length scale:
A =1"D(ul"), D(y) ~y~" for y — 0
E=10x(m®", %),  X(y,0) ~y " for y =0
implying a critical length scale scaling as f ~ 19 at o= 0.

The trap exponent 0 depends on the universality class of the QPT, and the

way the potential is coupled to the system.
f can be computed using RG scaling arguments

The hard-wall limit p — oo is equivalent to confining a homogeneous

system in a box of size L = 2] with open boundary conditions, thus 6 — 1

T'SS provides a general framework for quantum critical behaviors in

confined systems.



The quantum XY chain in a transverse field is a standard
theoretical laboratory for issues related to quantum transitions.
A space-dependent transverse field gives rise to an inhomogeneity
analogous to a trapping potential in particle systems
1
Hxy = — Z 5[(1 +7)oi o+ (1 =7)ofoi ] — poi —Vi(zi)og,

)
where 0 < v < 1, V(x) = vP|z|? = (|z|/1)P
Map into spinless fermions by a Jordan-Wigner transformation:

o =Tli<;(1— QC;cj)(c;r +¢;), 0 =illj<;(1 — QC;cj)(c,}L —ci), 07 =1— 20;!01;

1
H =2 [l Aije; + 5(0337;3'0; +he)l, Ay =205 = i1y — i1+ 2Q(wi)di;,
Bij = =y (0it+1,j = 0ij+1), Qx)=p+V(z), a=p—1
1 plays the role of chemical potential for the c-particles, and V(x) acts as a trap

There are experimental realizations of Ising chains, such as the insulators
CsCoBr3, CoNb2Og, etc.., in a magnetic field.



In the absence of the trap, quantum transitionat g = u — 1 =0
in the 2D Ising universality class, separating a quantum paramagnetic

phase for i > 0 from a quantum ferromagnetic phase for g < 0.

E~pl ™, v=1/y, =1; A~E7 z=1

In the presence of the confining potential
V(x) = vPxP (I = 1/v is the trap size), the critical

behavior can be observed around the center of

critial modes

the trap in the large-/ limit. trap
Analyzing the RG dim of the corresponding perturbation

Py = /dda: dtV(z)p(z)? — O0=1/y,=p/(p+1)

Using the relations yv = pyo, — p, Yp2 = d+ 2 — Ypu, yv + Y2 = d + 2,
PYy — P = Yu, and the value z =1 and y, =1



TSS can be analytically derived in the XY chain model, arriving at a
continuum Schrodinger-like equation for the lowest states. The asymptotic

trap-size dependence confirms the RG scaling arguments

e any low-energy scale behaves as A = fyel_eD(,ur) where u, =~ %1%
e particle-density correlator: G (z) = (non.)e ~ v**/?7172°G,(X)

e two-point function: G, (z) = (oi02) = asl ?7G.(X)

e its second moment correlation length: & = acy?/?P1°[1 + O(1%)]

I — TSS
o y=1/4, p=-0.01
o y=1/4,pm=001
[ ¢ y=1/2,p=-005 o«
2 y=12,p=-001 o
b a y=1/2,m=0.01

(o))
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e Bipartite entanglement entropy: limz ..o Syn(L/2; L) ~ (¢/6)Inl’,
instead of Syn(L/2; L) ~ (¢/6)InL for homogeneous systems



(@)
Ultracold atomic gases in optical lattices

(arrays of microscopic potentials induced by ac
Stark effects of interfering laser beams, which
constrain the atoms at the sites of a lattice)

(b)

Experiments are set up with a harmonic

trap, inducing an effective external poten-

tial V(1) = v?r?

Boson systems described by the Bose-Hubbard model ([bz,b | = 6ij,
n; = bib;) (D. Jaksch etal, 1998)

(i7)




The BH model presents Mott 2
insulators (9(n;)/0pn = 0) and superfluid phases.
At the transitions driven by p (ex. along the full
arrow), nonrelativistic bosonic field theory (Fisher

etal, 1989) 1

1/T
7 = | [Dé] exp(— dtd%x L.),
/ D] exp( /O zLe)
Lo= "0+ —— Vol + r|6[2 + uld|*,
2m

where 7 ~ 1 — .

superfluid

J

The upper critical dimension is d. = 2 — mean field for d > 2.

For d = 2 the FT is free (apart from logs), thus 2 = 2, Yy = 2.

The 1D critical theory is equivalent to a free field theory of nonrelativistic

spinless fermions, thus 2 = 2, Yu = 2.

The special transitions at fixed integer density (along the dashed arrow) &
the d + 1 XY universality class (relativistic FT), thus z =1, y, = 1/vxvy.



In the presence of a confining potential, experimental and theoretical
results show the coexistence of Mott insulator and superfluid regions, but

the critical behavior can only be observed in the large trap size limit.

Within the TSS framework:
F(u,T,l,z) = 17D 7@ 11% 217%), (O, l,z) ~ 170",z

for several physically interesting observables, such as particle density and

its correlators, one-particle density matrix, entanglement, etc...

The trap exponent 0 can be determined by an analysis of the
corresponding RG perturbation, PV — f dx dt V(z) ’¢($)
obtaining 0 = D / (p —+ y/i) By replacing the corresponding value of y,,, this
relation yields the value of 6 for each specific transition. 0 = P / (p + 2) at

the p-driven transitions.

2
Y




@

The experimental capability of varying the
confining potential allows to vary the effec-
tive spatial geometry, including quasi—lD
geometries. Several exps on 1D systems,
usually keeping the trap fixed. o

1D BH models allow accurate studies by an-

alytical and numerical computations

The 1D hard-core Bose-Hubbard model. The hard-core U — oo limit
of Hpr = —4 37 ;51 (b1b; +b1b;) + 32, [(1e + V (r:))ni + Uni(n; — 1)] implies that
the particle number is restricted to n; = 0,1. Exact mapping into a model of

Ty .
ij Cihijc;

free spinless fermions He = )
In the absence of the trap, three phases: (n;) =0 (vacuum) for p > 1,
(nyy =1 for p < —1, and a gapless superfluid phase for || <1 — two

Mott-insulator to superfluid transitions at © =1 and u = —1



Thermodynamaic limit of

Hpp = —4 3551 (b1b; +blbi) + 32, Uni(ni — 1) + X2, [ + V(r:)]ni, in the
presence of the trapping potential (V(0) = 0), at fixed u, corresponding to
N, — 00 keeping N/I% fixed

(ng) of the 1D HC BH model approaches
its local density approximation in the
large-[ limit, i.e., the value of the parti-

cle density of the homogeneous system at
pei () = p+ (x/1)"

I I G N G
‘0.0 0.5 1.0 15
X/

Corrections are suppressed by powers of [, and present a nontrivial scaling:
(ng) = praa(x/1) +179D(x/1%,T1). This feature is likely shared by other particle
systems, finite U or Hubbard models

Another interesting T'SS regime is that at fixed particle number

N =) .(n;), corresponding to the low-density regime N/l — 0.



Results from various approaches:

e Analytical results: TSS in the dilute limit
u — 1, or TSS keeping N fixed (this regime

G(0.X)

shows universality within trapped boson gases

with short ranged interactions, Lieb-Liniger
model)

e Numerical results by exact diagonalization in the superfluid phase and at
the n = 1 Mott transition at 7" = 0, showing a modulated T'SS at T' = 0,

essentially due to level crossings of the lowest states at finite trap size,

A =1"2Ax(P)[1 + O], (no) =1 —17Do(¢)[1 + O(1?)]

e Numerical results by DMRG to check universality when adding

interaction terms in the Hamiltonian.

e Numerical results by quantum-MC at finite temperature, showing TSS,

while the T' = 0 modulation phenomenon disappears.



At the Mott transitions: y, =2, z=2, 0 =p/(p + 2),
(ne) = paa(e/l) +17°D(x/1°,Tl) and (nany)e = 172°G(z/1° y/1°,Tl)

0.1 ‘
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o I=100 |
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CONCLUSIONS: T'SS provides a theoretical framework to describe

thermal and quantum critical behaviors in confined particle systems.

® At finite-7T' transitions, the critical behavior of confined systems can

be described by a universal T'SS, resembling finite-size scaling theory.
F = l_ed.}t(utleyt, uhleyh, :1:[‘9) , where the trap exponent 6
describes how ¢ scales with I: & ~ 19 at T..

0 depends on the universality class, the power law V(f) = (CE / [ )p , and
the way it is coupled to the critical modes. # can be computed by scaling

arguments.
® Results for the static and dynamic critical behavior of
e Lattice gas models e QLRO of 2D systems

e finite-T" transitions of interacting Bose gases with BEC



e At QPT, Fp, T, x) = 17942 F(plf/v 1170 51=9)
® Analytic and numerical results by diagonalization, DMRG and QMC, for
e the quantum XY chain in a space-dependent transverse field

e the Bose-Hubbard model, in particular in 1D, which is relevant for the

description of cold atomic gases confined in optical lattices.

® Further results for: e T'SS of the unitary off-equilibrium quantum
dynamics, e.g., in the presence of a time-dependent confining potential (M.
Campostrini, EV, PRA 82 063636 2010)

e I'SS of bipartite entanglement entropies in 1D BH models, which diverge
logarithmically with increasing the trap size, and present notable scaling
behaviors in the T'SS limit (M. Campostrini, EV, J. Stat. Mech. P08020 2010)



FURTHER SLIDES ......



Interacting Bose gases in a trap

The confining potential V (z) = v?z? = (2/1)? is coupled to the

particle density, related to the energy operator £ = |¥(z)|?,

it gives rise to the RG perturbation Py = f d>x 2}2’217’2‘\1/($) ’2.
Using yv = pyy —p, yg =d — 1/v, and yv + yr = d,

1 2V
Yy 1+ 2v

thus # = 0.57327(4) in 3D (v=o0.6717(1)) and € = 1 in 2D

(v = o0), for comparison, # = 1/2 for a Gaussian theory (v = 1/2)
Trap effects are negligible when £ < Cle, but relevant when £ ~ 1.

Trap-size dependence casted in a trap-size scaling framework



Quasi-long range order in 2D trapped systems

No real BEC in 2D, but a low-T" QLRO, where the one-body correlation
decays as ‘ZIZ — y’_n(T) with n(T) = T/(27) + O(T?) up to n(Tkr) = 1/4

How does the presence of the trap change the QLRO features?
In the spin-wave limit: Hew = [d’z 2 (Ve)® — [d*z (1 + vPr?)(Ve)?

TSS with @ = 1 in the whole QLRO phase, from T'=0 to T' = Tkr:
G(z,y) = (P(2)(y))e = 1" G217, y1 %)

From simulations of the 2D XY models:  ow- *
Hy = —J ) ReviUisipy,
U@J =1 + V(Tq,j), V(T) = ’Upr 0.01-
(F. Crecchi, EV, PRA 83,035602,2011) ’

G(OX)/m;’

! ! ! !
0.0 0.1 0.2 0.3 0.4 0.5
X/



TSS can be proved in the XY chain model:

The Hamiltonian can be solved by exact numerical diagonalization, even in
the presence of the trapping potential:

e New fermi variables n, = g;.m-c;-r + hyici so that H =) wkn};nk, (wi > 0)
e Introduce ¢r; = gr; + hxi and Vg; = gr; — hg; satisfying the equations
(A+ B)opr = wppr and (A — B)yp = wr i

e Solution by solving (A — B)(A -+ B)¢k - wiqbk,

e The continuum limit, by rewriting the discrete differences in terms of
derivatives, has a nontrivial T'SS limit: by rescaling

1/(1+p)lp/(1+p)X — p/(1+p)l—p/(1+p)

i =y p/(1+p)l—p/(1+p)Qk7

T =" Pr, Wi =27

e Keeping only the leading terms in the large-/ limit, Schrodinger-like eq
(tr + X7 = 0x) (pr + XP 4 9x) ¢1(X) = Qi (X)

Thus, = p / (p + 1) in agreement with RG. Next-to-leading terms

in the large-trap limit give rise to O(I~?) scaling corrections.



Entanglement in a 1D quantum lattice system

Let us consider a pure state |¥), so that its density matrix is p = |U)(W].
Let us divide the system into two parts A and B. pa = Trpp is the

reduced density matrix of the subsystem A. Entanglement entropies:

1
1l -«

Svon Neumann — — In Tr [pA In pA]; SRenyi — In TI‘,Oi

Quantum critical behaviors described by 2D conformal field theories show

logarithmically divergent entanglement entropies.
Dividing the chain in two parts of length {4 and L — 4, CFT predicts

1+at

Sa(la; L) =~ Cy [In L 4+ Insin(wla/L) + eq], Co=c T

where c is the central charge

The trap destroys conformal invariance. What is the scaling behavior of

the entanglement entropies in the T'SS limit?



Bipartite entanglement in a trap at the critical point

In the presence of the trap of size [, the dependence on L disappears when
L — oo. Thus, for sufficiently large L > I,

C 2 eas. i
SW(L/2 L) = & (In€e +e1), e
56 — ae”}/e/ple[l —I_ O(l_e)] 21?55 i éi/z |
which defines an entanglement length &, g ‘ ;
scaling with 6 = p/(1 + p) (M. Campostrini, . A

EV, J. Stat. Mech. P08020, 2010)

The spatial dependence: ‘ T
Sex(L/2 — a; L) ~ A
Co [mee+er + fX) +OE)], ] —




Two interesting regimes of T'SS:

e TSS at fixed particle number N = > (n;) in the low-density
regime, in particular, the asymptotic large-li;ap, dependence of

J

(i) i z‘
keeping N fixed (recall that [N, Hpu] = 0), and increasing lyap
(M.Campostrini, EV, PRA 82 063636 2010)

e T'SS in the thermodynamic limit, achieved by adding a chemical
potential, i.e., i Z ; T;, which corresponds to the limit

N,l — 0o keeping N/I¢= f(n) fixed

TSS at the Mott phase transitions and within the superfluid regions

(M.Campostrini, EV, PRA 81 063614 2010)



@

The experimental capability of varying the
confining potential allows to vary the effec-
tive spatial geometry, including quasi—lD
geometries. Several exps on 1D systems,
usually keeping the trap size fixed. .

1D BH models allow accurate studies by an-

alytical and numerical computations

Critical trap-size dependence within the T'SS framework:
Fu, T,1,x) =172 7@ 11 217°),
(O (p, 1, ) ~ 17Ol 217%)  at fixed p,

(ON(N, 1, z) ~17%°On(21"?) at fixed N,

for several physically interesting observables, such as particle density and

its correlators, one-particle density matrix, entanglement, etc...



The 1D hard-core Bose-Hubbard model. The hard-core U — oo
limit of Hep = —2 3 5y (b1b; +bbi) + 30, [( + V(r:))ni + Uni(ni — 1)]

implies that the particle number is restricted to n; = 0, 1.

Exact mapping into the XX chain model in the presence of a
space-dependent field, by oF = sz + b, 0] = z'(b}f —b;), 07 =1— Qbei,

Hxx = —JY (S{SEa +SYSYy) —nd S7—> V(w:)S;

One can then map it into a model of free spinless fermions by a
Jordan-Wigner transformation, H, = Z ij C;-r hijCj

1 1 _ _
hij = 0i5 — 50ij-1 = S0+ + [A+V(@)]diy,  p=p-—1
In the absence of the trap, three phases: two Mott insulator phases, for
p > 1 with (n;) = 0 (actually vacuum) and for u < —1 with (n;) =1, and a
gapless superfluid phase for |u| < 1. — two Mott insulator to superfluid
transitions at 4 = 1 and u = —1, related by the particle-hole symmetry



TSS of a N-particle system within the low-density regime N/l < 1

thus, approaching the low-density-to-vacuum transition, which may

effectively be considered as a n = 0 Mott transition.

The power-law behavior is controlled by the continuum nonrelativistic
complex ®* theory, i.e., the theory describing the quantum critical

behavior at Mott transitions driven by the chemical potential

Thus 0 = p/(2 + p) and 2 = 2, and (O)(N, 1, z) ~ 7% On(zl™?).
In particular, the gap behaves as Ay ~ Anxl"*Y, the particle density as
p(z) = (ny) =1 "Dn(x/1%), etc...

The universal T'SS can be analytically derived in the hard-core limit

(exploiting the exact mapping to a quadratic spinless fermion model)

Universal with respect to the on-site repulsion coupling U > 0, also shared

with continuum gas models such as the 1D Lieb-Liniger model

_ NV 2
Hiy = Zizl |:2m + V(x%)} + gzi;ﬁj o0(zi — xj)




(na) = 17D (X) [1+007)] EEgE
N1 g e
Dn(X) =) ¢i(X) il N ]
k=0 '\.\
p=2 ".f}\ '\\
where 0 = p/(p +2), X = 2/1°, I N R

and ¢y (X) = cpHyp(X) exp(—X*/2)
(solutions of (— + §X2) o (X) = expr(X) with e, = k4 1/2)

1
2 dX?2

(neny)e = 172°GN(X,Y)
GN(X,Y) = =[3 20 er(X)er(Y)]?

Large-N: Dy (X) ~ NY2Rp(N~-1/2X) and GN(X,Y) ~ NRg(NY/2X, N/2Y)



Modulated T'SS keeping p fixed, thus N/I constant, essentially
due to level crossings of the lowest states at finite trap size, the particle
number is conserved even in the presence of the trapping potential, thus the

eigenvectors do not depend on pu, even though the eigenvalues do.

At the n = 1 Mott transition — periodic asymp- |

%50 251 252 253 254 255
LA T i

0.

totic behavior [figs for the energy gap [2? A and the
particle density 19(1 — (ng))]

A=1"An(p)[1+ 001" "?)
1 — (no) =17 Do(¢)[1 + O™ *?)]

where 0 = p/(p+ 2) as expected, and ¢ is a phase-

like variable measuring the distance from the closest

L ‘ ]
250 251 252 253 254 255
I

smaller level crossing

Universality with respect to the on-site coupling U, checked by DMRG



Modulated multi-TSS in the superfluid region

Beside the asymptotic modulation, multiscaling phenomenon —
different length scales diverging with distinct power laws in the T'SS.

f g N [ for observables related to smooth modes, such as the gap and the

half-lattice entanglement entropy

Ep ~ [P/(PFD) for modes at the Fermi scale kr = mf, such as the

density-density correlation.

odd peak even peak

A~ t(p)l

(no) — f ~ (1 — @)l
o =20 — 1) /A& =158y

L EEA
- Ee(no_f)

I L . ~
0 0.5 1 15 2

<n0n:r:>c ~ l_2p/(p+1)R€[h(Y, S0)621'761?318 + g(Y, 90)]7 YV — le/lp/(p+1)



TSS at low density N/l < 1: varying [ keeping N fixed
N particles: Hgy = —3 Z<ij>(bzbj + b;bi) + > [V(ri)n: + Uni(n; — 1)]

One can map its hard-core limit into spinless fermions by a Jordan-Wigner
i cl-L hijc;, which can be diagonalized by

Nk — ZZ gbm-cz- and hijqbkj = wkgbm-, Obtaining HC = Zk wkn);nk

transformation, H. = )

The ground state is given by N n-fermions at the lowest N one-particle

N—1
levels, Fo = ) ;_, Wwk.

TSS limit by taking the continuum limit, rescaling z = (?/(?TP) X
wp = 1727/ CTP)e, and setting o (X) ~ ¢ (1P/ TP X)),

(_1 d +Xp> or(X) = erpr(X),

For p=2, e, =2Y2(k+1/2), and ¢ (X) x (k!)~1/2H,(21/*X) e~ X/V2

From the rescaling of =, 0 = D / (2 + p), in agreement with RG.



Keeping the chemical potential fixed: subtle effects in the parameter region

where the homogeneous model has a nonzero

Level crossings of the lowest states at fi-
nite trap size: the particle number is conserved
even in the presence of the trapping potential,

thus the eigenvectors do not depend on u, even

though the eigenvalues do.

Ul his5% ,
20 80

In the presence of the trap the particle number N = (N) is finite and

increases as [N ~ [ with increasing the trap size [.

As [ — oo, there is an infinite number of level crossings where N jumps by
1 and the gap vanishes.

The length scale diverges only the in the large trap-size limit. The main
effect of the infinite level crossings in the limit [ — oo is that the
asymptotic power law behaviors gets modulated by periodic functions of
the trap size [, giving rise to a modulated TSS.



Modulated TSS at the n =1 Mott insulator to superfluid

transition
|

iR B
The rescaled energy gap [*’ A (above) and 0-3§
the rescaled particle density in the middle of safaz; %
the trap 17(1—(ng)) (below) vs. [ for p = —1 o1t ]
and p = 2, whose trap exponent is § = 1/2. P (RSN PR AR R
This suggests a periodic asymptotic behav- DO; }
ior with a period given by the interval be- “
tween two even (or odd) zeroes, - 0'1? /
SR B RN TR

P =18 1M = Pr 4 o(1/1)

For example: P/* = 1.11072 for p = 2 and P;* = 1.10244 for p = 4



The gap and the density at the origin behaves as
A=1""Ax(@)[L+ 01" "?)], 1= (no) =1""Do(¢)[1+ 00 )]

where 0 < ¢ < 1 is a phase-like variable ¢ = (I — l(()%))/(lé%JrQ) — l(()%)),
12F) (2k+2)

¢
0.0 0.2 0.4 0.6 0.8 1.0

- ‘ T T ™
260 0 03[ 12125
[“” A (above) and [”"(1 — (no)) (below) vs. E F. iz }1§§;
. <02~ o N — = ]
¢, for p = 2 (0 = 1/2). The extrapolation & | W ==
. . ] - - Fs \§\* 5 ]
to | — oo is obtained by assuming O(1~¢/2) o S A

. . 0.0:“‘ L Cy \
leading corrections. T

Check of universality within XXZ7 model 02|
(by DMRG). :

Analogous results for other values of p > 2

1°@1 - B,0)

0.1




