

2253-14

Workshop on Synergies between Field Theory and Exact Computational Methods in Strongly Correlated Quantum Matter

24 - 29 July 2011

Exotic Critical Phenomena in Classical Systems - Loops and strings on lattices

J. Chalker

Physics Department Oxford University Oxford, U.K.

EXOTIC CRITICAL PHENOMENA IN CLASSICAL SYSTEMS

Loops and strings on lattices

John Chalker Physics Department, Oxford University

Work with

Ludovic Jaubert & Peter Holdsworth (ENS Lyon), & Roderich Moessner (Dresden) Adam Nahum (Oxford), Miguel Ortuño, Andres Somoza, & Pedro Serna (Murcia)

Outline

Statistical mechanics with extended degrees of freedom

Coulomb phases

Geometrically frustrated magnets, dimer models

Correlations from constraints

Close-packed loop models

Loop colours as non-local degrees of freedom

See also poster session

Phase transitions

Ordering transitions from the Coulomb phase

Transitions between extended-loop and short-loop phases

Spin Ice 'Two-in, two-out' $Ho_2Ti_2O_7$ and $Dy_2Ti_2O_7$ ground states

Pyrochlore ferromagnet with single-ion anisotropy

$$\mathcal{H} = -J \sum_{\langle ij \rangle} \mathbf{S}_i \cdot \mathbf{S}_j - D \sum_i \left(\mathbf{\hat{n}}_i \cdot \mathbf{S}_i \right)^2 - \mathbf{h} \cdot \sum_i \mathbf{S}_i$$

Gauge theory of ground state correlations

Youngblood et al (1980), Huse et al (2003), Henley (2004)

'two-in two out' groundstates \dots map to divergenceless $\mathbf{B}(\mathbf{r})$

Ground states as flux loops

Entropic distribution: $P[\mathbf{B}(\mathbf{r})] \propto \exp(-\kappa \int \mathbf{B}^2(\mathbf{r}) d^3\mathbf{r})$

Power-law correlations:

 $\langle B_i(\mathbf{r})B_j(\mathbf{0})\rangle \propto r^{-3}$

Low T correlations from neutron diffraction

Fennell *et al* Science 326, 415 (2009)

Engineering transitions in spin ice Select ordered state with Zeeman field or strain

Jaubert, JTC, Holdsworth + Moessner, PRL (2008) + (2010)

A Kasteleyn transition Magnetisation induced by applied field

Magnetisation vs temperature

Description of the transition

Classical to quantum mapping

View strings as boson world lines 3D classical $\equiv (2+1)D$ quantum

$$Z = \operatorname{Tr}\left(T^{L}\right) \qquad T \equiv e^{\mathcal{H}}$$

 ${\cal H}$ hard core bosons hopping on $\langle 100
angle$ plane

magnetic field \Leftrightarrow boson chemical potential

Coulomb phase correlations \Leftrightarrow **Goldstone fluctuations of condensate**

monopole deconfinement \Leftrightarrow off-diagonal long range order

Quantum Description as XY ferromagnet

Kasteleyn transition

$$\mathcal{H} = -\mathcal{J}\sum_{\langle ij\rangle} [S_i^+ S_j^- + S_i^- S_j^+] - \mathcal{B}\sum_i S_i^z$$

Correspondence with classical description: $\mathcal{B} \equiv h/T$

- $\mathcal{B} > \mathcal{B}_{c}$ Quantum spins polarised along z
- $\mathcal{B} < \mathcal{B}_{c}$ Quantum spins have xy order

Kasteleyn: Simulation and Experiment

Magnetisation vs T

Magnetisation vs H

$$h/J = 0.58, \ 0.13, \ 10^{-3}$$

Data for $Dy_2Ti_2O_7$ at 1.8K(Fukazawa *et al.* 2002) $k_{\rm B}T \simeq 1.6J_{\rm eff}$

Ferromagnetic ordering in strained spin ice

Classical-quantum mapping: ordering as reorientation of quantum spins

Low energy configurations

High energy configuration

$$\mathcal{H} = -\mathcal{J}\sum_{\langle ij\rangle} [S_i^+ S_j^- + S_i^- S_j^+] - \mathcal{D}\sum_{\langle ij\rangle} S_i^z S_j^z$$

 $\mathcal{D} < \mathcal{J}$ quantum spins in xy plane $\mathcal{D} \equiv \Delta/T$

- $\mathcal{D} > \mathcal{J}$ quantum spins along z
- $\mathcal{D} = \mathcal{J}$ emergent SU(2) symmetry at critical point

Exotic features of ordering in strained spin ice

Transition is 'infinite order' multicritical point

- Magnetisation (maximally) discontinuous
- Susceptibility divergent as $T \rightarrow T_{\rm c}^+$
- \bullet Domain wall width divergent as $~~T \rightarrow T_{\rm c}^-$

Ordering from the Coulomb phase of dimer models

Dimer crystallisation

favour parallel pairs

Allowed states of close-packed dimer models

$$\mathcal{H} = -J(n_{||} + n_{//} + n_{=})$$

Crystal for $T \ll J$ Coulomb phase for $T \gg J$

Simulations:

continuous transition possible classical non-LGW critical point

Alet et al: 2006, 2010

Classical dimer ordering in 3d and bosons in 2d

From 3d classical to (2+1)d quantum

Dimer crystallisation

favour parallel pairs

Expect non-LGW critical point

Map to bosons on kagome lattice

1/6 filling with hard-core repulsion

Dimer liquid maps to superfluid

Dimer crystal maps to boson crystal

Powell + JTC, 2009

Loop models

Continuum problem

Lattice formulation

Close-packed loops with n colours on lattice of (directed) links

Nahum, JTC, Serna, Ortuño, and Somoza, arXiv:1104.4096

Phase transitions in loop models

$$Z = \sum_{\text{configs}} p^{n_p} (1-p)^{n_{1-p}} n^{n_{\text{loops}}}$$

To define model: specify lattice, link directions and nodes

2D model

Sample configuration

Phase transitions in loop models

$$Z = \sum_{\text{configs}} p^{n_p} (1-p)^{n_{1-p}} n^{n_{\text{loops}}}$$

To define model: specify lattice, link directions and nodes

Configuration of 3D model

Lattice designed so that:

p=0 only short loops

p=1 all curves extended

 $\begin{array}{ll} \left(\textbf{Alternative has symmetry} \\ \textbf{under} & p \leftrightarrow [1-p] \right) \end{array}$

Loop models and non-intersecting random curves in 3D

Random curves appear in many contexts

3D random curves

- zero-lines of random 2-cpt field

2D random curves

- zero-lines of random scalar field

Lattice version – percolation hulls

Lattice version – tricolour percolation

Scaling properties match

n=1 loop model

Local Description and Continuum Theory

$$Z = \sum_{\text{configs}} p^{n_{p}} (1-p)^{n_{1-p}} n^{n_{\text{loops}}}$$

Introduce n component complex unit vector $\vec{z_l}$ on each link lCalculate $\mathcal{Z} = \mathcal{N} \prod_{l} \int \mathrm{d}\vec{z_l} \, \mathrm{e}^{-\mathcal{S}}$ with $e^{-\mathcal{S}} = \prod_{\text{nodes}} \left[p(\vec{z}_A^{\dagger} \cdot \vec{z}_B)(\vec{z}_C^{\dagger} \cdot \vec{z}_D) + (1-p)(\vec{z}_A^{\dagger} \cdot \vec{z}_D)(\vec{z}_C^{\dagger} \cdot \vec{z}_B) \right]$ **Expand** $\prod_{nodes} [...]$ **Loops contribute factors** $\sum_{\alpha,\beta,\ldots,\gamma} \int \mathrm{d}\vec{z_1} \ldots \int \mathrm{d}\vec{z_L} \ z_1^{*\alpha} z_2^{\alpha} z_2^{*\beta} \ldots z_L^{*\gamma} z_1^{\gamma}$ (i) factor of n per loop (ii) invariance under $\vec{z_l} \rightarrow e^{i\varphi_l}$ Hence:

Local Description and Continuum Theory

$$Z = \sum_{\text{configs}} p^{n_{p}} (1-p)^{n_{1-p}} n^{n_{\text{loops}}}$$

Introduce *n* component complex unit vector $\vec{z_l}$ on each link lCalculate $\mathcal{Z} = \mathcal{N} \prod_{l} \int d\vec{z}_{l} e^{-\mathcal{S}}$ with $e^{-S} = \prod_{\text{nodes}} \left[p(\vec{z}_A^{\dagger} \cdot \vec{z}_B)(\vec{z}_C^{\dagger} \cdot \vec{z}_D) + (1-p)(\vec{z}_A^{\dagger} \cdot \vec{z}_D)(\vec{z}_C^{\dagger} \cdot \vec{z}_B) \right]$ Continuum limit CP(n-1) model $S = \frac{1}{a} \int d^d \mathbf{r} \left| (\nabla - iA) \vec{z} \right|^2 \quad \text{with} \quad A = \frac{i}{2} (z^{*\alpha} \nabla z^{\alpha} - z^{\alpha} \nabla z^{*\alpha})$ with $|\vec{z}|^2 = 1$ and invariance under $\vec{z} \to {
m e}^{{
m i} arphi({
m r})} \vec{z}$

see also: Candu, Jacobsen, Read and Saleur (2009)

Phase transitions in CP^{n-1} model

Gauge-invariant degrees of freedom: 'spins' $Q \equiv zz^{\dagger} - 1/n$ (Mapping to Heisenberg model for n = 2 via $S^{\alpha} = z^{\dagger}\sigma^{\alpha}z$)

Correlations

 $\langle \operatorname{tr} Q(\mathbf{0}) Q(\mathbf{r})
angle \propto G(r)$ – prob. points $\, \mathbf{0} \,$ and $\, \mathbf{r} \,$ lie on same loop

Paramagnetic phase — only finite loops

$$G(r) \sim \frac{1}{r} \mathrm{e}^{-r/\xi}$$

Critical point — fractal loops

$$G(r) \sim r^{-(1+\eta)} \qquad d_f = \frac{5-\eta}{2}$$

Ordered phase

 Brownian loops escape to infinity

 $G(r) \sim r^{-2}$

Results from simulations

Phase diagram

Critical exponents

n	u	γ
1	0.9985(15)	2.065(18)
2	0.708(6)	1.39(1)
3	0.50(2)	1.01(2)

 $n \geq 5$: 1st order

— consistent at n=2 with best estimates for classical

Heisenberg model: $\nu = 0.7112(5)$ $\gamma = 1.3960(9)$

Summary

Two classes of system having non-local degrees of freedom:

- Coulomb phases in spin Ice + dimer models
- Loop models

Exotic critical behaviour at ordering transitions:

- Symmetry-sustaining: one-sided Kasteleyn transition
- Symmetry-breaking:

non-standard critical behaviour at Curie transition non-LGW critical point for dimer ordering transition

• Symmetry-breaking:

loops as representation of CP^{n-1} model

Monte Carlo data for n = 1

Monte Carlo data for n = 5

Comparing
$$n = 3$$
 and $n = 5$

[Avge No spanning curves] vs [Prob no spanning curve]

