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OUTLINE

Introduction and Examples
Basic Formalism (Linked-Cluster Methods)
Selected Results (Heisenberg and other models)
Thermodynamics
Ground State Properties
Excitation Spectra
Square/ Triangular/ Honeycomb/ Kagome Lattices
Entanglement Entropies
Summary and Conclusions



LINKED CLUSTER  SERIES EXPANSION METHODS

A class of methods where you compute properties 
of a Lattice Statistical Model in the thermodynamic 
limit by summing over contributions from all (real 
space) Linked clusters of varying sizes.

Domb and Green Vol 3
Gelfand, Singh, Huse J. Stat. Phys 1990
Gelfand, Singh Adv. Physics 2000
Oitmaa, Hamer and Zheng –Recent Book







DIMER EXPANSIONS

Lambda=0: Disconnected Dimers (Singlets)

Lambda=1: Uniform Heisenberg Model

Expansion Converges until gap vanishes

Up to Lambda=1



DIMER SERIES EXPANSIONS

For small clusters series  results 
indistinguishable from exact 
results: 

Linear Chain is critical – requires 
d-log Pade extrapolation





Basic Formalism of Linked Cluster Expansions

coana
Rectangle



Finite Cluster: Like any ED 
study
H: finite dimensional matrix
Recursion Relations in finite-
dimensional Hilbert space 



CLUSTERS AND LATTICE CONSTANTS

Same as Ising Models
Domb and Green Vol 3

Group together all 
graphs with same 
connectivity 
(Hamiltonian)

Weak and Strong
Embeddings



NUMERICAL LINKED CLUSTER METHOD
RIGOL, BRYANT, SINGH

No small parameter
Weights can be defined 
numerically at any set of 
parameters (T etc.)

Which embeddings 
should one use?      
Considerable flexibility             



WEAK/STRONG EMBEDDINGS 



NUMERICAL LINKED CLUSTER

What controls the 
convergence? 
Can it be accurate down 
to T=0?

Kagome Lattice Ising Model
Exactly Soluble
Finite entropy at T=0
Small correlation length

A lattice of corner-sharing 
triangles: Triangle NLC



KAGOME-LATTICE ISING MODEL

Triangle-based expansion
Entropy at T=0 (k=1)
For one site:       S(0)= ln(2) = W(0)
For one triangle: S(1)= ln(6)

W(1)= ln(6)- 3ln(2)
Entropy per site in the thermodynamic Limit
S/N= W(0)+(2/3) W(1) =0.50136       (Pauling)
Next correction: 6-triangles 0.50182
Exact result: 0.50183… 



KAGOME-LATTICE TRANSVERSE ISING

7-8 
triangles



HOW TO CALCULATE SPECTRA

Real Space Clusters
Spectra of translationally invariant system 
are eigenstates of q

Gelfand:
Spectra are Fourier Transforms of effective 
one-particle Hamiltonian-- for Dressed one-
particle states-- And can be obtained by 
Linked Cluster Methods



SPECTRA  OF ALTERNATING CHAIN

Ground State

s s s s

One Particle States ( Energy J) (Triplons)

s s t s

Two Particle States ( Energy 2J) (2-Triplons)

s t t s

Two triplons can combine into spin 0,1,2



SIMILARITY/ORTHOGONALITY 
TRANSFORMATION
FIRST BLOCK DIAGONALIZE THE HAMILTONIAN

Ground

State

One-Particle

Sector

Two-
Particle

zero

zero

Dressed one-particle states: The right

mix of one-particle states orthogonal to other n



DIAGONALIZING THE  BLOCK HAMILTONIAN

For the infinite system with translational 
symmetry H_eff (i,j)=H_eff(i-j)
One-Particle spectra obtained  by Fourier 
Transformation

Two particle states H_eff(i,j:k,l)
Two-Particle States: Need to solve the
Schrodinger equation in relative coordinates-
-numerically



SERIES EXTRAPOLATION



SELECTED RESULTS

Susceptibility of Anisotropic Triangular Lattice
Finite-T comparison of Square and Triangular 
Lattices
Spectra of Square Lattice HM
Spectra of Triangular Lattice HM
Search for VBC Order for KLHM

ENTANGLEMENT ENTROPIES



S = ½ Heisenberg antiferromagnet 
on an anisotropic triangular lattice

J1/J2 = 0: Square lattice model 
J1/J2 = 1: Triangular lattice model
J1/J2 = 2: Cs2CuBr4
J1/J2 = 3: Cs2CuCl4
J1/J2 = : Decoupled chains

Special cases:



THERMODYNAMICS

Susceptibility of Anisotropic Triangular Lattice

Weihong, RRPS, McKenzie, Coldea



ISOTROPIC MATERIAL
Spin-Liquid Candidate



SQUARE VS TRIANGULAR LATTICE HM
Elstner, RRPS, Young PRL, JAP

Entropy
AFM Structure Factor
AFM Correlation Length

Renormalized Classical Behavior
Chakravarty, Halperin, Nelson
Azaria et al



SELECTED SPECTRAL RESULTS

Spectra for Square-Lattice AFM
Spectra for Triangular Antiferromagnet



MAGNON SPECTRA IN 2D (DIP AT (PI,0))
RENORMALIZED UPWARDS

Zheng, Oitmaa and Hamer PRB 71, 184440 (2005)

Antiferromagnetic 
Brillouin Zone

Sandvik+RRPS (QMC)



COMPARES WELL WITH SPECTRA IN CFTD

Ronnow et al PRL 87, 037202 (2001)



NOT WITH SPECTRA FOR LA2CUO4

Coldea et al PRL 86, 5377 (2001)

Zone boundary dispersion is 
opposite: Second neighbor J 
will make it worse

Finite-U changes zone 
boundary dispersion



TRIANGULAR-LATTICE SPECTRA
DOWNWARD RENORMALIZATION

SWT, 
(1/S), 
Series

Zheng et al

Starykh,Chubukov

Chernyshev, Zhitomirsky (magnon-decay)



THERMODYNAMICS OF SQUARE AND 
TRIANGULAR LATTICES: 
WHERE IS RC REGION?

Density of StatesElstner, RRPS, Young



KAGOME LATTICE HEISENBERG MODEL
WHAT IS THE DOMINANT VBC PATTERN? 
EMPTY TRIANGLES ARE KEY
THE REST ARE IN LOCAL GROUND STATE

Kagome Lattice 

Shastry-Sutherland Lattice



SERIES EXPANSION AROUND ARBITRARY 
DIMER CONFIGURATION (RRPS+HUSE)

Graphs 
defined by 
triangles

All graphs 
to 5th order



DEGENERACY LIFTS IN 3RD/4TH ORDER
BUT NOT COMPLETELY

3rd Order: Bind 3Es 
into H—maximize H

4th Order: 
Honeycomb Lattice

Leftover: Pinwheels

24*2^(N/36)  Low 
energy states



SERIES SHOW EXCELLENT 
CONVERGENCE
Order &  Honeycomb    & Stripe VBC     &  36-site PBC          \\

0   &    -0.375             &   -0.375            &   -0.375                  \\
1   &    -0.375             &   -0.375            &   -0.375                  \\
2   &    -0.421875       &   -0.421875      &   -0.421875            \\
3   &    -0.42578125   &   -0.42578125  &   -0.42578125        \\
4   &    -0.431559245 &   -0.43101671  &   -0.43400065        \\
5   &    -0.432088216 &   -0.43153212  &   -0.43624539        \\

Ground State Energy per site 

Estimated H-VBC energy: -0.433(1) (ED, DMRG)

36-site PBC:  Energy=-0.43837653

Recent DMRG by Yan et al: RVB:  E =-0.437



SPIN GAP
Lowest triplet at q=0 (reduced zone)
Gap Series:
1 –0.5 –0.875 +0.440625+0.07447-0.04347-

0.02336 
Estimated Gap =0.08 (.02) (agrees with 
ED/DMRG)

Lowest triplet for 36-site PBC
Gap Series:                                                               
1 –0.5 –0.875 +0.440625+0.486458-0.16984-…
Estimated Gap =0.2 (cf  0.164 exact answer ED)



Work done with A. Kalin, M. 
Hastings and R. Melko





(i)   A=a, B=bdc
(ii)  A=d, B=bac
(iii) A=ab, B=dc
(iv) A=ac, B=bd

CORNER = (M(i)+M(ii)-M(iii)-M(iv))/2



Can use real REPLICAS but is not necessary



Every Power of β brings a power of n
Coefficient of β^m : Polynomial in n Order 
m
Vanishes (before division) for n=1 and 
n=0
M_AB: Polynomial of order (m-1)
Analytic continuation to Von Neumann is 
easy
β_c scales as 1/n
Renyi-n is Singular at n T_c



XXZ MODEL, BIPARTITE LATTICE

Arbitrary
n



RRPS, Ann Kallin, Roger Melko, Matt Hastings PRL 2011

Renyi-2 Von Neumann Entropy



ISING EXPANSIONS AT T=0



Von Neumann Entropy has trivial x^2 ln(x) 
singularity at x=0.
For all n, no singularity until gap closes at 
x=1.
Heisenberg Model is particularly 
interesting
Series also developed for

Transverse Ising Model
Free Fermion Models



Heisenberg Model, Finite-T, Renyi-2 (A. Kallin, R. Melko, M. Hastings, RRPS)



T=0 HEISENBERG MODEL

Area Law Terms
Logs from Broken Symmetry (QMC, MFT)
Logs from Corners (QMC, Series)

Numerical Results agree well. 
Theoretical Understanding Remains 

Incomplete



CONCLUSIONS

Series expansion methods work in 
thermodynamic limit----

--Advantages: No size/shape extrapolation, 
Spectra, Broken Symmetry, No sign 
problems, any-q, real omega.

--Disadvantages: Convergence problems—
Finite size can be a blessing (SSE, ED), 
Reliance on series extrapolation- especially 
when gapless excitations play a role



THE END



DIMER ORDER PARAMETER
WITHIN HEXAGONS
Order    0th     2nd       3rd      4th    5th  6th   
Strong (within hexagon)

-.75   -.5625    -.516   -.437  -.428 -.423     
Weak (within hexagon)

0     -.1875   -.258      -.326  -.337  -.328
Resonance within hexagons  restored?
Both strong and weak are stronger than mean
Mean energy per bond = -0.217 

Kagome strips

White+RRPS



COST OF A LARGE UNIT CELL: ONE PARTICLE 
SPECTRA: 18X18 MATRIX (FOR EACH Q)

Heavy Triplets (Blue)

and

Light Triplets (Green)

Shastry/Sutherland 
model

Light triplets have 
lower energies (9x9)

Yang, Kim, Yu and Park 
Center Fig. at Pinwheel



TRIPLONS

All heavy triplets are practically fully localized.
Light triplet wave functions emerge from 
degenerate perturbation theory. 
Lowest order—4  states (per q) separate to the 
bottom. Degeneracy lifts in 3rd order.
Two are uniformly circulating states in perfect 
hexagons that hop (very weakly) from hexagon 
to hexagon.
Two are pair of chiral states with non-trivial wave 
function mixing the 9 light triplets in a unit cell 
that become the lowest energy states. 
Spectral weights measure wave-functions





TRIPLONS OF VBC?

Many triplets but singlets are much lower
(We have calculated several singlets states below 
Triplet)—Only lowest wave-functions are  (stable) 
significant
Most of 18 give q-independent weight
36-site PBC: Focus on 4 Low lying states (of which two 
are degenerate)—expect 3 peaks—lowest being most 
significant (stable and twice high)

Leading order calculation—
Lowest Mode dominant at g (as observed)—then f,d,h—
vanishes at e---agrees Well!
Next mode dominant at d
Next mode dominant at e



NO SERIES EXTRAPOLATION (BARE SUM)



IMPURITIES AND BOUNDARIES AT T=0
Semi-Infinite Systems
isolated static hole
Isolated spin-impurity (HTE by Motrunich grp)
Cluster of impurities
Domain Walls

Correlations and spectra remain largely unexplored
Formalism can accommodate these exactly—
without further approximation



BOUNDARY CORRELATIONS (PARDINI+RRPS)



DIMER CORRELATION-LENGTH DOESN’T 
APPEAR TO GROW IN THE J1-J2 MODEL





TRIPLETS NEARLY LOCALIZED AT ALL 
SCALES

Loop: Hop along String of Green and Black 

Cannot exit, has lowest energy 



Degenerate Perturbation Theory until Degeneracy Lifts

Then Non-degenerate Perturbation Theory

Any string of alternating strong and weak Empty 
triangle bonds: Uniform hopping same energy

Spectrum of Lowest Triplets

Low energy structure 
agrees completely with 
Yang, Kim, Yu, Park 
(treat triplets as Bosons)

3 flat and one dispersive 
states that crosses them

Main difference is gap + 
small dispersion



SPECTRA FOR HUBBARD MODEL
(ROLE OF CHARGE FLUCTUATIONS)

Zheng et al PRB 72, 033107 (2005)



INTEGRATED WEIGHTS (PI,0) HAS MOST 
WEIGHT IN CONTINUUM

Spinons with minima at

(pi/2,pi/2)

Two-spinons minima at

(pi,0)

FLUX PHASE PICTURE






