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High Temperature Expansions:
2
exp—,-ﬁ’Hzl—ﬁH—l—( f) H+ ...

An extensive (intensive) property P:

F.Cy, xlgq). ...
C(R) =%, < S(r)S(r+R) >

Can be expanded as a power series in 7

P/N = ag+ a18+ asf° + ...

Lattice Statistical Model {with Short Range Couplings):
Coefficients can be calculated by:

Linked-Cluster Methods

How far down in temperature will the expansion work?

In principle: Until there is a Phase Transition




Heisenberg-Ising Models:

H = J.5575 + J S(SFST + stf)

H = J.(Hy+ \Hy)

A =0 1is (Classical ) Ising Model
A = 1is (Quantum) Heisenberg Model

Ground state properties can be expanded in powers of A

Ey/N = ag+ a A+ ﬂ2)12+

Coetlicients can be caleulated by:

Linked-Cluster Methods

Will this expansion converge in the Heisenberg Limit?
It does so for d =1 (Exact solution)

In principle: As long as ordered moment is non-zero




Alternating Heisenberg Chain




Bond Alternation in Small Loops One-D Alternating Chain
[7/7]-Pade approximant Partial Sums and D-log Pade [14th Order]
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Other models: may need to create expansion parameter:

Hubbard Model at half-filling
H=Hi+ J.(1- A)ESES:E + \H;

H= (H{] + )«Hl)

» A =018 On-site term plus Ising anisotropy
: A =1is Hubbard Model with rotational symmetry
Triangular Lattice Heisenberg Model

: Rotate Basis so Classical Ordered State is Ferromagnetic
: Introduce Ising anisotropy A

A interpolates between gapped Ising-like models and gapless models
with Heisenberg symimetry

Need Series Extrapolation for gapless excitations




Consider a multi-variable expansion:
P =A4g+ (ayJy+asJi+...)
+(ajJ1Jo + ﬂQlJIQJQ + a12J1J22 +...)
+aj 1otz + .. )
(1)

And, view it as

W)+ W)+ W(Jy, Jo) + W(Jy, Ja, J3)

A natural graphical correspondence

When do only ‘Linked Clusters” contribute?

If a cluster C is made up of AU B
where, [H4,Hp] =0
Then P = P4 + Ppg,

And the cluster does not contribute: W(C') =0

Lattice
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To obtain Weight for a cluster, set all Js not in the cluster to zero.
Define the property for this case as P(c). Then,

Ple) =¥ W(s)

sCe

W(e) = P(c) — X W(s)

sZo
Obtain W{c) recursively

Thus, for a Lattice L {using symimetries)

P(L) = NS L(g) x W(g)

L{g): Lattice Constant of graph gz Count per site
W(g): Weight of graph ¢ (Finite cluster property)




Numerical Linked-Cluster Expansions
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To obtain Weight for a cluster, set all Js not in the cluster to zero.
Define the property for this case as P(c). Then,

P(e)= £ W(s)

e

W(c) = P(e)

Obtain Wi{c) recursively

Thus, for a Lattice L {using symimetries)

P(L) = NE L(g) x W(g)

Lig): Lattice Constant of graph g Count per site
W(g): Weight of graph ¢ (Finite cluster property)
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HOW TO CALCULATE SPECTRA

Real Space Clusters

Spectra of translationally invariant system
are eigenstates of g

Gelfand:

Spectra are Fourier Transforms of effective
one-particle Hamiltonian-- for Dressed one-
particle states-- And can be obtained by
Linked Cluster Methods









DIAGONALIZING THE BLOCK HAMILTONIAN

For the infinite system with translational
symmetry H_eff (1,]))=H_eff(i-))
One-Particle spectra obtained by Fourier
Transformation

Two particle states H_eff(i,]:k,l)
Two-Particle States: Need to solve the

Schrodinger equation Iin relative coordinates-
-numerically
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FIG. 1. Triangular lattice: T 1{45(Q)] vs T/7 o The plots represect (L, M]

Padéy in the Eulec transformed vasiable u=1/(T +0.08). The insen shows
Square lattice: T Inf45(Q) and 7 1{4T€"/Toy] (on the inserl) ¥5  resuts for the cormelation length. TI4TE T o) v5 T/T g u= 1/(T40.2).
=U(T+0.2).

3. Triangular latice: eatropy SN vs T/7 s w=1AT+0.2); on the
susceptibilty 4X ¥5 T/ T} o (L +0.08).

FIG. 4. Square Lattice: eatropy S/N snd suscoptibility 4y vs /Ty u=1/

(THO.2).
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FIG. 1. Triangulat lattice: T (0{45(Q)] vs 7/7 oy The plots represeat [L,M]

Padés in the Eulec transformed variable u=1/(T +0.08). The insen shows
FIG. 2. Squarc lattice: T 1{45(Q)] and 7 In{$T§%/T o] (o the inscrt) 5 results for the conelation leagth. T4 6/ T ) ¥8 T/Tog: u= 1/(T40.2).
T/ o w=1/(T40.2).
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FIG. 3. Triangular latice: entropy SIN vs T/7 05 w=1/T+0.2); on the
insert: susceptibility 4x v5 T/ T ag; 1% LCT+0.08).
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SERIES SHOW EXCELLENT

CONVERGENCE

Order & Honeycomb & Stripe VBC & 36-site PBC
0 & -0.375 & -0.375 & -0.375

1 & -0.375 & -0.375 & -0.375

2 & -0421875 & -0.421875 & -0.421875

3 & -0.42578125 & -0.42578125 & -0.42578125
4 & -0.431559245 & -0.43101671 & -0.43400065
5 & -0.432088216 & -0.43153212 & -0.43624539

Ground State Energy per site

Estimated H-VBC energy: -0.433(1) (ED, DMRG)

36-site PBC: Energy=-0.43837/653
Recent DMRG by Yan et al: RVB: E =-0.437
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Entanglement Entropies:
Divide a Lattice into two mutually exclusive set
of sites AB = AU B, with Hamiltonian

f:r = JF:TA -+ Irfg + I:IAB
The Density Matrix is Defined as
p=exp(—BH)/Z(5),

with

Z(B) = Trap exp(—BH).
The reduced density matrices are partial traces

pa=Trgp, pp=Trap.
Von Neumann entropies are (o = A, B, or AB):
Sa=—Tra py Inp,

Renyi entropies of index n are

Von Neumann entropy follows from n — 1 limit.




These entropies have Linked Cluster Expansions,
will be extensive (depend on Volume).

Define Mutual Information as

Map=54+5g—54B

Clusters entirely in A (or B) will not contribute.

Proof: ) ) )
For such a cluster, H = Hy, pag = pa % 1.
Hence, Syp =54+ 5. Myp=>=_0.

M 4 g has an area law. To contribute a cluster must
cut across the boundary. If we divide a lattice along
a line, clusters related by translation along the line
will have same contribution. Count will be per unit
length not per site.

One can obtain series for M gp/¥.

Corners can be separately calculated by suitable
choice of regions A and B. Only clusters, whose
rectangular envelop includes the corner can con-
tribute.







1 . Z[An,B|Z|B.n, B
Map=1—I ZnAZ A"

where

Z[A,n,B] =Tra[Trgexp (—ﬁﬁr)]ﬂ

This can be evaluated by introducing replicas. Let
there be n copies of B variables B;. Then

Z[A,n, ] = TrauTrp,exp (—5Hy),

where

Efi = ﬁA—I—FIBi —I—ffABi
Note that different B; have completely independent
existence, but they all couple to same A variables.
It is as if the lattice consists of different sheets of B;
all joined to a single sheet of A along the boundary
of AB.

Calculation can also be done without replicas, by
treating the n variable analytically.







Consider the XXZ model on a bi-partite lattice
H= 3 (S/S7 +S¥SY +AS;S;)

i
Five traces are needed for full caleulation to 4th order.

A Trio -02]2
2T

- Triey- a)? -
Az = Tr(l) 62

— 24 A?

~ Trioy- a3)?

Ay = ) (2+ A2 +4(1 +2A%)

_Tr[a'l-crgﬂ'rﬂ'aﬂrﬂ‘zﬂ'ﬂ‘ﬂ'ﬂ]}_ 4 2
Be= Tr(l) Sae

_ Tr(oy -0y 0903 03 -0y 04~ 04))
Tr(l)
For the Square-Lattice, Mutual Information per unit length to 4th order 1s:

4 =24 Al

BanAs  Banin+1)As B4 3 Ag A3 2 By — A3
{E} T_{E} T-H:E] [n(n +“+1](E—F}+“{“ +“—1]{T +Cy)|

For the Simple Cubic Lattice Lattice, Mutual Information per unit area to 4th order 1s:

B
1

Ay

ndy Ag
|

2
) 2
Note:

1. The only changes between 2I) and 3D are that in the 3% term coefficient of (B, — A3)
1/2 1s replaced by 5/6 and for coefficient of Cy 1 1s replaced by 2.
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— = Pade Approximanté
= QMC-torus (eU f) ! Von-Neumann Entropy
o—= QMC-cylinder 4x4 ED and 4th order HTE
=——a QMC-torus(e) i
— — Order 11 : ; T Sevies 4t onder
——=- Order 9 : : — PedeR
Order 7 : I

m  QMC-torus (e)
— Linear fit
1 | 1 I | | 1 | 1 | 1
16 24 32 40 48 56 64




At T =0,
p = o >< 1,
and reduced density matrices are,
pa=Trpp,  pp=Trap.
In this case S4p = 0 and by Singular Value De-
composition §4 = Spg.

Now, all Renyi entropies are different (coefficients
are not related by polynomial relations). For a given
n calculations can be done straightforwardly:.

In a suitable basis, let,

g >= igj G(Ai,Bj)|Ai > |Bj =

The matrix element of the reduced density matrix
pA s

PAA = ] (A, By)e(Aj, By)

Here, all wavefunctions are assumed real.

And, for n =2

Tra(pa)’ = AZy, PALA; PALA
=20
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CONCLUSIONS

Series expansion methods work In
thermodynamic limit----

--Advantages: No size/shape extrapolation,
Spectra, Broken Symmetry, No sign
problems, any-g, real omega.

--Disadvantages: Convergence problems—
Finite size can be a blessing (SSE, ED),
Reliance on series extrapolation- especially
when gapless excitations play a role
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TRIPLONS

All heavy triplets are practically fully localized.

Light triplet wave functions emerge from
degenerate perturbation theory.

Lowest order—4 states (per ) separate to the
bottom. Degeneracy lifts in 3" order.

Two are uniformly circulating states in perfect
hexagons that hop (very weakly) from hexagon
to hexagon.

Two are pair of chiral states with non-trivial wave
function mixing the 9 light triplets in a unit cell
that become the lowest energy states.

Spectral weights measure wave-functions
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TRIPLONS OF VBC?

Many triplets but singlets are much lower

(We have calculated several singlets states below
Triplet)—Only lowest wave-functions are (stable)
significant

Most of 18 give g-independent weight

36-site PBC: Focus on 4 Low lying states (of which two
are degenerate)—expect 3 peaks—Ilowest being most
significant (stable and twice high)

Leading order calculation—

Lowest Mode dominant at g (as observed)—then f,d,h—
vanishes at e---agrees Well!

Next mode dominant at d
Next mode dominant at e
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