

2254-10

Workshop on Sphere Packing and Amorphous Materials

25 - 29 July 2011

Dialing-in Disorder and Dynamics in Dense Complex Fluids

Thomas M. TRUSKETT

Dept.of Chemical Eng., The University of Texas at Austin 1 University Station, Austin, TX 78712 U.S.A.

Thomas M. Truskett

Department of Chemical Engineering and Institute for Theoretical Chemistry The University of Texas at Austin

Dialing-in disorder & dynamics in dense complex fluids

Workshop on Sphere Packing and Amorphous Materials The Abdus Salam International Centre for Theoretical Physics 29thJuly, 2011 Trieste, Italy

Acknowledgements

Former students

J. Mittal (Lehigh) W.P. Krekelberg (NIST) G. Goel (IIT Delhi)

<u>Current students</u>

M. Pond (UT Austin) J. Carmer (UT Austin)

Collaborators

J.R. Errington (University at Buffalo, SUNY) V.K. Shen (NIST) V. Ganesan (UT Austin)

Can one intelligently tune interactions to enhance/decrease transport coefficients?

Dispersions of antibody particles

- highly concentrated
- moderate viscosity (syringeable)

Dispersions of antibody particles

highly concentrated

moderate viscosity (syringeable)

Dispersions of antibody particles

highly concentrated

moderate viscosity (syringeable)

requires LARGE bore needles

"Tuning" dynamics of a tracer particle by modifying its interactions with its neighbors Can one intelligently tune interactions to enhance/decrease transport coefficients?

Not easily.

An optimistic hypothesis

Reduced transport coefficients (D^* , η^* , κ^*) are single-valued functions of a static measure X

X is "what matters" for dynamics

Could X be density?

Seems intuitive, connected to available space ...

How does confinement affect "hard-sphere" colloids at fixed average particle density?

Mittal et. al., J. Chem. Phys. (2007) Goel et al., J. Stat. Mech.: Theory & Experiment (2009)

Three examples have the same average density

Mittal et. al., J. Chem. Phys. (2007) Goel et al., J. Stat. Mech.: Theory & Experiment (2009)

How is available space distributed?

Which has the most available space?

Mittal et. al., J. Chem. Phys. (2007) Goel et al., J. Stat. Mech.: Theory & Experiment (2009)

How is available space distributed?

$$p_0(z) = \rho(z)/\xi$$

Mittal et. al., J. Chem. Phys. (2007) Goel et al., J. Stat. Mech.: Theory & Experiment (2009)

Mittal et. al., J. Chem. Phys. (2007) Goel et al., J. Stat. Mech.: Theory & Experiment (2009)

Which has the most available space?

Mittal et. al., J. Chem. Phys. (2007) Goel et al., J. Stat. Mech.: Theory & Experiment (2009)

Mittal et. al., J. Chem. Phys. (2007) Goel et al., J. Stat. Mech.: Theory & Experiment (2009)

Perhaps $X = p_0$?

Mittal et. al., J. Chem. Phys. (2007) Goel et al., J. Stat. Mech.: Theory & Experiment (2009)

Could X be excess entropy, sex?

Measures # of states taken away from the fluid due to static interparticle correlations

$$s^{\text{ex}}[T,\rho(\mathbf{r})] = s[T,\rho(\mathbf{r})] - s^{\text{ideal}}[T,\rho(\mathbf{r})]$$

$$0 \leq -s^{\mathrm{ex}} < \infty$$

Excess entropy, s^{ex}

Measures # of states taken away from the fluid due to interparticle correlations

$$s^{\text{ex}}[T,\rho(\mathbf{r})] = s[T,\rho(\mathbf{r})] - s^{\text{ideal}}[T,\rho(\mathbf{r})]$$

How does it connect to structure?

$$s^{\text{ex}} = s_2 + \Delta s_R$$
 higher correlations pair correlations

Mittal et. al. Phys. Rev. Lett. (2006)

Mittal et. al. Phys. Rev. Lett. (2006)

Diffusivity and excess entropy: The effect of geometry

Goel et. al. J. Stat. Mech.: Theory & Experiment (2009)

Diffusivity and excess entropy: The effect of geometry

Krekelberg et al.., in preparation

Goel et al., Phys. Rev. Lett. (2008)

"Tuning" dynamics of a confined fluid by modifying its interactions with boundaries

Fluids with density anomalies

Gaussian-core model

Krekelberg et. al. Phys. Rev. E (2009)

Fluids with density anomalies

Gaussian-core model

Krekelberg et. al. Phys. Rev. E (2009)

Fluids with density anomalies

Gaussian-core model

Krekelberg et. al. Phys. Rev. E (2009)

Binary Gaussian-core fluid

$$v_{ij}(r) = \epsilon_{ij} \exp\left[-\left(r/\sigma_{ij}\right)^2\right]$$

$$\sigma_{BB} = 0.665\sigma_{AA} \qquad \varepsilon_{BB} = \varepsilon_{AA}$$

$$\sigma_{AB} = \sqrt{0.5(\sigma_{AA}^2 + \sigma_{BB}^2)} \qquad \varepsilon_{AB} = 0.944\varepsilon_{AB}$$

Archer and Evans, Phys. Rev. E, 2001., "Mixture of self-avoiding polymers"

Binary Gaussian-core fluid

Pond et al., J. Chem. Phys. (2009)

Binary Gaussian-core fluid

Pond et al., J. Chem. Phys. (2009)

Tuning the dynamics of a tracer

Tuning the dynamics of a tracer

Tuning the dynamics of a tracer

"Dynamic heterogeneities"

Near Tg, on finite time scales, bimodal distribution of displacements emerge...

Krekelberg et al., J. Chem. Phys. (2010)

Structuring and dynamic heterogeneity

- (i) Strong connection between local disorder and displacement
- (ii) Sustained disorder correlated with cagebreaking / hopping
- (iii)Local reordering occurs after cage-breaking

Krekelberg et al., J. Chem. Phys. (2010)

Structuring and dynamic heterogeneity

- (i) Strong connection between local disorder and displacement
- (ii) Sustained disorder correlated with cagebreaking / hopping
- (iii)Local reordering occurs after cage-breaking

Krekelberg et al., J. Chem. Phys. (2010)

Transport coefficients of complex fluid systems obey an empirical scaling law with excess entropy.

This allows prediction and tuning of dynamics via interactions between the particles.

