
BIFURCATIONS IN ONE-DIMENSIONAL DISCRETE SYSTEMS

FRANCESCA AICARDI

In this lesson we will study the simplest dynamical systems. We will see, however, that
even in this case the scenario of different possible dynamics is very rich. In particular, we
will consider dynamical systems depending on a parameter. When the value of the pa-
rameter changes continuously, the behaviour of the system may change in a discontinuous
way. One says that a bifurcation occurs for an isolate value of the parameter at which the
type of dynamic changes.

1. Discrete one-dimensional dynamical systems

A discrete one-dimensional dynamical system is a system subjected to a single equation
of this type

(1) x(t + 1) = f(x(t))

where x ∈ I ⊆ R and f is a function of x. The variable t is in general considered as the
time, but in discrete systems the time takes only discrete values, so that it is possible to
take t ∈ Z.

A trajectory is a set {x(t)}∞t=0 of points satisfying the above equation. It is evident that
the initial point x0 = x(0) determines the entire trajectory.

The behaviour of the dynamical system is therefore given by all the trajectories {x(t) :
x(0) = x0} for all initial values x0 ∈ I.

A dynamical system depending on a parameter is described by a family {fa} of functions
parametrized by a, where a ∈ A ⊆ R.

x(t + 1) = fa(x(t)).

1.1. Fixed points and their stability. Let x̄ ∈ I be a point of the dynamical system
(1) satisfying f(x̄) = x̄. Consider a trajectory starting at x0 = x̄. It is evident that the
entire trajectory is formed by the unique point x̄, i.e. x(t) = x̄ ∀t ≥ 0.

A point x̄ satisfying f(x̄) = x̄ is called a fixed point or a equilibrium point of the system
(1).

Definition. The trajectory of the system (1) starting at x0 is the set {x0, f(x0), f(f(x0), . . . },
i.e., the succession of points {x(t)}∞t=0 determined by the recurrence (1) with the initial
condition x(0) = x0.

We are now interested in the trajectories starting at points which are near x̄.

In order to better understand the trajectories of the one-dimensional dynamical system
we introduce the graphical solution. Consider the graph of the function f(x). The abscissa
represents x(t) and the ordinate x(t + 1).
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Figure 1. Graphical method to obtain a trajectory

Consider now a fixed point x̄ and suppose that f(x) be smooth at x̄. Then there is a
neighbourhood U of the point x̄ where all trajectories starting at a point of U remain in
U and approach x̄ or all trajectories starting at a point of U move away from x̄ and exit
from U .

In the first case the fixed point is said to be an attracting point or a stable equilibrium
point and in the second case a repelling point or an unstable equilibrium point.
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Figure 2. Attracting (left) and repelling (right) fixed point

Question. Observe Figures 2 and 3. Which property of f at the fixed point x̄ determines
whether x̄ is attracting or repelling?
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Figure 3. Attracting (left) and repelling (right) fixed point

The following theorem answers the question above.

Theorem 1. If x̄ is a fixed point of equation x(t + 1) = f(x(t)) and f at x̄ is smooth then
x̄ is an attracting point if |f ′(x̄)| < 1 and x̄ is a repelling point if |f ′(x̄)| > 1.

Problem 1. Give a graphical example where a fixed point x̄ is neither attracting nor
repelling, and f is smooth with |f ′(x̄)| = 1.

Problem 2. Give a graphical example where a fixed point x̄ is neither attracting nor
repelling, and f is not smooth at x̄.

Problem 3. For the dynamical system represented in Figure 1, find the fixed points and
say if they are attracting or repelling.

Remark. If at the fixed point x̄ the derivative is 1 or −1, in order to know the stability
property we have to investigate higher derivatives of f (if f is smooth at x̄). In this case
the fixed point x̄ is said non hyperbolic.

2. Loss of stability: bifurcations

We have seen that the fixed points of the dynamical system (1) are the points x satisfying
f(x) = x. Let us suppose that our system is given by a function f like that of Figure 1,
and that such function belongs to a family fa of functions depending continuously on a
parameter a. Let f = f0. Hence, for a = 0 there is only one attracting fixed point and two
repelling fixed points at the extremes of the interval where f is defined. Let us suppose
that all the functions of the family satisfy f(0) = 0, f(1) = 1 and f ′(1) = f ′(1) > 1.

By a continuous change of the function f0 into fa, the attracting fixed point x̄a (satisfying
fa(x̄a) = x̄a moves continuously. However, for some isolate value of the parameter a,
something may happen which changes the dynamic.

2.1. Saddle-node bifurcation. As shown in Figure 4, it may happen that the graph
of fa, for some isolated value a∗ of a becomes tangent to the diagonal (the graph of the
function h(x) = x). At the point of tangency, say x∗, the derivative of the function fa∗ is
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equal to 1, and therefore the equilibrium point x∗ is non hyperbolic. For a > a∗ two new
fixed points exist. Observe that necessarily one is stable and the other one is unstable.

x(t+1)

x(t)
0

1

1
x(t)

0

1

1
x(t)

0

1

1

stable unstable

tangency

a<a* a=a* a>a*

x*

x*

Figure 4. Saddle-node bifurcation in the family fa.

The bifurcation diagram is the graph of a multivalued function, showing for every value
of the parameter a in a neighbourhood of the bifurcation value a∗ the fixed points of fa

in a neighbourhood of x∗. Stable fixed points are marked by a continuous line, unstable
points by a dotted line.
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Figure 5. Bifurcation diagram of a saddle-node bifurcation.

2.2. Pitch-fork bifurcation. In this case the derivative of the fixed point x̄a of fa

changes passing through the value 1 (or −1) (see Figure 6). At that point, say x∗,
the graph of fa∗ is tangent to the diagonal, with an order-2 tangency. When a increases,
the point of tangency disappears, the fixed point that was stable (derivative higher than
zero and less than one) becomes unstable (derivative higher than one) and two other fixed
points exist at right and at left of the unstable fixed point. These two points are stable.
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Figure 6. Pitch-fork bifurcation in the family fa.

Figure 7 shows the bifurcation diagram. At x∗ the stable fixed point becomes unstable
and about it new stable fixed points appear.
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Figure 7. Bifurcation diagram of a pitch-fork bifurcation.

Exercise. Draw the graph of a function with an unstable fixed point that becomes stable
by a pitch-fork bifurcation. Draw the corresponding bifurcation diagram.

3. Periodic points

In order to introduce another typical phenomenon of the discrete one-dimensional systems
we study the dynamics determined by the family of smooth functions:

fa = ax(1− x)

defined on the unit interval I = [0, 1] for a ∈ (0, 4].

Evidently, x = 0 is a fixed point, and since f ′(0) = a, it is stable for all values of a less
than 1.

For a = 1 the origin is therefore a non hyperbolic fixed point and for a > 1 it is unstable.
We will denote by a0 the value a = 1.

The equation fa(x) = x has as solution, besides x = 0, the point x̄a = 1−1/a, which is in
the interval [0, 1] for a > 1. The derivative at such point is a(1− 2x̄a) = 2− a, therefore
x̄a is stable for 1 < a < 3.
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Figure 8. The logistic map for a < 3

The point x̄a becomes unstable at a = 3. A trajectory starting near the equilibrium point
x̄a is like that in Figure 3, left, for a < 3 and like that in figure 3, right, for a > 3. We
will denote the value a = 3 by a1.
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Figure 9. The logistic map about a = 3

But the question now is: where ”the trajectory is going”, i.e., does the succession x(t),
starting near x̄, approach some set of points? In other words, does it exist an attracting
set, which is not a fixed point?

The answer is yes. There is a value a2 > 3 such that for a1 < a < a2, all trajectories
starting at points different from 0 and non containing x̄a are attracted towards a cycle of
two points (see Figure 10).
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Figure 10. The attracting 2-cycle for a = 3.4

In fact, for every value of a between a0 and a1 there are two points x1 and x2 such that
f(x1) = x2 and f(x2) = x1. The trajectory staring at x1 or x2 is therefore formed by
{x1, x2, x1, x2, x1, x2, . . . }. Moreover, ’almost’ all other trajectories tend to such a cycle.
How to prove this?

We will consider, instead of the map fa, the map f
(2)
a := x → fa(fa(x)), the second

iterate. It is evident that x1 and x2 satisfy

xi = f (2)
a (xi) i = 1, 2

i.e., they are fixed points for this map. We may apply Theorem 1 to valuate their stability:

if they are attracting (repelling) for f
(2)
a , the cycle (x1, x2) will be attracting (repelling).
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Figure 11. The stability of the attracting 2-cycle for a = 3.4

In Figure 11 we see that the absolute value of the slope of f
(2)
a at x1 and x2 is less than 1.
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Figure 12. The pitchfork bifurcation of f
(2)
a at a = a1

Exercise. Prove that x1, x2 are the roots of the equation a2z2−a2z−az +a+1 = 0. Find
these roots.

4. Period doubling bifurcation

As a increases, the absolute value of the slope of f
(2)
a at x1 and x2 increases (see Figure

12), till the value a2 = 1 +
√

6 ≈ 3.4495 when it becomes equal to 1. For such a value of

a the 2-cycle (x1, x2) loses stability. Observe that f
(2)
a , for a > a2 has always four fixed

points (0, x̄a, x1, x2) but they are all unstable. Again, we ask: where the trajectories are
going?

We observe that, locally, i.e. in a neighbourhood of x1 or of x2, the function f 2
a (x) looks

like the function fa(x) about x̄a (its graph intersects the diagonal, the slope varying

about −1 ). Therefore, if we now consider the iterate of f
(2)
a (x), i.e. the fourth iterate

f
(4)
a (x) = fa(fa(fa(fa(x)))), we expect a similar phenomenon near the points x1 and

x2. I.e., for a = a2 the function f
(4)
a has contemporarily 2 pitchforks bifurcations in

correspondence of the points x1 and x2, see Figure 13.
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Figure 13. The loss of stability of x1 and x2 and birth of 4 stable 4-periodic points.
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A cycle similar to that of Figure 10 continues to exist, but it is unstable and a double
cycle of 4 points is the attracting set (see Figure 14).
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Figure 14. The stable 4-cycle and the unstable 2-cycle.

This phenomenon repeats when a increases: for a value a3 > a2 the 4-cycle loses stability:

the map f
(4)
a (f

(4)
a (x) = f (8)(x) has 4 pitch-fork bifurcations and 8 new fixed points appear

(i.e. 8-periodic points for fa).

What we observe in the behaviour of the map fa when a varies is not the pitch-fork
bifurcation (which is visible in the 2n-iterate of fa), but a phenomenon which is called
period doubling bifurcation, see figure 15.
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Figure 15. By a period doubling bifurcation a 4-cycle loses stability and appears a stable 8-cycle.

This phenomenon occurs for a succession of values ai, (where the 2i−1-cycle loses stability
and the stable 2i-cycle appears), which is converging to a value a∞ = 3.569946..., and
whose first values are

a1 = 3, a2 ≈ 3.49949, a3 ≈ 3.54409, a4 ≈ 3.5644, a5 ≈ 3.5687.
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Figure 16. Scheme of the cascade of period doubling bifurcations.

5. Universality and Feigenbaum constants

This phenomenon of a succession of period adding bifurcations is not peculiar of the logis-
tic map. Indeed, Feigenbaum proved in 1975 that every family Fa = aF (x) of functions
defined on the unit interval, such that F is at least 3 times differentiable and has a unique
maximum in [0, 1], exhibits the same behaviour. Such functions are said unimodal

Moreover, he found two ’universal constants’, that are characteristics only of the cascade
of doubling periods bifurcation, and not depend on the particular map we are using.
These constants are denoted by δ and α:

δ = lim
n→∞

an − an−1

an+1 − an

= 4.66920160910299067185320382...

The windows of the parameter values between successive bifurcation values decreases very
rapidly.

The constant α is given by

α = lim
n→∞

dn

dn+1

= 2.502907875095892822283902873218...

where dn is the distance between two branching points (coming from the preceding bifur-
cation) at the value a = an.

6. Chaos and other periods

At the value a∞ the ’periodic cycle’ is an infinite set of points which is called Feigenbaum
attractor and has a fractal dimension equal to 0.538. This dimension is the same for
unimodal maps.

For values of a > a∞ the map fa has chaotic behaviour, but there are intervals where
there are attracting stable cycles, as shown in this bifurcation diagram, where the stable
attracting set is plotted versus a. The period 3 loses stability by a doubling period cascade,
so that there are all 3 · 2n periodic points, characterised by the Feigenbaum constants.
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Remark. The ratio between the diameters of successive circles on the real axis of the
Mandelbrot set converges to the Feigenbaum constant δ.

a


