
Hyperbolic Dynamics - 1
st
lecture

A discrete dynamical system is a pair (M, f), where M is a space of states (that can be

a manifold, a metric space, etc) and f : M → M is an evolution law. One is interested in

study the evolution of some initial state when the law is applied repeatedly.

We define some of the main objects of the dynamics as follows. For n ∈ N, denote by fn

the composition f ◦ · · · ◦ f , n times, f0 is the identity and f−n = f−1 ◦ · · · ◦ f−1, n times

(in the case where f−1 is well defined).

Definition 1. The forward orbit of a point p ∈ M is the set O+(p) = {fn(p) : n ∈ N}. If
f is invertible, we define the orbit of p ∈ M by O(p) = {fn(p) : n ∈ Z}.

Definition 2. A point p ∈ M is said to be a fixed point if f(p) = p, and it is said to be
periodic if there exists n > 0 such that fn(p) = p. The least positive integer n such that
fn(p) = p is the period of p (or the minimum period of p).

The main goal of the study of a specific dynamical system is to describe the orbit of all

points in M . It is not always possible, but there are some situations where it is easy to

describe some of the orbits. For instance, there are some results that give the existence of

fixed or periodic points.

1. If f : [a, b] → [a, b] is a continuous function from the compact interval [a, b] to itself,

then there is a fixed point in [a, b].

2. If f : I → I is a continuous function from the interval I to itself, and there exists a

compact interval J ⊂ I such that f(J) ⊃ J (denote this situation by J → J), then
there exists a fixed point in J .

3. If f : I → I is a continuous function from the interval I to itself, and there exist

a sequence of compact intervals J1, . . . , Jn such that f(J1) ⊃ J2, f(J2) ⊃ J3,. . . ,
f(Jn) ⊃ J1 (J1 → J2 → · · · → Jn → J1), then there exists a point p ∈ J1 such that

fn(p) = p and f i(p) ∈ Ji+1 for all i = 1, . . . , n− 1.

These results have many consequences in the context of dynamics of maps defined in

intervals. One of the most famous is the Theorem of Sharkovsky, that we state here in a

simplified form.

Theorem 3. Let f : I → I be a continuous function defined in the interval I ⊂ R. If there
is a periodic point with period 3, then there is a periodic point with period k, for every k ∈ N.

Proof. Let x1 be a point of period 3, and let f(x1) = x2 and f(x2) = x3. Assume that

x1 < x2 < x3 (the other possibilities lead to analogous proofs). Let I1 = [x1, x2] and

I2 = [x2, x3]. Them we have that f(I1) = I2 and f(I2) = I1 ∪ I2.
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Since I2 → I2, there is a fixed point p1 in I2 (period 1). We also have that I1 → I2 → I1,
then there is a periodic point p2 of period 2 in I1. These two points are clearly different

from x1, x2 and x3, since their periods are less than 3. We also have, for a given integer

n > 3, the following sequence:

I1 → I2 → I2 → · · · → I2 → I1,

where the interval I2 appears n − 1 times. This implies that there exists a point pn in I1
such that fn(pn) = pn, and f i(pn) ∈ I2 for all 0 < i ≤ n− 1. Notice that pn �= x2, because

f2(x2) ∈ I1 \ I2. Then we have that f i(pn) �= pn for all 0 < i ≤ n− 1, and the period of pn
is exactly n.

The Sharkovsky Theorem tells us that maps that appear to be simple can have a very

complicated dynamical behavior. In the opposite direction, there are some situations that

imply a very simple dynamics.

Theorem 4. If (X, d) is a complete metric space, and f : X → X is a contraction1, then
there is a unique fixed point p ∈ X, and lim fn(x) = p for all x ∈ X.

Proof. Let 0 ≤ λ < 1 be such that d(f(x), f(y)) ≤ λd(x, y) for every x, y ∈ X. Let x ∈ X.

Then we have, for 0 < n < m,

d(fn
(x), fm

(x)) ≤ λnd(x, fmn(x))

≤ λn
(d(x, f(x)) + d(f(x), f2

(x)) + · · ·+ d(fm−n−1
(x), fm−n

(x)))

≤ λn
(d(x, f(x)) + λd(x, f(x)) + · · ·+ λm−n−1d(x, f(x)))

≤ λn
(1 + λ+ · · ·+ λm−n−1

)d(x, f(x)))

≤
λn

1− λ
d(x, f(x)) →n→∞ 0.

Then fn(x) is a Cauchy sequence, and, since X is a complete metric space, it must

converge for some p ∈ X. Now, since lim fn(x) = p, and contractions are continuous maps,

we have that f(p) = f(lim fn(x)) = lim fn+1(p) = p. It remains to show that p is the

only fixed point. In fact, if q is also fixed, then d(p, q) = d(f(p), f(q)) ≤ λd(p, q). Since

0 ≤ λ < 1, we have p = q.

In other words, contractions have simple dynamics. By applying repeatedly the evolution

law, every initial condition converges to a fixed state.

Definition 5. Let f : M → M be a map defined in the metric space M . A fixed point p is
said to be an attractor if there is a neighborhood U of p in M such that lim fn(x) = p for
all x ∈ U . The basin of attraction of p is the set B(p) = {x ∈ M : lim fn(x) = p}.

The point p in the statement of theorem 4 is a particular case of attractor, where the

basin of attraction is the whole space. There are no fixed nor periodic points in the basin

of attraction of an attractor.

If f : I → I is C1 map2 and |f �(x)| < λ < 1, then f is a contraction. If I is a closed

interval, then the theorem 4 can be applied, and we conclude that there is a unique fixed

1there exists a constant 0 ≤ λ < 1 such that d(f(x), f(y)) ≤ λd(x, y) for every x, y ∈ X.
2f has a continuous derivative at every x ∈ I
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point in I for f . This is an example of how the derivative of a map gives information about

the dynamics.

Definition 6. Let f : I → I be a differentiable function defined in the interval I ⊂ R. A
point p ∈ I is said to be a hyperbolic fixed point if f(p) = p and |f �(p)| �= 1. If fn(p) = p
and n is the period of p, then p is said to be a hyperbolic periodic point if |(fn)�(p)| �= 1. If
f �(p) = 0, it is said to be a critical point.

As a consequence of the definition and the results above, if p is a fixed point such that

|f �(p)| < 1, then p is an attractor.

Exercises

1. If f : I → I is a continuous function from the interval I to itself, and there exists a

compact interval J ⊂ I such that f(J) ⊃ J , then there exists a fixed point in J .

2. If f : I → I is a continuous function from the interval I to itself, and there exists a

compact interval J ⊂ I such that f(J) ⊃ J , then there exists an interval J0 ⊂ J such

that f(J0) = J .

3. Let f : [0, 1] → [0, 1] be defined by

f(x) =

�
2x if 0 ≤ x < 1/2

1− 2x if 1/2 ≤ x ≤ 1.

Prove (without using Sharkovsky’s Theorem) that there are periodic points of all

positive periods.
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