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Introduction and motivation

The material to be presented in this course is motivated by the general and classical
problem of studying an autonomous Ordinary Differential Equation

ẋ = f(x).

This problem goes back centuries and through the years many different approaches and
techniques have been developed. The most classical approach is that of finding explicit
analytic solutions. This can provide a great deal of information but is essentially only
applicable to an extremely restricted class of differential equations. From the beginning
of the 20th century there has been great development on topological methods to obtain
qualitative topological information such as the existence of periodic solutions. Again this
can be a very successful approachin certain situation but there are many equations which
have for example infinitely many periodic solutions possibly intertwined in very complicated
ways to which these methods do not really apply. Finally there are numerical methods for
approximating solutions. In the last few decades with the increasing computing power there
has been hope that numerical methods could play an important role. Again, while this is
true in many situations, there are also many equations for which the numerical methods
have very limited applicability because the approximation errors grow exponentially and
quickly become uncontrollable. Moreover this “sensitive dependence on initial conditions”
is now understood to be an intrinsic feature of certain equations than cannot be resolved
by increasing the computing power.

Example 1. The Lorenz equations were introduced by the metereologist E. Lorenz in 1963,
as an extremely simplified model of the Navier-Stokes equations for fluid flow.

ẋ1 = 10(x2 − x1)

ẋ2 = 28x1 − x2 − x1x3

ẋ3 = x1x2 − 8x3/3.

This is a very good example of a relatively simple ODE which is quite intractable from
many angles. It does not admit any explicit analytic solutions; the topology is extremely
complicated with infinitely many periodic solutions which are knotted in many different
ways (there are studies from the point of view of knot theory of the structure of the periodic
solutions in the Lorenz equations); numerical integration has very limited use since nearby
solutions diverge very quickly.
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One thing that can be proved about the Lorenz equations using classical methods is the
fact that all solutions eventually end up in some bounded region U ⊂ R3. This simplifies
things significantly since it means that it is sufficient to concentrate on the solutions inside
U . A combination of results obtained over almost 40 years by several different people can
be formulated in the following theorem which can be thought of essentially as a statement
in ergodic theory.We give here a precise but slightly informal statement as some of the
terms will be defined more precisely below.

Theorem 1 (1963-2000, combinations of several results by different people). For every
ball B ⊂ R3, there exists a “probability” p(B) ∈ [0, 1] such that for “almost every” initial
condition x ∈ R3 we have

lim
T→∞

1

T

∫ T

0

1B(xt)dt = p(B).

A few remarks about this result. Recall first of all that 1B is the characteristic function
of the set B defined by

1B(x) =

{
0 if x /∈ B
1 if x ∈ B

Moreover, xt denotes the solution with initial condition x0 = x and therefore the integral∫ T
0
1B(xt)dt is simply the amount of time that the solution spends inside the ball B between

time 0 and time T , and T−1
∫ T

0
1B(xt)dt is simply the proportion of time that the solution

spends in the ball B between time 0 and time T . The Theorem therefore makes two highly
non trivial assertions:

1. that this proportion converges ;

2. that the limit is independent of x.

The convergence itself is non trivial as there is no a priori reason why this should be
true. But perhaps themost remarkable fact is that this limit is the same for almost all
initial conditions (the notion of “almost all” will be made precise below). This says that
the asymptotic time averages of the solution xt with initial condition x = x0 are actually
independent of this initial condition. In this sense we can really talk about the ball B
having a certain probability in the sense that there is a given probability that the solution
through a random initial condition at some random time as that particular probability of
belonging to the set B.

The moral of the story is that even though the Lorenz equations are difficult to describe
from an analytic or topological point of view, and are essentially intractable form a numer-
ical point of view, they are very well behaved from a probabilistic point of view. The tools
and methods of probability theory are therefore very well suited to study and understand
these equations and other similar dynamical systems. This is essentially the point of view
on ergodic theory that we will take in these lectures. Since this is an introductory course
we will focus on the simplest examples of dynamical systems for which there is already
an extremely rich and interesting theory, which are one-dimensional maps of the interval
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or the circle. However, the ideas and methods which we will present often apply in much
more generality and usually form at least the conceptual foundation for analogous results
in higher dimensions. In fact in some situation results about interval maps are applied
directly to higher dimensional situations. For example in the Lorenz equations it turns
out that the result stated above does essentially reduce to an analogous result for one-
dimensional maps by taking a cross section for the flow and the Poincaré first return map
to this cross section.
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Chapter 1

Invariant measures

Let (X,B, µ) be a probability measure space. We say that a map f : X → X is measurable
if f−1(A) ∈ B for all A ∈ B. We shall always assume that our maps are measurable.

Definition 1. A measure µ is f -invariant if, for every A ∈ B we have

µ(f−1(A)) = µ(A).

We also say that f is measure-preserving with respect to µ.

Exercise 1. Show that if f is invertible then this condition is equivalent to µ(f(A)) = µ(A).
Find an example of a non-invertible map and a measure µ for which the two conditions
are not equivalent.

Invariant measures play a fundamental role in dynamics. To motivate the definition
we begin by stating and proving an abstract result about the dynamics of maps having
an invariant measure. We then give several examples of invariant measures and conclude
this chapter with another abstract result concerning the structure of the space of invariant
measures.

1.1 Poincaré’s Recurrence Theorem

Theorem (Poincaré Recurrence Theorem). Let (X,B, µ) be a probability space and f :
X → X a measure-preserving map. Let A ∈ B with µ(A) > 0. Then µ almost every point
x ∈ A returns to A inifinitely often.

Exercise 2. The finiteness of the measure µ plays a crucial role in this result. Find an
example of an infinite measure space (X̂, B̂, µ̂) and a measure-preserving map f : X̂ → X̂
for which the conclusions of Poincare’s Recurrence Theorem do not hold.

Proof. We show first of all that µ almost every point in A returns to A at least once. Let

A′0 = {x ∈ A : fn(x) /∈ A for all n ≥ 1}
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denote the set of points of A that never return to A. Let

A′n = f−n(A′0).

It is easy to see that A′n ∩ A′m = ∅ for all m,n ≥ 0 with m 6= n. Indeed, supppose by
contradiction that there exists n > m ≥ 0 such that there exists x ∈ A′n ∩A′m. This would
imply that

fn(x) ∈ fn(A′n ∩ A′m) = fn(f−n(A′0) ∩ f−m(A′0)) = A′0 ∩ fn−m(A′0)

But this impliesA′0∩fn−m(A′0) 6= ∅ which contradicts the definition ofA′0. By the invariance
of the measure µ we have µ(A′n) = µ(A′) for every n ≥ 1 and therefore

1 = µ(X) ≥ µ(
∞⋃
n=1

A′n) =
∞∑
n=1

µ(A′n) =
∞∑
n=1

µ(A′).

Thus µ(A′) = 0 since otherwise the sum on the right hand side would be infinite. This
completes the proof that almost every point of A returns to A at least once.

To show that almost every point of A returns to A infinitely often let

A′′ = {x ∈ A : there exists n ≥ 1 such that fk(x) /∈ A for all k > n}

denote the set of points in A which return to A at most finitely many times. Again, we
will show that µ(A′′) = 0. First of all let

A′′n = {x ∈ A : fn(x) ∈ A and fk(x) /∈ A for all k > n}

denote the set of points which return to A for the last time after exactly n iterations.
Notice that A′′n are defined very differently than the A′n. Then

A′′ = A′′1 ∪ A′′2 ∪ A′′3 ∪ · · · =
∞⋃
n=1

A′′n.

It is therefore sufficient to show that for each n ≥ 1 we have µ(A′′n) = 0. To see this
consider the set fn(A′′n). By definition this set belongs to A and consists of points which
never return to A. Therefore µ(fn(A′′n)) = 0. Moreover we have we clearly have

A′′n ⊆ f−n(fn(A′′n))

and therefore, using the invariance of the measure we have

µ(A′′n) ≤ µ(f−n(fn(A′′n))) = µ(fn(A′′n)) = 0.
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1.2 The space of invariant measures

We now prove our first general theorem about the existence of invariant measures. Let X
be a metric space and let M denote the set of all Borel probability measures on X. Note
that M 6= ∅ since it always contains for examples the Dirac-delta measures δx on points
of X. Now let f : X → X be a Borel measurable map and let Mf ⊆ M denote the set
of f -invariant Borel probability measures on I. We would like to study certain properties
of the set Mf . Recall that by definition Mf is convex if given any µ0, µ1 ∈ Mf , letting
µt := tµ0 + (1− t)µ1 for t ∈ [0, 1], then µt ∈Mf .

Exercise 3. Show that Mf is convex.

The convexity is of course trivial if Mf = ∅ and this can indeed happen.

Exercise 4. Find a continuous map on the open interval (0, 1) such that Mf = ∅.

Theorem 2 (Krylov-Boguliobov). If X is compact and f is continuous, then Mf 6= ∅.

We define a map
f∗ :M→M

by letting, for any measurable set A,

f∗µ(A) = µ(f−1(A)). (1.1)

We call f∗µ the push-forward of µ. Similarly we can define f i∗µ(A) = µ(f−i(A)).

Exercise 5. Show that the map f∗ is well defined, i.e. that f∗µ is a probability measure.

It follows immediately from the definition that µ is f -invariant if and only if f∗µ = µ,
i.e. if µ is a fixed point for the map f∗. It is therefore sufficient to show that f∗ has a fixed
point.

Lemma 1.2.1. The map f∗ :M→M is continuous.

Proof. We show first of all that for all ϕ ∈ L1(µ) we have∫
ϕd(f∗µ) =

∫
ϕ ◦ fdµ. (1.2)

In particular, if µ is invariant, then∫
ϕdµ =

∫
ϕ ◦ fdµ.

First let ϕ = 1A be the characteristic function of some set A ⊆ X. In this case we have∫
1Ad(f∗µ) = f∗µ(A) = µ(f−1(A)) =

∫
1f−1(A)dµ =

∫
1A ◦ fdµ.

The statement is therefore true for characteristic functions and thus follows for general
measurable functions by standard approximation arguments. More specifically, it follows
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immediately that the result also holds if ϕ is a simple function (linear combination of
characteristic functions). For ϕ a non-negative integrable function, we use the fact that
every measurable function ϕ is the pointwise limit of a sequence ϕn of simple functions; if
f is non-negative then ϕn may be taken non-negative and the sequence {ϕn} may be taken
increasing. Then, the sequence {ϕn ◦ f} is clearly also an increasing sequence of simple
functions converging in this case to ϕ◦ f . Therefore, by the definition of Lebesgue integral
we have ∫

ϕnd(f∗µ)→
∫
ϕd(f∗µ) and

∫
ϕn ◦ fdµ→

∫
ϕ ◦ fdµ

Since we have already proved the statement for simple functions we know that
∫
ϕnd(f∗µ) =∫

ϕn◦fdµ for every n and therefore this gives the statement. For the general case we repeat
the argument for positive and negative parts of ϕ as usual.

The continuity of f∗ now follows easily from (1.2). Indeed, suppose µn → µ inM. Then,
by the definition of convergence in the weak star topology, for any continuous function
ϕ : X → R and the previous Lemma, we have∫

ϕd(f∗µn) =

∫
ϕ ◦ fdµn →

∫
ϕ ◦ fdµ =

∫
ϕd(f∗µ)

which means exactly that f∗µn → f∗µ which is the definition of continuity.

Proof of Theorem 2. Let µ0 ∈ M be an arbitrary measure, for example the Dirac-delta
measure δx for some arbitrary point x ∈ X. Define the sequence of measures

µn =
1

n

n−1∑
i=0

f i∗µ0. (1.3)

Since each f i∗µ0 is a probability measure, the same is also true for µn. We recall that
µn → µ in the weak-? (weak-star) topology if∫

ϕdµn →
∫
ϕdµ as n→∞

for all continuous functions ϕ. By standard results of analysis, the spaceM of probability
measures is compact in the weak star topology. In particular, there exists a measure µ ∈M
and a subsequence nj →∞ with

µ = lim
j→∞

µnj .

We will show that any such limit point µ is invariant, i.e. f∗µ = µ. First of all, by the
continuity of f∗ and the fact that µnj → µ we have f∗µnj → f∗µ. It is therefore sufficient
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to show that also f∗µn → µ. We write

f∗µnj = f∗

(
1

nj

nj−1∑
i=0

f i∗µ0

)
=

1

nj

nj−1∑
i=0

f i+1
∗ µ0

=
1

nj

(
nj−1∑
i=0

f i∗µ0 − µ0 + f
nj
∗ µ0

)

=
1

nj

nj−1∑
i=0

f i∗µ0 −
µ0

nj
+
f
nj
∗ µ0

nj

= µnj +
µ0

nj
+
f
nj
∗ µ0

nj

Since the last two terms tend to 0 as j →∞ this implies that f∗µnj → µ and thus concludes
the proof.

1.3 Fixed and periodic orbits

We now begin a series of explicit examples of invariant measures. Let X be a metric space
and p ∈ X a point. The Dirac measure δp is

δp(A) =

{
1 p ∈ A
0 p /∈ A

In this case the entire mass is concentrated on the single point p.

Proposition 1.3.1. Let X be a metric space and f : X → X a measurable map. Suppose
f(p) = p. Then the Dirac measure δp is invariant.

Proof. Let A ⊂ I be a measurable set. We consider two cases. For the first case, suppose
p ∈ A, then δp(A) = 1. In this case we also clearly have p ∈ f−1(A) (notice that p
might have multiple preimages, but the point p itself is certainly one of them). Therefore
δp(f

−1(A) = 1, and the result is proved in this case. For the second case, suppose p /∈ A.
Then δp(A) = 0 and in this case we also have p /∈ f−1(A). Indeed, if we did have p ∈ f−1(A)
this would imply, by definition of f−1(A) = {x : f(x) ∈ A}, that f(p) ∈ A contradicting
our assumption. Therefore we have δp(f

−1(A)) = 0 proving the result in this case.

An immediate generalization is the case of a measure concentrated a finite set of points
{p1, . . . , pn} each of which carries some proportion ρ1, . . . , ρn of the total mass, with ρ1 +
· · ·+ ρn = 1. Then, we can define a measure δP by letting

δP (A) =
∑
i:pi∈A

ρi.

Exercise 6. δP is invariant if and only if ρi = 1/n for every i = 1, . . . , n.
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1.4 Circle rotations

Proposition 1.4.1. Let X = S1 and f(x) = x + α for some α ∈ R. Then Lebesgue
measure is invariant.

Proof. f is just a translation and Lebesgue measure is invariant under translations.

However depending on the value of α there may be other invariant measures as well.

Exercise 7. Show that for α = 0 every µ ∈M is invariant.

1.5 Piecewise affine full branch maps

We now consider an important class of maps on an interval I. For any subinterval J ⊆ I
we shall write int(J) the denote the interior of J .

Definition 2. We say that f : I → I is a full branch map if there exists a finite or
countable partition P of I( mod 0) into subintervals such that for each ω ∈ P the map
f |int(ω) : int(ω)→ int(I) is a C2 diffeomorphism.

We recall that a partition P of I( mod 0) into subintervals means that there exists a
family P = {ωi} of subintervals of I with disjoint interiors and a subset Ĩ ⊂ I of full
Lebesgue measure such that Ĩ ⊂ ∪iωi. The cardinality of the family P is sometimes
referred to as the number of branches of the map f . A full branch map f : I → I is
piecewise affine if it’s derivative is constant on the interior of each ω ∈ P . In this case we
shall write f ′ω to denote the derivative of f on int(ω).

Proposition 1.5.1. Let f be a piecewise affine full branch map. Then Lebesgue measure
in invariant.

Proof. The simplest examples of full branch maps are given by f(x) = kx mod 1 for some
k ∈ Z with k ≥ 2. For these maps, it is easy to see that any subinterval J has exactly k
preimages, each one of length |J |/k. Thus the total length of the preimage f−1(J) is the
same length as J and this proves that Lebesgue measure is invariant. In the general case
(even with an infinite number of branches) we have |ω| = 1/|f ′ω|. Thus, for any interval
A ⊂ I we have

|f−1(A)| =
∑
ω∈P

|f−1(A) ∩ ω| =
∑
ω∈P

|A|
|f ′ω|

= |A|
∑
ω∈P

1

|f ′ω|
= |A|

∑
ω∈P

|ω| = |A|.

Thus Lebesgue measure is invariant.

Exercise 8. Show that the maps f(x) = kx mod 1 for k ≥ 2 have at least k− 1 invariant
measures besides Lebesgue. Show that for k = 10 there are at least countably many
distinct invariant measures. Show that the same is true also for other values of k.
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1.6 Gauss map

Let I = [0, 1] and define the Gauss map f : I → I by f(0) = 0 and

f(x) =
1

x
mod 1

if x 6= 0. Notice that for every n ∈ N the map

f :

(
1

n+ 1
,

1

n

]
→ (0, 1]

is a diffeomorphism. In particular the Gauss map is a full branch map though it is not
piecewise affine. Define the Gauss measure µG on [0, 1] by defining, for every interval
A = (a, b),

µG(A) =

∫ b

a

1

1 + x
dx =

1

log 2
log

1 + b

1 + a

Proposition 1.6.1. Let f be the Gauss map. Then µG is invariant.

Proof. Each interval A = (a, b) has a countable infinite of pre-images, one inside each
interval of the form (1/n + 1, 1/n) and this preimage is given explicitly as the interval
(1/n+ b, 1/n+ a). Therefore

µG(f−1(a, b)) = µG

(
∞⋃
n=1

(
1

n+ b
,

1

n+ a

))
=

1

log 2

∞∑
n=1

log

(
1 + 1

n+a

1 + 1
n+b

)

=
1

log 2
log

∞∏
n=1

(
n+ a+ 1

n+ a

n+ b

n+ b+ 1

)
=

1

log 2
log

(
1 + a+ 1

1 + a

1 + b

1 + b+ 1

2 + a+ 1

2 + a

2 + b

2 + b+ 1
. . .

)
=

1

log 2
log

1 + b

1 + a
= µG(a, b).

1.7 Ulam-von Neumann maps

Let I = [−1, 1] and define the Ulam-von Neumann map f : I → I by

f(x) = x2 − 2.

This is also a full branch map with partition P = {(−1, 0), (0, 1)}. However we shall see
below that the existence of a critical point, i.e. a point c for which f ′(c) = 0, creates
additional complications in general. Define a measure µUN on I by

µUN(A) =
2

π

∫ b

a

1√
4− x2

for any interval A ⊆ I.
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Proposition 1.7.1. Let f be the Ulam-von Neumann map. Then µUN is invariant.

We will use here a very different argument from that used in the construction of the
invariant measure for the Gauss map. For this we need to introduce a new and very
important idea in dynamical systems.

Definition 3. Let X, Y be two spaces and f : X → X and g : Y → Y be two maps. We
say that f and g are conjugate if there exists a bijection h : X → Y such that h◦f = g◦h..
Exercise 9. Show that a conjugacy h maps orbits of f to orbits of g in the sense that for
every i and every x ∈ X we have h(f i(x)) = gi(h(x)).

If two maps f and g are conjugate then they are “equivalent” in some sense.

Exercise 10. Show that conjugacy is an equivalence relation on the space of all maps.

If the sets X, Y have some additional structure which is preserved by the maps f, g
then we can define stronger forms of conjugacy.

Definition 4. Suppose f : X → X and g : Y → Y are conjugate by a conjugacy
h : X → Y .

1. If X, Y are measurable spaces (i.e. equipped with σ-algebras) and f, g, h, h−1 are all
measurable, then we say that f, g are measurably conjugate or that h is a measurable
conjugacy.

2. If X, Y are topological spaces and f, g, h, h−1 are all continuous (in particular h is
a homeomorphism), then we say that f, g are topologically conjugate or that h is a
topological conjugacy.

3. If X, Y are differentiable manifolds and f, g, h, h−1 are all differentiable (in particular
h is a diffeomorphism), then we say that f, g are differentiably conjugate or that h is
a differentiable conjugacy.

It is quite possible for two differentiable maps to be measurably conjugate but not topo-
logically conjugate or topologically conjugate but not differentiably conjugate. Different
kinds of conjugacy preserve different aspects of the structure of the systems.

Exercise 11. Let ω(x) = {x′ ∈ X : f tn(x) → x′ for some sequence tn → ∞}, also called
the “omega-limit” of x, denote the set of all accumulation points of the forward orbit of
the point x. Show that if h is a topological conjugacy, then h(ω(x)) = ω(h(x)).

Measurable conjugacies map sigma-algebras to sigma-algebras and therefore we can
generalize the notion of a push-forward of measures as in (1.1) and define a map

h∗ :M(X)→M(Y )

by
h∗µX(A) = µX(h−1(A)).

The difference here is that this maps measures defined on the space X to measures defined
on the different space Y . More importantly for your purposes is that this induces a well
defined map on the corresponding spaces of invariant measures.
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Lemma 1.7.1. Suppose h is a measurable conjugacy. Then the push-forward map h∗ maps
invariant measures to invariant measures.

Proof. Let µX ∈ Mf (X), i.e. µX is invariant under f . We show that µY := h∗µX ∈
Mg(Y ), i.e. µY is invariant under g. For any measurable set A ⊆ Y we have

µY (g−1(A)) = µX(h−1(g−1(A))) = µX((h−1 ◦ g−1)(A)) = µX((g ◦ h)−1(A))

= µX((h ◦ f)−1(A)) = µX(f−1(h−1(A))) = µX(h−1(A) = µY (A).

Proof of Proposition 1.7.1. Consider the tent map T : [0, 1]→ [0, 1] is defined by

T (z) =

{
2z, 0 ≤ z < 1

2

2− 2z, 1
2
≤ z ≤ 1.

The map T is a piecewise affine full branch map and thus Lebesgue measure m on [0, 1]
is an invariant probability measure for T . Now define the map h : [0, 1] → [−2, 2] by
h(z) = 2 cos πz.

Exercise 12. Show that h is a conjugacy between the tent map T and the Ulam-von
Neumann map f .

Notice that h is continuously differentiable and thus is in particular measurable. There-
fore we can define a measure µ := h∗m. By Lemma 1.7.1 the measure µ is an invariant
probability measure which is invariant under f . It just remains to show that µ has the
epxlicit form required. Notice first of all that we have

h−1(x) =
1

π
cos−1

(x
2

)
.

and

(h−1)′(x) =
1

π

−1√
1− x2

4

=
2

π

−1√
4− x2

For an interval A = (a, b) we have, using the fundamental theorem of calculus, factor 2 ?

µ(A) = m(h−1(A) =

∫ b

a

|(h−1)′(x)|dx =
2

π

∫ b

a

1√
4− x2

dx.

13



Chapter 2

Ergodic measures

Let X be a measure space and f : X → X a measurable transformation.

Definition 5. A measure µ ∈M (not necessarily invariant) is ergodic if every measurable
set A such that f−1(A) = A satisfies either µ(A) = 0 or µ(A) = 1.

Sometimes we also say that the map f is ergodic with respect to the measure µ. If a
set A satisfies f−1(A) = A we sometimes say that is is fully invariant. We remark that
this condition is much stronger than the forward invariance condition f(A) = A.

Exercise 13. Show that f−1(A) = A implies both f(A) = A and f−1(Ac) = Ac where
Ac = X \ A denotes the complement of A, and therefore also f(Ac) = Ac Show that
f(A) = A by itself does not imply f(Ac) = Ac.

To motivate the concept of ergodicity we start by presenting an abstract result, Birkhoff’s
Ergodic Theorem which can be thought of as a qualitative strengthening of Poincare’s re-
currence theorem. We then talk about the space of ergodic measures and finally present a
series of examples.

2.1 Birkhoff’s Ergodic Theorem

Let f : X → X be a measurable map preserving an ergodic probability measure µ and let
ϕ : X → R be a µ integrable function. We sometimes say that ϕ is an observable since it
can be thought of as giving the result of a “measurement” which depends on the point x
of the phase space at which it is evaluated. The integral∫

ϕdµ

is sometimes referred to as the space average of ϕ (with respect to the measure µ) whereas,
for a given point x, the averages

1

n

n−1∑
i=0

ϕ(f i(x)).

14



are often referred to as the time averages of ϕ along the orbit of x. There is no a priori
reason for these two quantities to be related. However we have the following fundamental

Theorem. If µ is an ergodic invariant probability measure, then

1

n

n−1∑
i=0

ϕ(f i(x))→
∫
ϕdµ

as n→∞ for µ almost every x.

We can formulate this result informally by saying that when µ is ergodic the the time
averages converge to the space average. We shall not prove this result here but we shall
discuss various techniques for proving ergodicity of invariant measures and analyse certain
consequences. The following Corollary justifies the idea of Birkhoff’s Ergodic Theorem
being a strong qualitative version of Poincare’s Recurrence Theorem.

Corollary 2.1.1. Let f : X → X and µ an ergodic invariant probability measure. Then,
for any measurable set A ⊆ X and µ almost every x we have

#{1 ≤ j ≤ n : f j(x) ∈ A}
n

→ µ(A).

as n→∞.

Proof. Letting ϕ = 1A be the characteristic function of the set A and applying Birkhoff’s
ergodic theorem we get that for µ almost every x we have every x ∈M ,

#{1 ≤ j ≤ n : f j(x) ∈ A}
n

=
1

n

n∑
i=1

1A(f i(x))→
∫
1Adµ = µ(A). (2.1)

2.2 The space of ergodic invariant measures

We have seen in the previous section that the spaceMf of invariant probability measures
is convex. We now state and proof a result about the structure of the subset of ergodic
invariant probability measures.

Proposition 2.2.1. µ ∈Mf is ergodic if and only if it is an extremal point of Mf .

We recall that an extremal point of a convex set A is a point x such that if x =
tx0 + (1 − t)x1 for x0, x1 ∈ Mf with x0 6= x1 then t = 0 or t = 1. As an immediate
corollary we get the following

Corollary 2.2.1. Suppose X is a compact metric space and f : X → X is continuous.
Then there exists at least one ergodic measure.

15



Proof. By standard results of Analysis, Mf satisfies the assumptions of the the Krein-
Milman Theorem which says that a convex set is the convex hull of its extremal points.
In particular, if the set is non-empty then the set of extremal points is also non-empty. If
X is compact and f : X → X is continuous, the set Mf is non-empty and the statement
follows.

To prove Proposition 2.2.1 we need to introduce some important notions which allow
us to compare two measures in different ways.

Definition 6. Let µ1, µ2 be probability measures. We say that µ1 is absolutely continuous
with respect to µ2, and write µ1 � µ2 if µ2(A) = 0 implies µ1(A) = 0 for every measurable
set A. If µ1 � µ2 and µ2 � µ1 then we say that µ1 and µ2 are equivalent.

By the Radon-Nykodym Theorem µ1 � µ2 if and only if there exists a function ϕ ∈
L1(µ2) such that

µ1(A) =

∫
A

ϕdµ2 (2.2)

for any measurable set A. We say that ϕ is the density of µ1 with respect to µ2 and we
sometimes write ϕ = dµ1/dµ2.

Exercise 14. Suppose µ1 � µ2. Show that for any measurable set A:

µ2(A) = 1 =⇒ µ1(A) = 1 (2.3)

and
µ1(A) > 0 =⇒ µ2(A) > 0. (2.4)

Definition 7. µ1, µ2 are mutually singular if there exists A such that µ1(A) = 1 and
µ2(A) = 0.

It is not the case that any two distinct measures need to be either absolutely continuous
or mutually singular. For example if we let µ1 = (δp + µ2)/2 where δp is a Dirac measure
on some point p. Then µ1 and µ2 are neither absolutely continuous nor mutually singular.
However, if µ1, µ2 are ergodic invariant measures then we have the following

Lemma 2.2.1. Let µ1, µ2 be distinct ergodic invariant measures. Then µ1 and µ2 are
mutually singular.

Proof. We start by proving that µ1 cannot be absolutely continuous with respect to µ2.
Suppose by contradiction that µ1 � µ2, we will show that µ1 = µ2 contradicting the
assumption that they are distinct. Let ϕ be an arbitrary bounded measurable function
(and thus in particular integrable with respect to any invariant probability measure). Then,
by Birkhoff’s ergodic theorem the time averages of ϕ converge to

∫
ϕdµ2 on a set A with

µ2(A) = 1. Since µ1 � µ2 we have from (2.3) that µ1(A) = 1. Thus the time averages of
ϕ converge to

∫
ϕdµ2 for µ1 a.e. x. However, applying Birkhoff’s ergodic theorem again to

µ1, the time averages of ϕ converge to
∫
ϕdµ1 for µ1 a.e. x. It follows that

∫
ϕdµ1 =

∫
ϕdµ2
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for any bounded measurable function. This includes in particular characteristic functions
and so µ1(A) = µ2(A) for any measurable set and so µ1 = µ2.

We now prove that µ1 and µ2 are mutually singular. Since we have just shown that
they are not absolutely continuous, there exists a measurable set E such that µ1(E) > 0
and µ2(E) = 0. Define the set

Ê =
∞⋂
m=0

∞⋃
j=m

f−j(E).

We will show that µ1(Ê) = 1 and µ2(Ê) = 0 implying that µ1 and µ2 are mutually singular.
Notice first of all that f−1(Ê) = Ê since x̂ ∈ Ê if and only if there exists some point x ∈ E
such that x̂ ∈ f−j(x) for infinitely many values of j. If x̂ satisfies this property than so
do all its preimages. Therefore it is sufficient to show that µ1(Ê) > 0 to imply µ1(Ê) = 1
using the ergodicity of µ1. By the invariance of both measures we have

µ1

(
∞⋃
j=0

f−j(E)

)
≥ µ1(E) > 0 and µ2

(
∞⋃
j=0

f−j(E)

)
= 0.

Moreover
∞⋃
j=m

f−j(E) = f−j

(
∞⋃
j=0

f−j(E)

)
and therefore, by the invariance of the measures we have

µi

(
∞⋃
j=m

f−j(E)

)
= µi

(
f−j

(
∞⋃
j=0

f−j(E)

))
= µi

(
∞⋃
j=0

f−j(E)

)
for i = 1, 2. In particular, the measure of each ∪∞j=mf−j(E) is constant. Moreover the sets

∪∞j=mf−j(E) are nested. Thus Ê is a countable intersection of a nested sequence of sets all

of which have the same measure. It follows that µ1(Ê) > 0 and µ2(Ê) = 0 as required.

Proof of Proposition 2.2.1. Suppose first that µ is ergodic. Suppose by contradiction that
µ is not extremal so that µ = tµ1 + (1− t)µ2 for two invariant probability measures µ1, µ2

and some t ∈ (0, 1).

Exercise 15. Show that µ1, µ2 are both ergodic and that µ1 � µ and µ2 � µ.

Then by Lemma 2.2.1 this implies µ1 = µ = µ2 contradicting our assumptions. Thus if
µ is ergodic it is an extremal point of Mf .

Now suppose that µ is not ergodic, we will show that it cannot be an extremal point.
Indeed, then there exists a set A with f−1(A) = A, f−1(Ac) = Ac and µ(A) ∈ (0, 1).
Define µ1(B) = µ(B ∩A)/µ(A) and µ2(B) = µ(B ∩Ac)/µ(Ac). Both µ1 and µ2 are clearly
probability measures and µ = µ(A)µ1 + µ(Ac)µ2. Therefore it just remains to show that
they are invariant. For a measurable set B we have, using the invariance of A,

µ1(f
−1(B)) =

µ(f−1(B) ∩ A)

µ(A)
=
µ(f−1(B) ∩ f−1(A))

µ(A)
=
µ(f−1(B ∩ A))

µ(A)
=
µ(B ∩ A)

µ(A)
= µ1(B)
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This shows that µ1 is invariant. The same calculation works for µ2 and so this completes
the proof.

2.3 Non-ergodic measures

We start by giving some simple examples of non-ergodic measures.

2.3.1 Non-ergodic piecewise affine maps

Proposition 2.3.1. Let f : [0, 1]→ [0, 1] be given by

f(x) =


.5− 2x if 0 ≤ x < .25

2x− .5 if .25 ≤ x < .75

−2x+ 2.5 if .75 ≤ x ≤ 1

Then Lebesgue measure is invariant bot not ergodic.

Proof. Exercise.

2.3.2 Rational circle rotations

Proposition 2.3.2. Let f : S1 → S1 be the circle rotation f(x) = x + α with α = p/q
rational. Then Lebesgue measure is invariant but not ergodic.

Proof. The invariance of Lebesgue measure follows from Proposition 1.4.1. To show that
Lebesgue is not ergodic, suppose first that α = 0. Then f(x) = x is just the identity map.
It is clear then that any subset A ⊂ S1 satisfies f−1(A) = A. Therefore it is sufficient
to choose some A with m(A) ∈ (0, 1) to contradict the definition of ergodicity. The more
general case of α rational is almost the same.

Exercise 16. Let f : S1 → S1 be the circle rotation f(x) = x + α with α = p/q rational.
Show that every point x is periodic of period q.

It is then sufficient to choose an arbitrary set A0 of small measure m(A0) = ε > 0. We
then let Aj = f j(A0) and A = A0 ∪ · · · ∪ Aq−1. Then A is necessarily a union of periodic
orbits and thus satisfies f−1(A) = A. By choosing ε sufficiently small (for example ε < 1/q)
we can guarantee that m(A) ∈ (0, 1). This proves that Lebesgue is not ergodic.

2.4 Fixed and periodic orbits

Proposition 2.4.1. Let f : X → X, P = {p1, . . . , pn} a periodic orbit, and δP the Dirac
measure uniformly distributed on points of P . Then δP is ergodic.

Proof. Exercise.
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2.5 Circle rotations

Proposition 2.5.1. Let f : S1 → S1 be the circle rotation f(x) = x+ α with α irrational.
Then Lebesgue measure is invariant and ergodic.

We shall need a preliminary combinatorial result about irrational circle rotations. The
proof is not difficult but it is quite involved and thus we shall not prove it here. A version
can be found in [?].

Lemma 2.5.1. Let f : S1 → S1 be the circle rotation f(x) = x+α with α irrational. Then
for every x ∈ S1 there exists a family of arc neighbourhoods Jn of x and with m(Jn) → 0
as n → ∞ and an integer qn such that S1 ⊆ ∪qni=0f

i(Jn), and each x ∈ S1 is contained in
at most three intervals f i(Jn) with i = 0, . . . , qn. In particular we have

qn∑
i=0

m(f i(Jn)) ≤ 3. (2.5)

Proof of Proposition 2.5.1. Let A ⊆ S1 satisfy f−1(A) = A and m(A) > 0. We want to
show that m(A) = 1. By Lebesgue’s density theorem, m almost every point of A is a
Lebesgue density point of A. Thus let x ∈ A be one such Lebesgue density point. Now fix
arbitrary ε > 0 and choose n = nε large enough so that

m(A ∩ Jnε) ≥ (1− ε)m(Jnε) (2.6)

where Jnε is a sufficiently small arc neighbourhood of x given by Lemma 2.5.1. We shall
make three simple statements which combined will give us the desired result. First of all
notice that (2.6) is equivalent to

m(Jnε \ A)

m(Jnε)
≤ ε. (2.7)

Secondly, since f is just a translation and Lebesgue measure is invariant by translation we
have m(f i(Jn)) = m(Jn) for any i and, and using also the fact that A is invariant we have
m(f i(Jnε \ A)) = m(f i(Jnε \ A)) for any i. In particular this gives

m(f i(Jnε \ A))

m(f i(Jnε))
=
m(Jnε \ A)

m(Jnε)
(2.8)

Thirdly, using the invariance of A and the fact that ∪qni=0f
i(Jnε) covers S1 we have

m(S1 \ A) ≤
qn∑
i=0

m(f i(Jn \ A)). (2.9)

Now, from (2.7), (2.8), (2.9) and (2.5) we get

m(S1 \ A) ≤
qn∑
i=0

m(f i(Jn \ A)) ≤
qn∑
i=0

m(Jnε \ A)

m(Jnε)
m(f i(Jnε))

=
m(Jnε \ A)

m(Jnε)

qn∑
i=0

m(f i(Jnε)) ≤ 3
m(Jnε \ A)

m(Jnε)
≤ 3ε.
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Since ε is arbitrary this means that m(S1 \ A) = 0 and thus m(A) = 1.

2.6 Piecewise affine full branch maps

Proposition 2.6.1. Let f : I → I be a piecewise affine full branch map. Then Lebesgue
measure is invariant and ergodic.

We first need to make to show some simple properties which apply to more general full
branch maps.

Lemma 2.6.1. Let f : I → I be a full branch map. Then there exists a family of partitions
P(n) of I( mod 0) into subintervals, such that for each ω(n) ∈ P(n) the map fn : |int(ω(n)) :

int(ω(n))→ int(I) is a C2 diffeomorphism.

Proof. For n = 1 we let P(1) := P where P is the partition in the definition of a full
branch map. Then the required property follows immediately by the definition. Proceeding
inductively, suppose that there exists a partition P(n−1) satisfying the required conditions.
Then each ω(n−1) is mapped by fn−1 to the entire interval I and therefore ω(n−1) can be
subdivided into disjoint subintervals each of which maps bijectively to the elements of
the original partition P . Thus each of these subintervals will then be mapped under one
further iteration bijectively to the entire interval I. These are therefore the elements of
the partition P(n).

Lemma 2.6.2. Let f : I → I be a full branch map. Suppose that there exists a constant
λ > 0 such that for all ω ∈ P and all x ∈ ω we have |f ′(x)| ≥ eλ > 1. Then max{|ω(n)| :
ω(n) ∈ P(n)} → 0 as n→∞.

Proof. The proof uses a simple but very important argument in one-dimensional dynamics
which relies on two basic results of calculus. The first one is the chain rule for differen-
tiation. Recall that the chain rule for differentiating the composition of two functions is
(f ◦ g)′(x) = f ′(g(x)) · g′(x). If we are composing a function f with itself, i.e. if f = g, this
gives ((f 2)′(x) = f ′(f(x)) · f ′(x). Composing several times then gives

(fn)′(x) = f ′(fn−1(x))f ′(fn−2(x)) · · · f ′(x). (2.10)

Thus the derivative of fn at a point x is the product of the derivatives of f along the orbit
of the point x. Applying this result to the maps under consideration, we have that for any
x whose orbit is well defined for the first n iterations, i.e. such that for each i = 0, ..., n− 1
the iterate f i(x) belongs to some element of the partition P , we have

|(fn)′(x)| ≥ eλn. (2.11)

The second important result of calculus we need is the mean value theorem. Recall that
the mean value theorem says that if I, J are two intervals and F : J → I is differentiable
and F (J) = I, then there exists ξ ∈ J such that |I| = |F ′(ξ)| · |J |. Applying this to the
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maps under consideration we then have that for every n ≥ 1 and every ω(n) ∈ P(n) we get
|I| = |(fn)′(x)| · |ω(n)|. Since |I| is the length of the original domain of definition of the full
branch map and is therefore fixed, rearranging and using (2.11) we get

|ω(n)| ≤ e−λn|I|.

This clearly proves the Lemma.

Proof of Proposition 2.6.1. Let A ⊂ [0, 1) satisfying f−1(A) = A and suppose that |A| > 0.
We shall show that |A| = 1. Notice first of all that since f is piecewise affine, each element
ω ∈ P is mapped affinely and bijectively to I and therefore must have slope stricly larger
than 1 uniformly in ω. Thus it satisfies the expansivity assumptions of Lemma 2.6.2.
Therefore, by Lemma 2.6.1 we have a family of partition P(n) each of which covers Lebesgue
almost every point of I, and by Lemma 2.6.2 the diameter of the elements of P(n) are
decreasing uniformly in n. Now, since A has positive Lebesgue measure, by Lebesgue’s
density Theorem, for any ε > 0 we can find n = nε sufficiently large so that the elements of
Pn are sufficiently small so that there exists some ωn ∈ Pn with m(ωn∩A) ≥ (1− ε)m(ωn)
or, equivalently,

|ωn \ A|
|ωn|

≤ ε

Since the map fn : ωn → I is an bijection and since f−1(A) = A implies f−n(A) = A we
have fn(A ∩ ωn) = fn(f−n(A) ∩ ωn) = A ∩ fn(ωn) = A ∩ I = A and therefore

fn(ωn \ A) = I \ A.

Moreover, since fn : ωn → I is an affine bijection it preserves ratios of measures of sets
and therefore we have

|I \ A|
|I|

=
|fn(ωn \ A)|
|fn(ωn)|

=
|ωn \ A|
|ωn|

≤ ε. (2.12)

This gives |I \A| ≤ ε and since ε is arbitrary this implies |I \A| = 0 which implies |A| = 1
as required.

Remark 1. Notice that the “affine” property of f has been used only in two places: two
show that the map is expanding in the sense of Lemma 2.6.2, and in the last equality
of (2.14). Thus in the first place it would have been quite sufficient to replace the affine
assumption with a uniform expansivity assumption. In the first place it would be sufficient
to have an inequality rather than an equality. We will show below that we can indeed
obtain similar results for full branch maps by relaxing the affine assumption.

2.6.1 Application: Normal numbers

The relatively simple result on the invariance and ergodicity of Lebesgue measure for
piecewise affine full branch maps has a remarkable application on the theory of numbers.
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For any number x ∈ [0, 1] and any integer k ≥ 2 we can write

x =
x1

k1
+
x2

k2
+
x3

k3
. . .

where each xi ∈ {0, . . . , k − 1}. This is sometimes called the expansion of x in base k and
is (apart from some exceptional cases) unique. Sometimes we just write

x = 0.x1x2x3 . . .

when it is understood that the expansion is with respect to a particular base k. For the
case k = 10 this is of course just the well known decimal expansion of x.

Definition 8. A number x ∈ [0, 1] is called normal (in base k) if its expansion x =
0.x1x2x3 . . . in base k contains asymptotically equal proportions of all digits, i.e. if for
every j = 0, . . . , k − 1 we have that

]{1 ≤ i ≤ n : xi = j}
n

→ 1

k

as n→∞.

Exercise 17. Give examples of normal and non normal numbers in a given base k.

It is not however immediately obvious what proportion of numbers are normal in any
given base nor if there even might exist a number that is normal in every base. We will
show that in fact Lebesgue almost every x is normal in every base.

Theorem 3. There exists set N ⊂ [0, 1] with m(N ) = 1 such that every x ∈ N is normal
in every base k ≥ 2.

Proof. It is enough to show that for any given k ≥ 2 there exists a set Nk with m(Nk) = 1
such that every x ∈ Nk is normal in base k. Indeed, this implies that for each k ≥ 2 the
set of points I \ Nk which is not normal in base k satisfies m(I \ Nk) = 0. Thus the set of
point I \ N which is not normal in every base is contained in the union of all I \ Nk and
since the countable union of sets of measure zero has measure zero we have

m(I \ N ) ≤ m

(
∞⋃
k=2

I \ Nk

)
≤

∞∑
k=2

m(I \ Nk) = 0.

We therefore fix some k ≥ 2 and consider the set Nk of points which are normal in
base k. The crucial observation is that the base k expansion of the number x is closely
related to its orbit under the map fk. Indeed, consider the intervals Aj = [j/k, (j + 1)/k)
for j = 0, . . . , k − 1. Then, the base k expansion x = 0.x1x2x3 . . . of the point x clearly
satisfies

x ∈ Aj ⇐⇒ x1 = j.

Moreover, for any i ≥ 0 we have

f i(x) ∈ Aj ⇐⇒ xi+1 = j.
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Therefore the frequency of occurrences of the digit j in the expansion of x is exactly the
same as the frequence of visits of the orbit of the point x to Aj under iterations of the map
fk. Birkhoff’s ergodic theorem and the ergodicity of Lebesgue measure for fk implies that
Lebesgue almost every orbit spends asymptotically m(Aj) = 1/k of its iterations in each of
the intervals Aj. Therefore Lebesgue almost every point has an asymptotic frequence 1/k
of each digit j in its decimal expansion. Therefore Lebesgue almost every point is normal
in base k.

2.7 Full branch maps with bounded distortion

Definition 9. We say that a full branch map has the bounded distortion property if there
exists a constant D such that

Dist(fn, ωn) := sup
x,y∈ωn

{
log

∣∣∣∣Dfn(x)

Dfn(y)

∣∣∣∣} ≤ D
for every n ≥ 1 and every ω(n) ∈ P(n).

Notice that the distortion is 0 if f is piecewise affine so that the bounded distortion
property is automatically satisfied in that case.

Proposition 2.7.1. Let f : I → I be a full branch map satisfying the bounded distortion
property. Then Lebesgue measure is ergodic.

We remark that Lebesgue measure is not generally invariant if f is not piecewise affine.
However the notion of ergodicity still holds and the ergodicity of Lebesgue measure implies
the ergodicity of some natural invariant measures also in these general settings.

Lemma 2.7.1. Let f : I → I be a measurable map and let µ1, µ2 be two probability
measures with µ1 � µ2. Suppose µ2 is ergodic for f . Then µ1 is also ergodic for f .

Proof. Suppose A ⊆ I with µ1(A) > 0. Then by the absolute continuity this implies
µ2(A) > 0; by ergodicity of µ2 this implies µ2(A) = 1 and therefore µ2(I \ A) = 0; and so
by absolute continuity, also µ1(I \ A) = 0 and so µ1(A) = 1. Thus µ1 is ergodic.

To prove Proposition 2.7.1, we start by showing that bounded distortion is sufficient
to recover essentially the same properties as in the piecewise affine case. The distortion
has an immediate geometrical interpretation in terms of the way that ratios of lengths of
intervals are (or not) preserved under f .

Lemma 2.7.2. Let D = D(f,n J) be the distortion of f on some interval J . Then, for any
subinterval J ′ ⊂ J we have

e−D
|J ′|
|J |
≤ |f

n(J ′)|
|fn(J)|

≤ eD
|J ′|
|J |
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Proof. By the Mean Value Theorem there exists x ∈ J ′ and y ∈ J such that |Dfn(x)| =
|fn(J ′)|/|J ′| and |Dfn(y)| = |fn(J)|/|J |. Therefore

|fn(J ′)|
|fn(J)|

|J ′|
|J |

=
|fn(J ′)|/|J ′|
|fn(J)|/|J |

=
|Dfn(x)|
|Dfn(y)|

(2.13)

From the definition of distortion we have e−D ≤ |Dfn(x)|/|Dfn(y)| ≤ eD and so substi-
tuting this into (2.13) gives

e−D ≤ |f
n(J ′)|
|fn(J)|

|J |
|J ′|
≤ eD

and rearranging gives the result.

Lemma 2.7.3. Let f : I → I be a full branch map satisfying the bounded distortion
property. Then max{|ω(n)|;ω(n) ∈ P(n)} → 0 as n→ 0

Proof. First of al let δ = maxω∈P |ω| < |I| Then, from the combinatorial structure of
full branch maps described in Lemma 2.6.1 and its proof, we have that for each n ≥ 1
fn(ω(n)) = I and that fn−1(ω(n)) ∈ P , and therefore |fn−1(ω(n))| ≤ δ and |fn−1(ω(n−1) \
ω(n)|)| ≥ |I| − δ > 0. Thus, using Lemma 2.7.2 we have

|ω(n−1) \ ω(n)|
|ω(n−1)|

≥ e−D
|fn−1(ω(n−1) \ ω(n)|)|
|fn−1(ω(n−1))|

≥ e−D
|I| − δ
|I|

=: 1− τ.

Then

1− |ω(n)|
|ω(n−1)|

=
|ω(n−1)| − |ω(n)|
|ω(n−1)|

=
|ω(n−1) \ ω(n)|
|ω(n)|

≥ 1− τ.

Thus for every n ≥ 0 and every ω(n) ⊂ ω(n−1) we have |ω(n)|/|ω(n−1)| ≤ τ. Applying
this inequality recursively then implies |ω(n)| ≤ τ |ω(n−1)| ≤ τ 2|ω(n−2)| ≤ · · · ≤ τn|ω0| ≤
τn|∆|.

Proof of Proposition 2.7.1. The proof is almost identical to the piecewise affine case. In
fact, the only difference is when we get to equation (2.14) where we now use the bounded
distortion to get

|I \ A|
|I|

=
|fn(ωn \ A)|
|fn(ωn)|

≤ eD
|ωn \ A|
|ωn|

≤ eDε. (2.14)

Since ε is arbitrary this implies m(Ac) = 0 and thus m(A) = 1.

2.8 Uniformly expanding full branch maps

The bounded distortion condition is at first sight a very strong conditions and not im-
mediately verifiable in specific systems. We show here that in fact it follows from a very
straightforward expansivity condition.
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Definition 10. Let f be a full branch map. We say that f is uniformly expanding if there
exist constant C, λ > 0 such that for all x ∈ I and all n ≥ 1 such that x, f(x), . . . , fn−1(x) /∈
∂P we have

|(fn)′(x)| ≥ Ceλn.

Proposition 2.8.1. Let f be a full branch map. Suppose that f is uniformly expanding
and that there exists a constant K > 0 such that

sup
ω∈P

sup
x,y∈ω

|f ′′(x)|
|f ′(y)|2

≤ K. (2.15)

Then for every n ≥ 1 and every ω(n) ∈ P(n) and every x, y ∈ ω(n) we have

log
|Dfn(x)|
|Dfn(y)|

≤ K|fn(x)− fn(y)|. (2.16)

Thus f satisfies the bounded distortion property and thus Lebesgue measure is ergodic.

The proof consists of three simple steps which we formulate in the following three
lemmas.

Lemma 2.8.1. Let f be a full branch map satisfying (2.15). Then, for all ω ∈ P, x, y ∈ ω
we have ∣∣∣∣f ′(x)

f ′(y)
− 1

∣∣∣∣ ≤ K|f(x)− f(y)|. (2.17)

Proof. By the Mean Value Theorem we have |f(x) − f(y)| = |f ′(ξ1)||x − y| and |f ′(x) −
f ′(y)| = |f ′′(ξ2)||x− y| for some ξ1, ξ2 ∈ [x, y] ⊂ ω. Therefore

|f ′(x)− f ′(y)| = |f
′′(ξ2)|
|f ′(ξ1)|

|f(x)− f(y)|. (2.18)

Assumption (2.15) implies that |f ′′(ξ2)|/|f ′(ξ1)| ≤ K|f ′(ξ)| for all ξ ∈ ω. Choosing ξ = y
and substituting this into (2.18) therefore gives |f ′(x)− f ′(y)| = K|f ′(y)||f(x)− f(y)| and
dividing through by |f ′(y)| gives the result.

Lemma 2.8.2. Let f be a full branch map satisfying (2.17). Then, for any n ≥ 1 and
ω(n) ∈ Pn we have

Dist(fn, ω(n)) ≤ K
n∑
i=1

|f i(x)− f i(y)| (2.19)
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Proof. By the chain rule f (n)(x) = f ′(x) · f ′(f(x)) · · · f ′(fn−1(x)) and so

log
|f (n)(x)|
|f (n)(y)|

= log
n∏
i=1

|f ′(f i(x))|
|f ′(f i(y))|

=
n−1∑
i=0

log

∣∣∣∣f ′(f i(x))

f ′(f i(y))

∣∣∣∣
=

n−1∑
i=0

log

∣∣∣∣f ′(f i(x))

f ′(f i(y))
− f ′(f i(y))

f ′(f i(y))
+
f ′(f i(y))

f ′(f i(y))

∣∣∣∣
=

n−1∑
i=0

log

∣∣∣∣f ′(f i(x))− f ′(f i(y))

f ′(f i(y))
+ 1

∣∣∣∣
≤

n−1∑
i=0

log

(
|f ′(f i(x))− f ′(f i(y))|

|f ′(f i(y))|
+ 1

)

≤
n−1∑
i=0

|f ′(f i(x))− f ′(f i(y))|
|f ′(f i(y))|

using log(1 + x) < x

≤
n−1∑
i=0

∣∣∣∣f ′(f i(x))

f ′(f i(y))
− 1

∣∣∣∣ ≤ n∑
i=1

K|f i(x)− f i(y)|.

Lemma 2.8.3. Let f be a uniformly expanding full branch map. Then there exists a
constant K̃ depending only on C, λ, such that for all n ≥ 1, ω(n) ∈ Pn and x, y ∈ ω(n) we
have

n∑
i=1

|f i(x)− f i(y)| ≤ K̃|fn(x)− fn(y)|.

Proof. For simplicity, let ω̃ := (x, y) ⊂ ω(n). By definition the map fn|ω̃ : ω̃ → fn(ω̃) is
a diffeomorphism onto its image. In particular this is also true for each map fn−i|f i(ω̃) :
f i(ω̃)→ fn(ω̃). By the Mean Value Theorem we have that

|fn(x)− fn(y)| = |fn(ω̃)| = |fn−i(f i(ω̃)| = |(fn−i)′(ξn−i)||f i(ω̃)| ≥ Ceλ(n−i)|f i(ω̃)|

for some ξn−i ∈ fn−i(ω̃). Therefore

n∑
i=1

|f i(x)− f i(y)| =
n∑
i=1

|f i(ω̃)| ≤
n∑
i=1

1

C
e−λ(n−i)|fn(ω̃)| ≤ 1

C

∞∑
i=0

e−λi|fn(x)− fn(y)|.

Proof of Proposition 2.8.1. Combining the above Lemmas we get (2.16) which clearly im-
plies the bounded distortion property and thus, by Proposition 2.7.1, Lebesgue measure is
ergodic.
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2.9 Gauss map

We now return to the Gauss map f(x) = 1/x mod 1 and its invariant Gauss measure µG
defined above.

Proposition 2.9.1. Let f : I → I be the Gauss map. Then the measure µG is invariant
and ergodic.

Lemma 2.9.1. The Gauss map is uniformly expanding

Proof. Exercise

Lemma 2.9.2. Let f : I → I be the Gauss map. Then

sup
ω∈P

sup
x,y∈ω

|f ′′(x)|
|f ′(y)|2

≤ 16.

Proof. Since f(x) = x−1 we have f ′(x) = −x−2 and f ′′(x) = 2x−3. Notice that both
first and second derivatives are monotone decreasing, i.e. take on larger values close to
0. Thus, for a generic interval ω = (1/(n + 1), 1/n) of the partition P we have |f ′′(x)| ≤
f ′′(1/(n + 1)) = 2(n + 1)3 and |f ′(y)| ≥ |f ′(1/n)| = n2. Therefore, for any x, y ∈ ω we
have |f ′′(x)|/|f ′(y)|2 ≤ 2(n+ 1)3/n4 ≤ 2((n+ 1)/n)3(1/n). This upper bound is monotone
decreasing with n and thus the worst case is n = 1 whch gives |f ′′(x)|/|f ′(y)|2 ≤ 16 as
required.

Proof of Proposition 2.9.1. From Lemmas 2.9.1 and 2.9.2 we have that f satisfies the as-
sumptions of Proposition 2.8.1 and thus Lebesgue measure is ergodic for the Gauss map
f . Since the Gauss measure µG � m ergodicity of µG then follows from Lemma 2.7.1.

2.10 Maps with critical points

We restrict our attention here to the Ulam-von Neumann map f(x) = x2−2 defined above
and µUN the invariant measure defined in (??).

Proposition 2.10.1. The measure µUN is ergodic.

Lemma 2.10.1. Let (X and (Y be two measure spaces, f : X → X and g : Y → Y two
measurable maps, and h : X → Y a measurable conjugacy between f and g. Suppose that µ
is invariant and ergodic for f . Then its pushforward measure h∗µ is invariant and ergodic
for g.

Proof. Exercise.

Proof of Proposition 2.10.1. Recall from the of the invariance of µ that µ is defined as the
push forward of Lebesgue measure by the conjugacy h between f and the tent map. Since
Lebesgue measure is ergodic for the tent map (since the tent map is an example of a full
branch piecewise affine map) it follows from lemma 2.10.1 that µ is also ergodic.
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2.11 Uncountably many non-atomic ergodic measures

We have shown above that under mild assumptions, such as the compactness of the space
X and the continuity of the map f : X → X there are guaranteed to exist ergodic measures
and that these are characterized as extremal points of the set of invariant measures. We
have also seen that the identity map has an uncountable number of ergodic measures,
namely the Dirac measure on each (fixed) point x. We now show a class of examples which
also have an uncountable number of ergodic measures which however themselves live on
uncountable sets.

Definition 11. A measure µ is called atomic if there exist a point p with µ(p) > 0.
Otherwise it is called non-atomic.

Example 2. Dirac measures and any combinations of Dirac measures are of course atomic.
Lebesgue measure and continuous measures of the form µϕ are non-atomic. Combinations
of Dirac measures and continuous measures such as µ = (δp + m)/2 are of course atomic
since they do give positive measure to some point.

Proposition 2.11.1. The interval map f(x) = 2x mod 1 admits an uncountable family
of non-atomic, mutually singular, ergodic measures.

We shall construct these measures quite explicitly and thus obtain some additional
information about their properties. the method of construction is of intrinsic interest. For
each p ∈ (0, 1) let I(p) = [0, 1) and define the map fp : I(p) → I(p) by

fp =

{
1
p
x for 0 ≤ x < p
1

1−px−
p

1−p for p ≤ x < 1.

Lemma 2.11.1. For any p ∈ (0, 1) the maps f and fp are topologically conjugate.

Proof. This is a standard proof in topological dynamics and we just give a sketch of the
argument here because the actual way in which the conjugacy h is constructed plays a
crucial role in what follows. We use the symbolic dynamics of the maps f and fp. Let

I
(p)
0 = [0, p) and I

(p)
1 = (p, 1].

Then, for each x we define the symbol sequence (x
(p)
0 x

(p)
1 x

(p)
2 . . .) ∈ Σ+

2 by letting

x
(p)
i =

{
0 if f i(x) ∈ I(p)

0

1 if f i(x) ∈ I(p)
1 .

This sequence is well defined for all points which are not preimages of the point p. Moreover
it is unique since every interval [x, y] is expanded at least by a factor 1/p at each iterations
and therefore fn([x, y]) grows exponentially fast so that eventually the images of fn(x) and
fn(y) must lie on opposite sides of p and therefore give rise to different sequences. The
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map f : I → I is of course just a special case of fp : I(p) → I(p) with p = 1/2. We can
therefore define a bijection

hp : I(p) → I

which maps points with the same associated symbolic sequence to each other and points
which are preimages of p to corresponding preimages of 1/2.

Exercise 18. Show that hp is a conjugacy between f and fp.

Exercise 19. Show that hp is a homeomorphism. Hint: if x does not lie in the pre-image
of the discontinuity (1/2 or p depending on which map we consider) then sufficiently close
points y will have a symbolic sequence which coincides with that of x for a large number of
terms, where the number of terms can be made arbitrarily large by choosing y sufficiently
close to x. The corresponding points therefore also have symbolic sequences which coincide
for a large number of terms and this implies that they must be close to each other.

From the previous two exercises it follows that h is a topological conjugacy.

Since hp : I(p) → I is a topological conjugacy, it is also in particular measurable
conjugacy and so, letting m denote Lebesgue measure, we define the measure

µp = h∗m.

By Proposition 2.6.1 Lebesgue measure is ergodic and invariant for fp and so it follows
from Lemma 2.10.1 that µp is ergodic and invariant for f .

Exercise 20. Show that µp is non-atomic.

Thus it just remains to show that the µp are mutually singular.

Lemma 2.11.2. The measures in the family {µp}p∈(0,1) are all mutually singular.

Proof. The proof is a straightforward, if somewhat subtle, application of Birkhoff’s Ergodic
Theorem. Let

Ap = {x ∈ I whose symbolic coding contain asymptotically a proportion p of 0’s}

and

A(p)
p = {x ∈ I(p) whose symbolic coding contain asymptotically a proportion p of 0’s}

Notice that by the way the coding has been defined the asymptotic propertion of 0’s in
the symbolic coding of a point x is exactly the asymptotic relative frequency of visits of
the orbit of the point x to the interval I0 or I

(p)
0 under the maps f and fp respectively.

Since Lebesgue measure is invariant and ergodic for fp, Birkhoff implies that the relative

frequence of visits of Lebesgue almost every point to I
(p)
0 is asymptotically equal to the

Lebesgue measure of I
(p)
0 which is exactly p. Thus we have that

m(A(p)
p ) = 1.
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Moreover, since the conjugacy preserves the symbolic coding we have

Ap = h(A(p)
p ).

Thus, by the definition of the pushforward measure

µp(Ap) = m(h−1(Ap)) = m(h−1(h(A(p)
p )) = m(A(p)

p ) = 1.

Since the sets Ap are clearly pairwaise disjoint for distinct values of p it follows that the
measures µp are mutually singular.

Remark 2. This example shows that the conjugacies in question, even though they are
homeomorphisms, are singular with respect to Lebesgue measure, i.e. thay maps sets of
full measure to sets of zero measure.
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Chapter 3

Physical measures

In this section we shall always suppose that the ambient space is a Riemannian manifold
and we generally call the normalized Rimennain volume by Lebesgue measure and denote it
by m. Birkhoff’s ergodic theorem provides a very powerful tool for describing the dynamics
of system although it’s conclusions clearly depend in a fundamental way on the specific
invariant ergodic measure.

Definition 12. For a map f : X → X we define the basin of attraction of a measure µ
by

B(µ) :=

{
x :

1

n

n−1∑
i=0

δf i(x) → µ in the weak-star topology.

}
.

We say that µ is a physical measure if

m(B(µ)) > 0.

Remark 3. From the definition of weak-star convergence of measures, an equivalent defi-
nition of the basin is

B(µ) :=

{
x :

1

n

n−1∑
i=0

ϕ(f i(x))→
∫
ϕdµ ∀ϕ ∈ C0(X,R)

}
.

So the basin is the set of points whose orbits is asymptotically sufficiently uniformly
distributed in relation to µ. A priori of course there is no reason why this should should
be even non-empty. However Birkhoff’s ergodic Theorem implies that if µ is an ergodic
invariant measure it is always true that

µ(B(µ)) = 1

and thus in particular B(µ) 6= ∅. As we have seen, however, a full µ-measure set of points
may not be a very big set at all if, for example, µ is a Dirac measure on some fixed point.
In this case, Birkhoff’s ergodic theorem may not give very much useful information. In
principle, we think of Lebesgue measure m as the given reference measure with respect to
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which we want to describe the dynamics, i.e. we would like to have information about sets
of initial conditions which are large with respect to Lebesgue measure. The notion of a
physical measure formalizes this idea.

3.1 Basic physical measures

There are two basic examples of physical measures: Dirac measures and absolutely contin-
uous measures. Let f : M →M be a measurable map.

Proposition 3.1.1. Suppose p is an asymptotically stable fixed point. Then the Dirac
measure δp on p is a physical measure.

Proof. Exercise. Recall that an asymptotically stable fixed point is a point p which has a
neighbourhood U such that fn(x)→ p as nt→∞ for all x ∈ U .

Proposition 3.1.2. Suppose µ� m is an ergodic invariant probability measure. Then µ
is a physical measure.

Proof. Birkhoff’s ergodic Theorem implies µ(B(µ)) = 1 and therefore the absolute conti-
nuity of µ with respect to m implies that m(B(µ)) > 0 (for m(B(µ)) = 0 would imply
µ(B(µ)) = 0 ). Therefore µ is a physical measure.

3.2 Strange physical measures

Physical measures can be somewhat counterintuitive. Consider f : I → I where

f(x) = x+ x2 mod 1.

Proposition 3.2.1 (Pianigiani, ‘80). Lebesgue almost every x in I has an orbit which is
dense in I and the time averages converge to δ0. In particular δ0 is a physical measure.

We will not prove this proposition here. However notice that f is actually a full branch
map with two branches. It is very similar to the map g(x) = 2x mod 1 and in fact
it can be easily proved, using the arguments used in Section 2.11, that it is topologically
conjugate to g. This immediately implies for example that almost all points do not converge
asymptotically to the origin, since such points would necessarily have a symbolic sequence
ending in 0’s and this is just a countable set. Nevertheless, the proposition states that
the time averages do converge to the Dirac measure at 0. This means that the set of
points whose symbolic sequence has asymptotically a proportion of 0’s tending to 1 does
have full measure. The crucial factor here is that f is not uniformly expanding. Indeed,
the derivative is given by f ′(x) = 1 + 2x and so in particular the fixed point at 0 satisfies
f ′(0) = 1. This is sometimes called a neutral fixed point. Points close to such a neutral fixed
point are repelled but only very slowly and thus they end up spending a long proportion
of time near the neutral fixed point.
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However this is not the only situation in which this can occur. There are also parameters
in the quadratic family where the physical measure is a Dirac measure on a hyperbolic
repelling fixed or periodic point. In this case, nearby points still move away exponentially
fast but it just so happens that the map has a combinatorial structure that re-injects points
very quickly very close to the point, and this most orbits end up spending most time near
such fixed or periodic points.

3.3 Non-existence of physical measures

As we have seen above, any continuous map on a compact space admits at least one ergodic
invariant measure. However the existence of physical measures is not at all guaranteed.

3.3.1 Circle rotations

Lemma 3.3.1. Let f : S1 → S1 be the circle rotation f(x) = x+ α with α = p/q rational.
Then f admits no physical measures.

Proof. Exercise.

3.3.2 Heteroclinic cycles

Consider a diffeomorphism f : R2 → R2. Suppose that f has two hyperbolic fixed points
pA, pB whose separatrices connect the two points defining a closed topological disk as in
the following picture.

 

P 

X0 

XT 

A 

B 

Suppose that area enclosed by the fixed points pA, pB and the separatrices contains a
fixed point P which is repelling and that all trajectories spiral away from P and accumulate
on the boundary of the disk. Under suitable conditions on the eigenvalues of the points pA
and pB the situation is the following.
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Consider some initial condition x0 sufficiently close to the boundary of the disk. Then
after some time it will enter a small neighbourhood of one of the fixed points, let’s say pA.
Since pA is a fixed point the orbit of x0 sill spend many iterates in the neighbourhood A
of pA. If x0 was sufficiently close to the boundary of the disk then this time will be large
compared to the time it took for x0 to reach A. The time that the orbit spends in A can
be roughly estimated using the eigenvalues of the derivative at the fixed point A. Indeed
let DfpA have eigenvalues 0 < e−λ < 1 < eσ and let us assume for simplicity that the
dynamics is linear in the neighbourhood A of pA. Then, in the appropriate coordinates,
the dynamics is given by

fn(x, y) = (e−λnx, eσny)

Thus, supposing that this neighbourhood has radius ≈ 1 and that when it enters the
neighbourhood A the orbit of A lies at a distance ε from the boundary we have that
(x, y) ≈ (1, ε). Therefore the time it takes to leave the neighbourhood is a solution to the
equation εeσN ≈ 1 which gives

N =
1

σ
log

1

ε
.

At this moment, the new distance of the point from the separatrix is given by

eλN = e
λ
σ

log ε−1

= ε−
λ
σ

Using similar calculations it is possible to calculate the time that the orbit spends in the
neighbourhood B of pB and show that this is strictly large than the time spent in pA and
even of the whole time spent from the beginning. The points then comes back to A and
spends even longer there, longer than the whole time spent so far from the beginning.
Continuing in this way it is possible to show that the Dirac averages do not converge and
thus the system has no physical measure.

Exercise 21. Complete the calculations to show that under appropriate conditions on the
eigenvalues of pA and pB the systems described above has no physical measures.

3.4 The Palis conjecture

Notwithstanding the existence of examples of systems with no physical measures there
is an expectation that these are very exceptional cases and that ”most” systems should
admit some physical measures. At the other extreme there are also systems with an infinite
number of physical measures but these are also expected to be in some sense exceptional
cases. This expectation has been formalized in the following conjecture by Pails.

Conjecture 1. Most systems have a finite number of physical measures whose basins have
full Lebesgue measure.

Of course, the actual definition of what is meant by ”most” systems is somewhat flexible.
At the moment the conjecture is completely open and can be said to have been resolved
only for an extremely limited class of families of one dimensional maps.
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Theorem 4. Consider the family fa(x) = x`−a for ` even and a ∈ [0, 2]. Then for Lebesgue
almost every parameter, fa has a unique physical measure [Bruin-Shen-van Strien]. For
the case ` = 2 this measure is either a Dirac measure on a periodic orbit of an absolutely
continuous measure with respect to Lebesgue [Lyubich 2002].

3.5 Physical measures for full branch maps

Theorem 5. Let f : I → I be a uniformly expanding full branch map satisfying the
bounded distortion property (2.16). Then f admits a unique ergodic absolutely continuous
invariant probability measure µ. Morever, the density dµ/dm of µ is Lipschitz continuous
and bounded above and below.

We begin in exactly the same way as for the proof of the existence of invariant measures
for general continuous maps and define the sequence

µn =
1

n

n∑
i=0

f i∗m

where m denotes Lebesgue measure.

Exercise 22. For each n ≥ 1 we have µn � m. Hint: by definition f is a C2 diffeomorphism
on (the interior of) each element of the partition P and thus in particular it is non-singular
in the sense that m(A) = 0 implies m(f−1(A) = 0 for any measurable set A.

Since µn � m we can let

Hn :=
dµn
dm

denote the density of µn with respct to m. The proof of the Theorem then relies on the
following crucial

Proposition 3.5.1. There exists a constant K > 0 such that

0 < inf
n,x
Hn(x) ≤ sup

n,x
Hn(x) ≤ K (3.1)

and for every n ≥ 1 and every x, y ∈ I we have

|Hn(x)−Hn(y)| ≤ K|Hn(x)|d(x, y) ≤ K2d(x, y). (3.2)

Proof of Theorem assuming Proposition 3.5.1. The Proposition says that the family {Hn}
is bounded and equicontinuous and therefore, by Ascoli-Arzela Theorem there exists a
subsequence Hnj converging uniformly to a function H satisfying (3.1) and (3.2). We
define the measure µ by defining, for every measurable set A,

µ(A) :=

∫
A

Hdm.
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Then µ is absolutely continuous with respect to Lebesgue by definition, its density is
Lipschitz continuous and bounded above and below, and it is ergodic by the ergodicity of
Lebesgue measure and the absolute continuity. It just remains to prove that it is invariant.
Notice first of all that for any measurable set A we have

µ(A) =

∫
A

Hdm =

∫
A

lim
nj→∞

Hnjdm = lim
nj→∞

∫
A

Hnjdm

= lim
nj→∞

µnj(A) = lim
nj→∞

1

n

n−1∑
i=0

f i∗m(A) = lim
nj→∞

1

nj

nj−1∑
i=0

m(f−i(A))

For the third equality we have used the dominated convergence theorem to allow us to pull
the limit outside the integral. From this we can then write

µ(f−1(A)) = lim
nj→∞

1

nj

nj−1∑
i=0

m(f−i(f−1(A))

= lim
nj→∞

1

nj

nj∑
i=1

m(f−i(A)

= lim
nj→∞

(
1

nj

nj−1∑
i=0

m(f−i(A) +
1

nj
f−nj(A)− 1

nj
m(A)

)

= lim
nj→∞

1

nj

nj−1∑
i=0

m(f−i(A)

= µ(A).

This shows that µ is invariant and completes the proof.

Remark 4. The fact that µn � m for every n does not imply that µ � m. Indeed,
consider the following example. Suppose f : [0, 1] → [0, 1] is given by f(x) = x/2. We
alreeady know that in this case the only physical measure is the Dirac measure at the
unique attracting fixed point at 0. In this simple setting we can see directly that µn → δ0
where µn are the averages defined above. In fact we shall show that stronger statement
that fn∗m→ δp as n→∞. Indeed, let µ0 = m. And consider the measure µ1 = f∗m which
is give by definition by µ1(A) = µ0(f

−1(A)). Then it is easy to see that µ1([0, 1/2]) =
µ0(f

−1([0.1/2])) = µ0([0, 1]) = 1. Thus the measure µ1 is completely concentrated on the
interval [0, 1/2]. Similarly, it is easy to see that µn([0, 1/2n]) = µ0([0, 1]) = 1 and thus the
measure µn is completely concetrated on the interval [0.1/2n]. Thus the measures µn are
concentrated on increasingly smaller neighbourhood of the origin 0. This clearly implies
that they are converging in the weak star topology to the Dirac measure at 0.

This counter-example shows that a sequence of absolutely continuous measures does
not necessarily converge to an absolutely continuous measures. This is essentially related
to the fact that a sequence of L1 functions (the densities of the absolutely continuous
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measures µn) may not converge to an L1 function even if they are all uniformly bounded
in the L1 norm.

It just remains to prove Proposition 3.5.1. We start by finding an explicit formula for
the functions Hn.

Lemma 3.5.1. For every n ≥ 1 and every x ∈ I we have

Hn(x) =
1

n

n−1∑
i=1

Sn(x) where Sn(x) :=
∑

y=f−i(x)

1

|Dfn(y)|
.

Proof. It is sufficient to show that Sn is the density of the measure fn∗m with respect to m,
i.e. that fn∗m(A) =

∫
A
Sndm. By the definition of full branch map, each point has exactly

one preimage in each element of P . Since f : ω → I is a diffeomorphism, by standard
calculus we have

m(A) =

∫
f−n(A)∩ω

|Dfn|dm and m(f−n(A) ∩ ω) =

∫
A

1

|Df(f−n(x) ∩ ω)|
dm.

Therefore

fn∗m(A) = m(f−n(A)) =
∑
ω∈Pn

m(f−n(A) ∩ ω) =
∑
ω∈Pn

∫
A

1

|Df(f−n(x) ∩ ω)|
dm

=

∫
A

∑
ω∈Pn

1

|Df(f−n(x) ∩ ω)|
dm =

∫
A

∑
y∈f−n(x)

1

|Df(y)|
dm =

∫
A

Sndm.

Lemma 3.5.2. There exists a constant K > 0 such that

0 < inf
n,x
Sn(x) ≤ sup

n,x
Sn(x) ≤ K

and for every n ≥ 1 and every x, y ∈ I we have

|Sn(x) = Sn(y)| ≤ K|Sn(x)|d(x, y) ≤ K2d(x, y).

Proof. The proof uses in a fundamental way the bounded distortion property (2.16). Recall
that for each ω ∈ Pn the map fn : ω → I is a diffeomorphism with uniformly bounded
distortion. This means that |Dfn(x)/Dfn(y)| ≤ D for any x, y ∈ ω and for any ω ∈ Pn
(uniformly in n). Informally this says that the derivative Dfn is essentially the same
at all points of each ω ∈ Pn (although it can be wildly different in principle between
different ω’s). By the Mean Value Theorem, for each ω ∈ Pn, there exists a ξ ∈ ω such
that |I| = |Dfn(ξ)||ω| and therefore |Dfn(ξ)| = 1/|ω| (assuming the length of the entire
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interval I is normalized to 1). But since the derivative at every point of ω is comparable
to that at ξ we have in particular |Dfn(y)| ≈ 1/|ω| and therefore

Sn(x) =
∑

y∈f−n(x)

1

|Dfn(y)|
≈
∑
ω∈Pn

|ω| ≤ K.

To prove the uniform Lipschitz continuity recall that the bounded distortion property
(2.16) gives ∣∣∣∣Dfn(x)

Dfn(y)

∣∣∣∣ ≤ eKd(f
n(x),fn(y) ≤ 1 + K̃d(fn(x), fn(y)).

Inverting x, y we also have∣∣∣∣Dfn(y)

Dfn(y)

∣∣∣∣ ≥ 1

1 + K̃d(fn(x), fn(y))
≥ 1− ˜̃Kd(fn(x), fn(y)).

Combining these two bounds we get∣∣∣∣Dfn(x)

Dfn(y)
− 1

∣∣∣∣ ≤ max{K̃, ˜̃Kd(fn(x), fn(y))}.

For x, y ∈ I we have

|Sn(x)− Sn(y)| =

∣∣∣∣∣∣
∑

x̃∈f−n(x)

1

|Dfn(x̃)|
−

∑
ỹ∈f−n(y)

1

|Dfn(ỹ)|

∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
i=1

1

|Dfn(x̃)|
−
∞∑
i=1

1

|Dfn(ỹ)|

∣∣∣∣∣ where fn(x̃i) = x, fn(ỹi) = y

≤
∞∑
i=1

∣∣∣∣ 1

|Dfn(x̃)|
− 1

|Dfn(ỹ)|

∣∣∣∣ =
∞∑
i=1

1

|Dfn(x̃i)|

∣∣∣∣1− Dfn(x̃i)

Dfn(ỹi)

∣∣∣∣
≤ 1

|Dfn(x̃i)|
d(fn(x̃i), f

n(ỹi)) ≤
1

|Dfn(x̃i)|
d(x, y) = Sn(x)d(x, y).

Proof of Proposition 3.5.1. This Lemma clearly implies the Proposition since

|Hn(x)−Hn(y)| = | 1
n

∑
Si(x)− 1

n

∑
Si(y)| ≤ 1

n

∑
|Si(x)− Si(y)|

≤ 1

n

∑
KSi(x)d(x, y) = HnKd(x, y) ≤ K2d(x, y).
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3.6 Induced full branch maps

Full branch maps satisfying the bounded distortion property are an important class of maps
but also relatively restricted class. Nevertheless it turns out that they can be obtained in
many very general classes of maps by the procedure of inducing.

Definition 13. f : I → I admits an induced full branch map with bounded distortion and
integrable return times if there exists a subinterval ∆ ⊂ I, a partition P (mod 0) of ∆
into subintervals, a return time function R : ∆→ N piecewise constant on each element of
P , such that the induced map F : ∆ → ∆ defined by F (x) = fR(x) is a full branch map
satisfying the bounded distortion property, and

∫
Rdm <∞.

Theorem 6. Suppose that f : I → I admits an induced full branch map with the bounded
distortion property and integrable return times. Then f admits an ergodic invariant abso-
lutely continuous probability measure.

By the assumption on f there exists an induced map F : ∆ → ∆ which is full branch
and has the bounded distortion property. It therefore admits a unique ergodic invariant
absolutely continuous probability measure µ̂. We use this measure to define a new measure
by defining, for any measurable set A ⊆ I,

µ(A) =
∑
ω∈P

R(ω)−1∑
j=0

µ̂(f−j(A) ∩ ω).

Lemma 3.6.1. µ is absolutely continuous.

Proof. We have m(A) = 0⇒ µ̂(A) = 0 by the absolute continuity of µ̂, then µ̂(A) = 0⇒
µ̂(f−jA) = 0 by the invariance of µ̂. Therefore, clealry µ̂(f−j(A) ∩ ω) = 0 for every ω and
so µ(A) = 0.

Lemma 3.6.2. µ is ergodic.

Proof. Suppose that f−1(A) = A and µ(A) > 0. We will show that µ(Ac) = 0. The we
must have µ̂(f−j(A)∩ω) > 0 for some j ≥ 0 and some ω ∈ P . But then, by the backward
invariance of A this means that µ̂(A ∩ ω) > 0 and therefore, by the ergodicity of µ̂ this
implies that µ̂(A) = 1. In particular µ̂(Ac) = 0 and therefore µ(Ac) = 0.

Lemma 3.6.3. µ is f -invariant.

Proof. By definition f τ(ω)(ω) = ∆ for any ω ∈ P . In particular, using the invariance of µ̂
under F , this gives∑

ω∈P

µ̂(f−τ(ω)(A) ∩ ω) =
∑
ω∈P

µ̂(F−1(A) ∩ ω) = µ̂(F−1(A)) = µ̂(A).
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Using this equality we get, for any measurable set A ⊆ I,

µ(f−1(A)) =
∑
ω∈P

τ(ω)−1∑
j=0

µ̂ω(f−(j+1)(A))

=
∑
ω∈P

τ(ω)−1∑
j=0

µ̂(f−(j+1)(A) ∩ ω)

=
∑
ω∈P

µ̂
[
(f−1(A) ∩ ω) + · · ·+ (f−τ(ω)(A) ∩ ω)

]
=
∑
ω∈P

τ(ω)−1∑
j=1

µ̂(f−j(A) ∩ ω) +
∑
ω∈P

(f−R(ω)(A) ∩ ω)

=
∑
ω∈P

τ(ω)−1∑
j=1

µ̂(f−j(A) ∩ ω) + µ̂(A)

=
∑
ω∈P

R(ω)−1∑
j=0

µ̂(f−j(A) ∩ ω)

= µ(A).

Lemma 3.6.4. µ is a finite measure.

Proof.

µ(I) :=
∑
ω∈P

R(ω)−1∑
j=0

µ̂(f−j(I) ∩ ω) =
∑
ω∈P

τ(ω)−1∑
j=0

µ̂(I ∩ ω) =
∑
ω∈P

R(ω)µ̂(ω) =

∫
Rdµ̂ <∞.

Proof of Theorem 6. By the finiteness of the measure µ we can define a new measure
ν = µ/µ(I). Then ν is clearly a probability measure and inherits the properties of absolute
continuity, invariance and ergodiciyt from µ.
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Appendix A

Review of measure theory

In this section we introduce only the very minimal requirements of Measure Theory which
will be needed later. For a more extensive introduction see any introductory book on
Measure Theory or Ergodic Theory, for example [?, ?, ?, ?]. For simplicity, we shall restrict
ourselves to measures on the unit interval I = [0, 1] although most of the definitions apply
in much more general situations.

A.1 Definitions

A.1.1 Basic motivation: Positive measure Cantor sets

The notion of measure is, in the first instance, a generalization of the standard idea of
length. Indeed, while we know how to define the length of an interval, we do not apriori
know how to measure the size of sets which contain no intervals but which, logically,
have positive “measure” Let {ri}∞i=0 be a sequence of positive numbers with

∑
ri < 1.

We define a set C ⊂ [0, 1] by recursively removing open subintervals from [0, 1] in the
following way. Start by removing an open subinterval I0 of length r0 from the interior of
[0, 1]. Then [0, 1] \ I0 has two connected components. Remove intervals I1, I2 of lengths
r1, r2 respectively from the interior of these components. Then [0, 1] \ (I0 ∪ I1 ∪ I2) has 4
connected components. Now remove intervals I3, . . . , I7 from each of the interiors of these
components and continue in this way. Let

C = [0, 1] \
∞⋃
i=0

Ii

Then C does not contain any intervals since every interval is eventually subdivided by the
removal of one of the subintervals Ik from its interior, and therefore it does not make sense
to talk about C as having any length. However the total length of the intervals removed
is
∑
ri < 1 and therefore it would make sense to say that the size of C is 1 −

∑
ri. The

Theory of Measures formalizes this notion in a rigorous way and makes it possible to of
assign a size to sets such as C.
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A.1.2 Non-measurable sets

The example above shows that it is desitable to generalize the notion of “length” to a
notion of “measure” which can apply to more complicated subsets which are not intervals
and which can formalize what we mean by saying for example that the Cantor set defined
above has positive measure. It turns out that however that in general it is not possible to
define a measure in a consistent way on all possible subsets. In 1924 Banach and Tarski
showed that it is possible to divide the unit ball in 3-dimensional space into 5 parts and
re-assemble these parts to form two unit balls, thus apparently doubling the volume of the
original set. This implies that it is impossible to consistently assign a well defined volume
in an additive way to every subset. See a very interesting discussion on wikipedia on this
point.

A simpler example is the following. Consider the unit circle S1 and an irrational circle
rotation fα : S1 → S1. Then every orbit is dense in S1. Let A ⊂ S1 be a set containing
exactly one point from each orbit. Assuming that we have defined a general notion of
a measure for which the measure m(A) has meaning and that generalizes the length of
intervals so that the measure of any interval coincides wth its length. In particular such
a measure will be translation invariant in the sense that the measure of a set cannot
be changed by simply translating this set. Therefore, since a circle rotation f is just
a translation we have m(fn(A) = m(A) for every n ∈ Z. Morover, since A contains
only one single point from each orbit and all points on a given orbit are distinct we have
fn(A) ∩ fm(A) = ∅ for all m,n ∈ Z with m 6= n and therefore we have

1 = m(S1) = m

(
+∞⋃
i=−∞

fn(A)

)
=

+∞∑
i=−∞

m(fn(A)) =
+∞∑
i=−∞

m(A)

This is clearly impossible as the right hand side is zero if |A| = 0 or infinity if |A| > 0.

Remark 5. This counterexample depends on the Axiom of Choice to ensure that it is
psossible to define such a set constructed by choosing a single point from each of an
uncountable family of subsets.

A.1.3 Algebras and sigma-algebras

Let X be a set and A a collection of (not necessarily disjoint) subsets of X.

Definition 14. We say that A is an algebra (of subsets of X if

1. ∅ ∈ A and X ∈ A.

2. A ∈ A implies Ac ∈ A

3. for any finite collection A1, . . . , An of subsets in A we have

n⋃
i=1

Ai ∈ A
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We say that A is a σ-algebra (sigma-algebra) if moreover

(3’) for any countable collection A1, A2, . . . of subsets in A, we have

∞⋃
i=1

Ai ∈ A.

Given an algebra A of subsets of a set X we define the sigma-algebra σ(A) as the
smallest σ-algebra containing A. This is always well defined and is in general smaller than
the sigma-algebra of all subsets of X.

A.1.4 Measures

Let X be a set and A be a σ-algebra of subsets.

Definition 15. A measure is a function

µ : A → [0,∞]

which is countably additive, i.e.

µ

(
∞⋃
i=1

Ai

)
=
∞∑
i=1

µ(Ai)

for any countable collection {Ai}∞i=1 of disjoint sets in A.

This definition shows that the σ-algebra is aas intrinsic to the definition of a measure
as the space itself. In general therefore we talk of a Measure Space as a triple (X,A, µ)
although the space and the σ-algebra are often omitted if they are given as fixed.

Remark 6. We say that µ is a finite measure if µ(X) < ∞ and that it is a probability
measure if µ(X) = 1. Notice that if µ̂ is a finite measure we can easily define a probability
measure µ by simply letting

µ =
µ̂

µ̂(X)
.

The fact that such a countably additive function exists is non-trivial. It is usually easier
to find finitely additive functions on algebras; for example the standard length is a finitely
additive function on the algebra of finite unions of intervals. The fact that this extends to a
countably additive function on the corresponding σ-algebra is guaranteed by the following
fundamental

Theorem (Extension Theorem). Let µ̃ be a finitely additive function defined on an algebra
Ã of subsets. Then µ̃ can be extended in a unique way to a countably additive function µ
on the σ-algebra A = σ(Ã).
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In the case in which X is an interval I ⊆ R (or the unit circle S1 which we think of as
just the unit interval with its endpoints identified) there is a vary natural sigma-algebra.

Definition 16. Let B̃ denote the algebra of all finite unions of subintervals of I. Then,
the generated σ-algebra B = σ(B̃) is called the Borel σ-algebra. Any measure defined on
B is called a Borel measure.

Remark 7. Notice that a Cantor set C ⊂ I is the complement of a countable union of open
intervals and therefore belongs to Borel σ-algebra B.

A.2 Integration

The abstract notion of measure leads to a powerful generalization of the standard definition
of Riemann integral. For A ∈ B we define the characteristic function

χA(x) =

{
1 x ∈ A
0 x /∈ A

A simple function is one which can be written in the form

ζ =
N∑
i=1

ciχAi

where ci ∈ R+ are constants and the Ai are disjoint Borel measurable sets. These are
functions which are “piecewise constant” on a finite partition {Ai} of X.

Definition 17 (Integrals of nonnegative functions). For simple functions let∫
X

ζdµ =
N∑
i=1

ciµ(Ai).

Then, for general, measurable, non-negative f we can define∫
X

fdµ = sup

{∫
X

ζdµ : ζ simple, and ζ ≤ f

}
.

The integral is called the Lebesgue integral of the function f with respect to the measure
µ (even if µ is not Lebesgue measure).

Remark 8. Notice that, in contrast to the case of Riemann integration in which the integral
is given by a limiting process which may or may not converge, this supremum is always
well defined, though it may not always be finite.

More generally, for any measurable f we can write f = f+(−f−) where f+(x) =
max{f(x), 0} and f−(x) = −min{0, f(x)} both of which are clearly non-negative.
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Definition 18 (Integral of any measurable function). Let f be a µ measurable function.
If ∫

f+dµ <∞ and

∫
f−dµ <∞

then we say that f is µ-integrable and let∫
fdµ =

∫
f+dµ−

∫
f−dµ.

We let L1(µ) denote the set of all µ-integrable functions.

Example 3. Let f : [0, 1]→ R be given by

f(x) =

{
0 if x ∈ Q
1 otherwise.

Notice that this function is not Riemann integrable in the sense that the required limit
does not converge. From the point of view discussed above, however, it is just a simple
function which takes the value 0 on the measurable set Q and the value 1on the measurable
set R\Q. For m = Lebesgue measure we have m(Q) = 0 since Q is countable, and therefore
m((R \ Q) ∩ [0, 1]) = 1 and so∫

[0,1]

fdm = m((R \ Q) ∩ [0, 1]) = 1.

A.3 Lebesgue density theorem

Theorem 7 (Lebesgue Density Theorem). Let µ be a probability measure on I and let A
be a measurable set with µ(A) > 0. Then for µ almost every point x ∈ A we have

m(x− ε, x+ ε)

2ε
→ 1 (A.1)

as ε→ 0.

Points x satisfying (A.1) are called (Lebesgue) density points of A. This result says
that in some very subtle way, the measure of the set A is “bunched up”. A priori one could
expect that if µ(A) = 1/2 then for any subinterval J the ratio between A∩ J and J might
be 1/2, i.e. that the ratio between the measure of the whole interval and the measure of
the set A is constant at every scale. This theorem shows that this is not the case. We shall
not prove this result here.
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