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Operational
programs in more
than 37 countries
worldwide

At least 69 programs
In 11 U.S. states in
2005

d
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11 STATES 69 PROJECTS

e Limited funding supporting
research as part of operational
programs
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Questions NCAR

 What role does aerosols play in warm
and mixed phase processes in deep
convective clouds?

« How does aerosol effects compare with
other effects such as thermodynamics
(stable layers and updraft speed) and
cloud base temperature?

 What are the implications for cloud
seeding experiments?



otal aerosol, cloud condensation nu&;&ﬂ
CN), and ice nucleil (IN) concentrations
as a function of temperature.

= In order to enhance
precipitation the concept
of seeding is to seed with
appropriate CCN or IN to
make precipitation develop
more efficiently.

Concentration
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Temperature



U Mied ice and waler

Liquid water only. o

Frontal and
orographic
clouds




Fundaméntals
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What are clouds made of?

o iy




e Condensation on hygroscopic particles (a specific
| kind of water-soluble aerosol)
e Droplet growth by condensation

— Condensation occurs through diffusion of water vapor

— Cloud droplets are typically in the size range of 5-25
um (i.e., very small)

— They have a very small terminal velocity

e Result: No precipitation from only cloud
droplets. The water stays in the cloud




arm rain process

e Collision and coalescence of

. droplets falling at different

. terminal velocities leads to

raindrop formation "
Raindrops are,

millimeters
In size

Cloud droplets are L
100 times smaller
In diameter
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vapor growth of crystals, followed in suitable convective clouds by
‘accretional growth (riming), fall-out, and melting as rain




he origins of cloud seeding... &

NCAR

Freeze supercooled droplets by introducing artificial “seeds”
Langmuir and Schaeffer, Schenectady, NY, Nov 13, 1946: Dropped
3 pounds of dry ice pellets into a stratus deck at 14,000 ft, -20C,
flying in a race -track pattern et
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NCAR

WEATHER MODIFICATION

Cloud

Mesoscale

Synoptic




The Initial Age
— Spectacular claims (rain, hail, hurricanes, snow, etc)

— Problems with scientific evaluation

e How to detect seeding effect (10-50%b) against a
background of natural variability some 10-100 times
greater?

— Emergence of the professional statistician into the field

— Physical hypotheses stated; almost none actually
checked

New Age: starting in the 1970s with direct
measurements and advanced computer models

— Airborne instruments, digital data

— Doppler radar L ST AN
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— 3D cloud modeling
— Radiometers
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 Much has been learned about natural rainfall and seeding

. Controversial results regarding Agl seeding for rain increase
~ from convective clouds

 Better progress with continued efforts studying winter
. orographic snowfall enhancement and hygroscopic seeding of
. convective clouds

. Greatly decreased funding since the '80s



Principal Conclusion (NAS 2003W

NCAR
Advances In atmospheric sciences
positions us to mount concerted and
sustained effort to delineate scope
and expectations of future weather
modification research

e Must be directed at answering fundamental
scientific questions

e WiIll yield results that go beyond application
to weather modification (e.g., NWP, QPF)

e Emphasis be on understanding processes
and results



Scientific approach ™

NCAR

Preliminary study (needs, area, clouds,
rainfall, tools, human resources)

Design (infrastructure, training, tools,
conceptual model, operations, evaluation)

Execution (operations plan, data gathering,
processing and archival, quality control,
analyses, evaluation)

Evaluation (assessment, hydrological,
economical and social impacts and
cost/benefit assessment)

ALL STEPS ARE CRITICAL IN THE
EXECUTION OF A SCIENTIFICALLY BASED
PROGRAM TO QUANTIFY THE RESULTS
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Key Uncertainties o

NCAR

Cloud and precipitation microphysics issues

« Background concentration, sizes, and chemical composition of
aerosols participating in cloud processes

Cloud dynamics issues

e Cloud-to-cloud and mesoscale interactions relating to updraft and
downdraft structures and cloud evolution and lifetimes

Cloud modeling issues

« Combination of best cloud models with advanced observing
systems in carefully designed field tests and experiments

Seeding-related issues

e Targeting of seeding agents, diffusion and transport of seeding
m?terial, and spread of seeding effects throughout the cloud
volume

 Measurement capabilities and limitations of cell-tracking software,
radar, and technologies to observe seeding effects



DESIGN

Infrastructure
Conceptual model
Operations
Evaluation
Training



Conceptual Models
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Aerosols, CCN and Cloud drople
concentrations (India)

High concentrations of CCN and aerosol conc.

COM CMS

droplets due to pollution
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Broadening of cloud droplet spectra N
by re-circulation NCAR

ALTITUDE: ~3000M MSL: +10°C
MAX LWC: ~0.8 GM™
CLOUD BASE: 1. 8 KM +21°C
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Effects on Ice Processes ™

NCAR
Secondary Ice Formatlon

Large drops freezing
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Comparison of “special” natural and “seeded” cases: ycar
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Significant acceleration of the precipitation process results.
Cooper et al., 1997




Radar estimate of rainfall
within the TITAN framework &

The storm

The TITAN \

experimental
unit

TITAN 1dentifies
and tracks individual
storms based on a
specified reflectivity
=threshold

Objective radar =
estimate of rainfall
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NCAR

Evaluation approaches

Physical observations
— Numerical models, observations, theory

Statistical evaluations
Radar tracking
Precipitation gauge stations

Indirect evaluations
— Hall: crop damage
— Rain: River flows, dam levels, etc



" NCAR

Evaluation Issues

Inadvertent weather modification
Geographical meteorological differences
Natural variability

Inadequate understanding of physical
processes

Controversy. Unsubstantiated claims
Independent assessment and evaluation
Old technology



Operation and Execution T\
South African program (1990’Ss) ncar
Initiated a randomized

experiment using
hygroscopic flares

Some aircraft Y N
measu rements ' La'r'ger'C'Iqud Droplet

New evaluation | /\J\l
methods 2 A

— Used the “storm” as the
experimental unit

e Radar estimated rainfall

— Many more experimental
cases

— Objective storm-tracking
software (TITAN)

— Allowed for study of
time-resolved response
to seeding




Results and Q

e To what extent would
weather modification
operations be
dependent on these
background
concentrations? (e.g.
South African and
Mexico experiments)

Rain mass (kton)

uestions
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Confirmatory experiment (based on South African experiment):
- Double-blind randomization -

- Seeding with hygroscopic flares
- Evaluation based on time-resolved radar-rainfall

estimates from objective TITAN software




Response Variables N

NCAR
TIME-SERIES VARIABLES

Radar-estimated precipitation flux (m23 s1), using the
Marshall-Palmer Z-R relationship.

Total storm mass (in kilotons).

Storm mass above 6 km MSL (in kilotons).

Storm area (km?).

(Height of maximum reflectivity) - (Z-weighted vertical
centroid).

STORM (time-integrated) VARIABLES

eTotal case precipitation in Kilotons from decision time until
60 minutes after decision time.

eArea-time-integral (ATIl) in km?h from decision time until
60 minutes after decision time. (ATl is defined as the
Integral of storm area over time, computed using discreet
volume-scantime intervals.)

eDuration of the experimental unit from decision time to 60
min after decision time.



(@) 7 min. before seeding

b) 19 min. after seedin =
. N

s 4 . o, g b
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(d) 50 min. after seeding

Evolution of the seeded cloud on July 23, 1996
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MEXICO EXPERIMENT EXAMPLE ﬂ

All Storms within Radar Coverage NCAR
Number of Cases in Each Rain-Out Size Category

10000

Boulder Ck 1-10 m3/s Coahuila 1997 and 1998

Equivalent number of very large

Colorado River storms (5,000 cms):
l Columbia 2000
100 | Mississippi 4000
Ganges 6000
Sacramento Zaire 8000
l Amazon 40000

10

Zambesi

50 75 90th percentile  99th
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lassification of Mexico data using ﬂ
erosol burden (satellite aerosol optical depth) ycar

Mexican Randomized Experiment

Original results without stratification | ¢ .. srete 10MS Version 8 Aerosol ndex
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Effect is most apparent on the days with significant aerosol burden

—  On cleaner, "non-aerosol’ days, little effect
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Reported Cloud Base Height {maksL)

Cloud base heights

NCAR

 Cloud base heights generally got lower as the
wet season progressed, leading to deeper
warm cloud depths in Feb compared to Nov

— This may affect the mixed phase microphysics
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Rain formation: Ice process a»

Ice processes are initiated by freezing of large drizzle/rain drops NCAR

and subsequent initiation of natural seeding (ice splintering)
process rapidly depleting cloud liquid water content

Temperature versus time

e Large drops freezing at ~-5°C 27 January 2009
e |nitiation of ice splintering process
» Rapid depletion of cloud water 2
Inhibiting lightning in these cases
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Precipitation Processes: &

Mixed-phase/ice processes initiated by freezing of large NCAR
drizzle/rain drops and subsequent initiation of natural seeding (ice
splintering) process rapidly depleting cloud liquid water content

Temperature versus time

 Large drop freezing 27 January 2009
at ~-5°C =
» Initiation of ice §§m 4
splintering process  |: : \‘,’M\ [L
* Rapid conversion of | .- el
LWC to ice e e i N
» Rapid depletion of o
LWC inhibiting

lightning in these
cases



Dual Polarization Radar knm
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Dual Polarization Radar measurementay
NCAR

Rain drop size distributions
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Warm Cloud Depth (m)

Reported Cloud Base Height (mAMSL)

BO00

Cloud base heights and
warm cloud depths during
Queensland project
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22 November 2008
High cloud base
No large drops at 0C
First ice below -12C




13 February 003
FS3P Concentration

13 Feb 2009
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hygroscopic seeding not
recommended




Monthly lightning maps W&

November 2007 to March 2008 NCAR
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Loer frequency of light
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due to potentially less LWC
between -10 and -20°C where naturally most charge buildup occurs
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Microphysical relationships ™=
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Summary
N —-

e Convective clouds produce large amounts of rain
— Comparable to flow in major rivers

e Agl seeding of cumulus clouds for rain
enhancement is a well used technology in many

countries
— However, it is not a well proven technology
e F N experiments in S. Africa, MexXiee, and
groscopic seeding seems
Qecific circumstant
— Though promising, it is not well understooc

e There are many new tools available to establish
confidence in seeding technologies




Synoptic Mesoscale Cloud

ery likely affect the rain also (but positively
‘or negatively?)

e However, the exact relationship has proven
..- ,_ uit to € '-."'..3:-“‘ ™ ' = : -




anthropogenie

Salt from S02 from
Seq Spray & Windblown Veloanoes
Bursting Bubktles Dust

Soct &
Smoke

Deseris &
Volcanoes

Fossil Fuels &
Biomass Buming

Satellite images:of /lf
pollution effect_s one clbuds

Industrial/

Commercial!
Residential : Utilities i
To0r 7 oo Mexico 1998

Ocedans

Indonesian smoke from fires
in 1997

Can mask seeding effects
Older experiments may not be relevant today
Transterring results from one region to another is very problematic



And so...

L .-
* A program of research should _b@%onsidered
mandatory even for an operational project

— Preliminary measurements
e Aerosol, cloud structure, rainfall climatology

e Should include evaluation of seeding effect

— Need a well designed, randomized experiment to know
If you are spending the sponsor’'s money wisely

* Need to look at hydrologic aspects: where does
=the water go? =" == =~ s w om

 Cost/benefit study p

o History tells us it's rarely cost beneficial to take a
short-cut around the R&D




