

2257-21

Joint ICTP-IAEA School of Nuclear Energy Management

8 - 26 August 2011

Nuclear Applications Fundamentals: Research Reactors

> Danas Ridikas IAEA, Vienna Austria

Strada Costiera 11, 34151 Trieste, Italy - Tel.+39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it

Lecture 1 Nuclear Applications Fundamentals: Research Reactors

10 August 2011

Danas Ridikas

Department of Nuclear Sciences and Applications (NA) <u>Vienna International Centre, PO Box 10</u>0, 1400 Vienna, Austria

IAEA International Atomic Energy Agency

Outline

- Introduction
- Historical background
- IAEA RR Data Base
- Key Issues and challenges
- Latest news on RRs
- (Applications of RRs TECDOC-1234, 2001)

Research Reactors: Purpose and Future

Major Activities within Physics Section

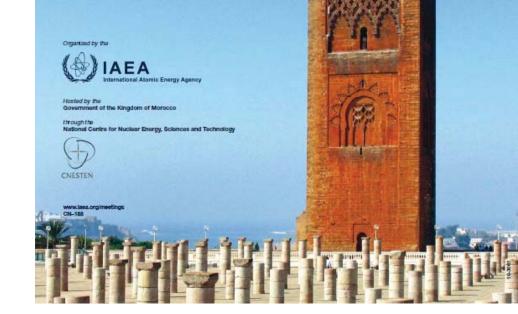
Assistance and support of Member States in the field of

- 1. Accelerators
- 2. Research Reactors
- 3. Controlled Fusion
- 4. Nuclear Instrumentation
- 5. Cross-cutting Material Research

Based on Member States needs, requests & recommendations

- Planning & implementation of P&B activities
- Proposal and implementation of CRPs
- Management of Data Bases
- Organization of Conferences, Technical & Consultancy Meetings
- Organization of ICTP workshops, training schools and courses
- Support of TC projects

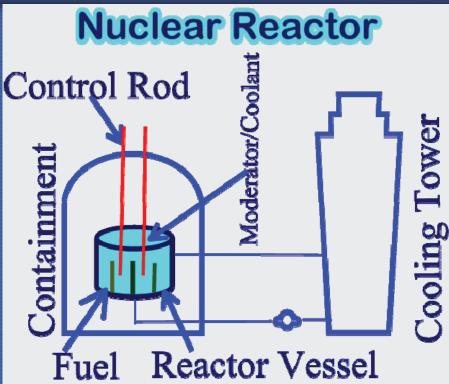
Promotion of Nuclear Sciences, Applications and Technologies

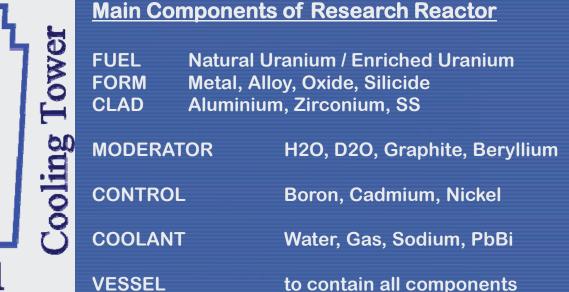

International Conference on

Research Reactors:

Safe Management and Effective Utilization

14–18 November 2011 Rabat, Morocco


Six main topics to be addressed:

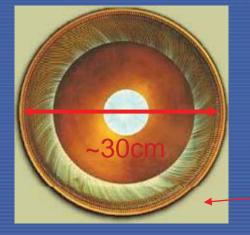

- 1. Utilization & Applications of RRs
- 2. Operation & Maintenance
- 3. New RR Projects
- 4. Safety of RRs
- 5. Spent Fuel Management, Waste & Decommissioning
- 6. RR designers/providers

Jointly by NA, NE, NS and TC

>200 participants expected>130 papers presented>50 countries represented

Introduction

Basic Nuclear Physics



Interaction of neutrons with matter (fission, capture, scattering) Criticality, role of delayed neutrons, radiocative decay Basics of thermohydraulics

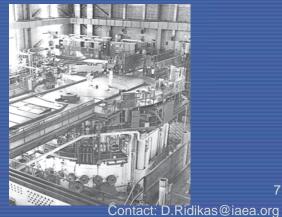
Introduction

Other general information: features

- Typically, RR cores have small volume
- Many have powers less than 5 MW(t)
- Higher enrichments than power reactors
- Natural and forced cooling
- Pulsing capability

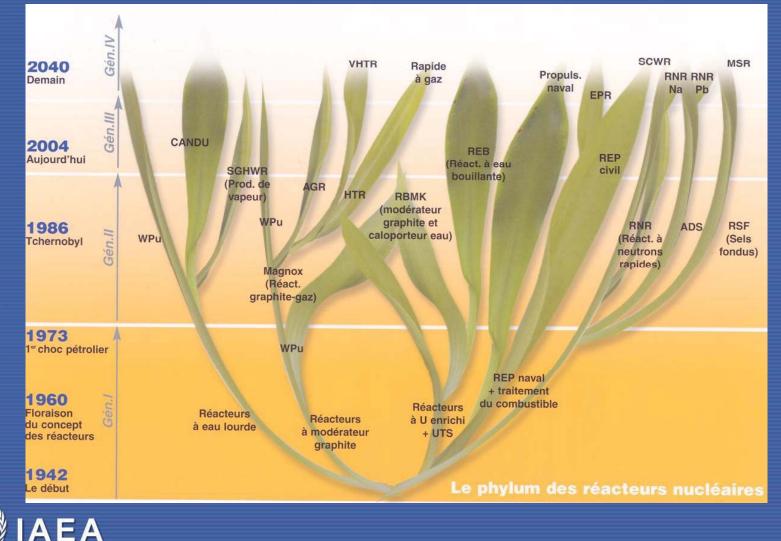
Some historical facts

USA, Dec. 1942: Chicago Pile (CP1), E. Fermi • **Objective: neutron source for Pu production**

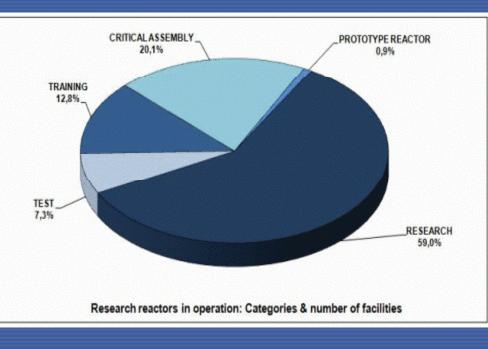


- Russia, Dec. 1946, F-1, I. Kurchatov
 - **Objective: excess neutrons for Pu production**

- Canada, Jul. 1947, Chalk River Laboratories
 - NRX National Research Experiment
 - Reached 20MW(t) in 1949
 - Used for basic research
 - Contributed to nuclear x-section data


Some historical facts (continued)

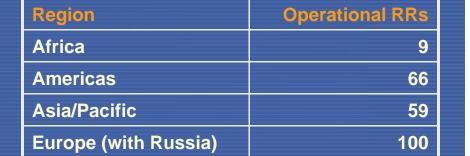
- **Obninsk, Russia, 1954** APS-1: Institute of Physics and Power Engineering
 - First reactor to generate appreciable electric power, 5 MW(e)
 - Start of nuclear energy...



« If any species do not become modified and improved in a corresponding degree with its competitors, it will soon be exterminated » *Charles Darwin. The origin of species, 1859*

Status of RR as of today (IAEA RR Data Base): type of RRs

- Huge variety, no easy categorization, 26 different types
- Manufacturer types: Slowpoke, MNSR, Argonaut, TRIGA, IRT, WWR
- Coolant/moderator: heavy water, pool, light water, liquid metal, organic
- Fuel: plate, TRIGA, rods, homogeneous
- Purpose: critical assembly, research, test, training, prototype



Source: IAEA RRDB, February 2011

Operational RRs are distributed over 56 countries

Russia	~47
USA	~41
China	~16
Japan	~15
France	~11
Germany	~10

RRDB: Utilization and Application Oriented, new capability

115 RRs data updated in 2010 – nearly 50% of operational facilities

Operational RRDB Foreword (Home)	Geographical Distribution	 Reactor Category React 	or Utilisation 👻 Foreword (Home)
Contents of RRDB Summary Graphs Editorial Note	Home	Summary Graphs	Editorial Note
	Geographical Distribution: All Reactors Africa Americas Asia / Pacific Europe Russia USA	Reactor Category: • Reactor by Status: • Operational • Temporary Shutdown • Under Construction / Planned • Reactor by Power: • Power < 1kW • 1 kW ≤ Power < 1MW • Power ≥ 1MW • Reactor by Flux: • High Flux • High Flux • Lew Flux • Less than 40years • Over 40years	 Reactor Utilisation: Utilisation Rate: High Utilisation Medium Utilisation Low Utilisation Low Utilisation Isotope Production All Isotopes Neutron Scattering Neutron Radiography Material/fuel Irradiation Transmutation: Silicon Doping Gemstone Coloration Teaching/Training NAA Geochronology BNCT Nuclear Data Provision Other Applications

Available at:

http://nucleus.iaea.org/RRDB/ or USB Memory Stick, <10MB, no internet is needed!

RRDB: Utilization and Application Oriented, new capability

Neutron Scattering Facilities - "Click here for details"

44 RRs employ neutron beams; they are distributed over 30 MSs

This database contains 44 research reactors performing Neutron Scaterring dis		

Neutron Scattering Facilities								
No.	Country	Name	Reactor Type	Thermal Power, kW	Thermal Flux, n/cm ² /s	Fast Flux, n/cm ² /s	Critica Dat	
1	Algeria	ES-SALAM	HEAVY WATER	15000	2.1E14	4.2E12	1992-0	02-17
2	Algeria	NUR	POOL	1000	5.9E12	4.0E12	1989-0	03-24
3	Australia	OPAL	POOL	20000	3.0E14	2.1E14	2006-0	08-12
4	Austria	TRIGA II VIENNA	TRIGA MARK II	250	1.0E13	1.7E13	1962-0	03-07
5	Bangladesh	TRIGA MARK II	TRIGA MARK II	3000	7.5E13	3.8E13	1986-1	09-14
6	Brazil	IEA-R1	POOL	5000	4.6E13	1.3E14	1957-0	09-16
7	Canada	MNR MCMASTER UNIV	POOL	3000	1.0E14	4.0E13	1959-0	04-04
8	Canada	NRU	HEAVY WATER	135000	4.0E14	4.5E13	1957 Temp	L Ho
9	Chile	RECH-1	POOL	5000	7.0E13	5.0E13	1974	Da
10	Czech Republic	LVR-15 REZ	TANK WWR	10000	1.5E14	3.0E14	1957	We
11	France	HFR	HEAVY WATER	58300	1.5E15		1971	мv Ма
12	France	ORPHEE	POOL	14000	3.0E14	3.0E14	1980	ex
13	Germany	BER-II	POOL	10000	2.0E14	1.4E13	1973-	Isc
14	Germany	FRG-1	POOL	5000	1.4E14	4.5E13	1958	• 1
15	Germany	FRM II	POOL	20000	8.0E14	5.0E14	2004	Ne
16	Greece	DEMOKRITOS (GRR-1)	POOL	5000	1.0E14	4.5E13	1961 Temp	• •
17	Hungary	NUCL. BUDAPEST RES.	TANK	10000	2.5E14	1.0E14	1959	Ne Ne

autron Scattering Facilities

Available at:

http://nucleus.iaea.org/RRDB/

or USB Memory Stick, <10MB, no internet is needed!

Utilization	
Hours per Day	24
Days per Week	7
Weeks per Year	21
MW Days per Year	2160
Materials/fuel test experiments	NO
Isotope Production	99Mo, 131I,192Ir, 32P
Total Activity (GBq)	33741
Neutron Scattering	HRPD, NRF, HRSANS, FCD/TD, SANS, PD
On-line beam hours	2100
Neutron Radiography	On-line beam hours: N/A
Neutron capture therapy	NO
Activation Analysis	INAA
number of samples irradiated	300
Transmutation	NO
Geochronology	NO
Teaching	Number of students: N/A
Training	Number of operators/experimenters trained: 13
Other Uses	NO

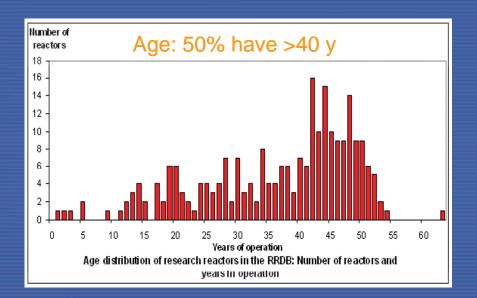
RRDB: Applications of ~240 operational RRs today

Application	Number of RR involved	Involved / Operational, %	Number of countries represented
Education & Training	149	62	51
Neutron Activation Analysis	114	47	54
Radioisotope production	84	35	44
Neutron radiography	68	28	40
Material/fuel testing/irradiations	60	25	25
Neutron scattering	51	21	32
Nuclear Data Measurements	42	18	20
Gem coloration	36	15	22
Si doping	35	15	22
Geochronology	26	11	21
Neutron Therapy	20	8	13
Other	95	40	29

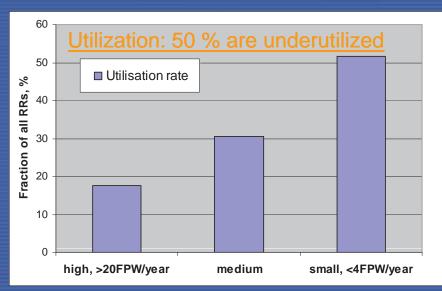
 \rightarrow For more information see IAEA-TECDOC 1234 (2001)

14

Key issues and challenges

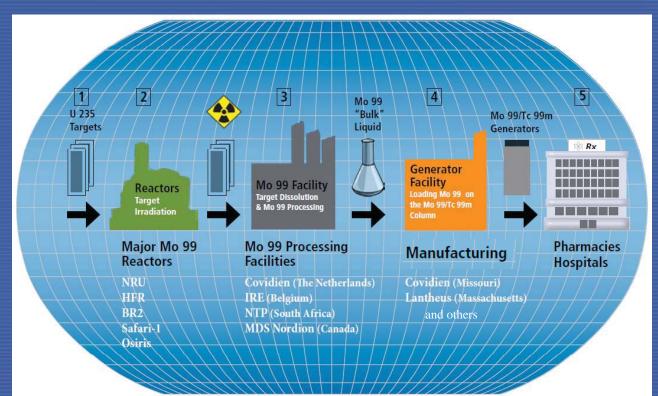

Source: IAEA RRDB, February 2011

- RR underutilization
- Ageing & needs for refurbishment
- Fuel cycle issues
- Requests for new RRs


EA

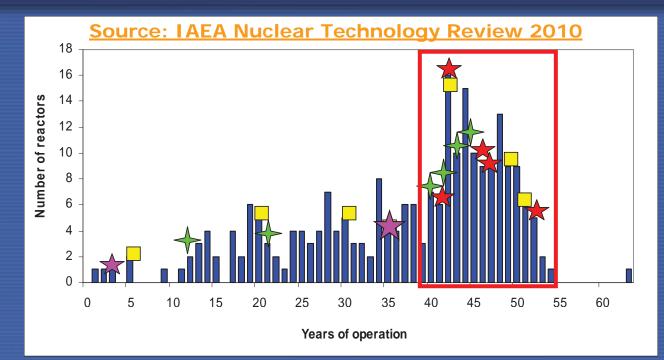
Safety & security

•



Key issues and challenges: supply of Mo-99

• Over 80% of diagnostic nuclear medical imaging uses radiopharmaceuticals containing technetium-99m (^{99m}Tc), entailing over 30 million investigations per year


• Over 95% of the ⁹⁹Mo required for ^{99m}Tc generators is produced by the fission of uranium-235 targets in nuclear research reactors

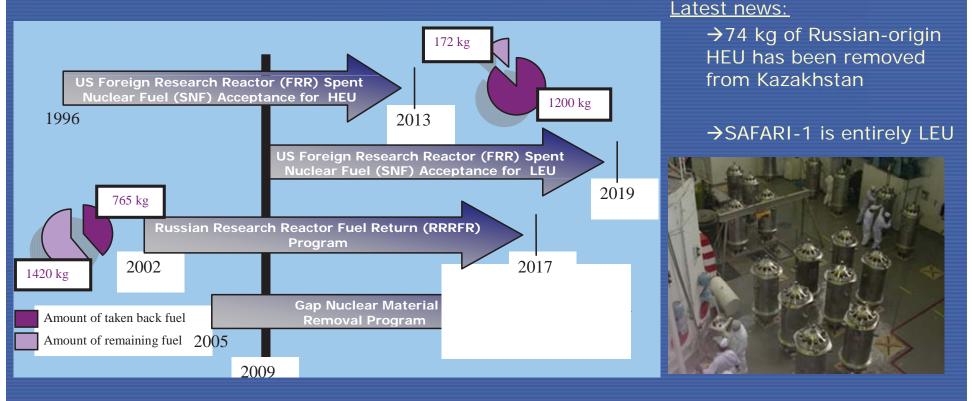
Source: IAEA NTR 2010, Annex

Key issues and challenges: supply of Mo-99

The five major RR currently producing more than 95 % of ⁹⁹Mo
 The OPAL (Australia) and Maria (Poland)

• Existing RR that are already used by regional ⁹⁹Mo producers or for which commissioning is underway
 • Existing RR which are now studying the feasibility of providing irradiation services.

Latest news:


NRU (Canada) and HFR (Netherlands) are back to operation!

Maria (Poland) & LVR-15 (Czech) have entered as new important players!

Key issues and challenges: reduction of HEU

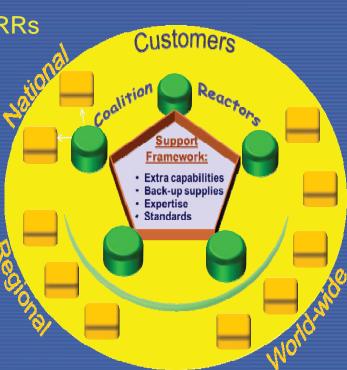
Reduction of HEU through the Global Threat Reduction Initiative (GTRI)
 → 67 RR cores converted to LEU, 27 RR are expected/ongoing
 → Spent and fresh fuel take back programmes

Other countries, where HEU is being removed:

Bulgaria, the Czech Republic, Germany, Hungary, Kazakhstan, Latvia, Libya, Poland, Romania, Serbia, Uzbekistan and Vietnam.

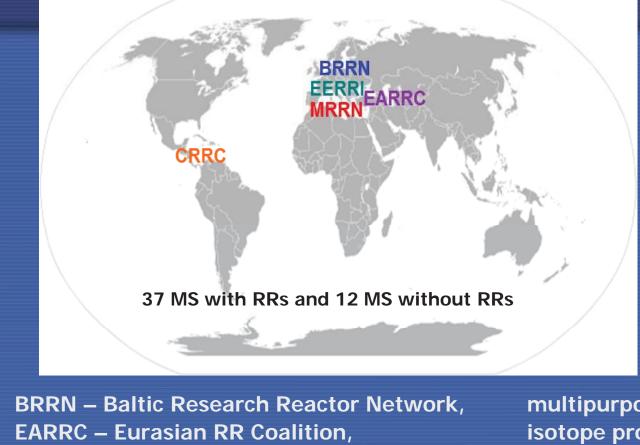
Activity: RR Networks and Coalitions, background

Objectives:


- \rightarrow increase utilization and sustainability
- → promote regional/international cooperation
- → access to RRs from Member States without RRs

Role of the IAEA

- \rightarrow Catalyst and facilitator towards self-reliance
- \rightarrow Preparation of strategic and business plans
- \rightarrow Initial support via regional TC projects


Performance indicators:

- Number of RR facilities forming networks
- Number of non-RR countries forming networks
- Number of RRs with new/updated strategic plans
- Number of RRs with increased utilization/revenues

Activity: RR Networks and Coalitions, status

- **3.** EERRI Eastern European RR Initiative,
- 4. CRRC Caribbean RR Coalition,
- 5. MRRN Mediterranean RR Network,

multipurpose,	10
isotope production,	5
multipurpose,	6
mainly NAA,	3
multipurpose,	14

1.

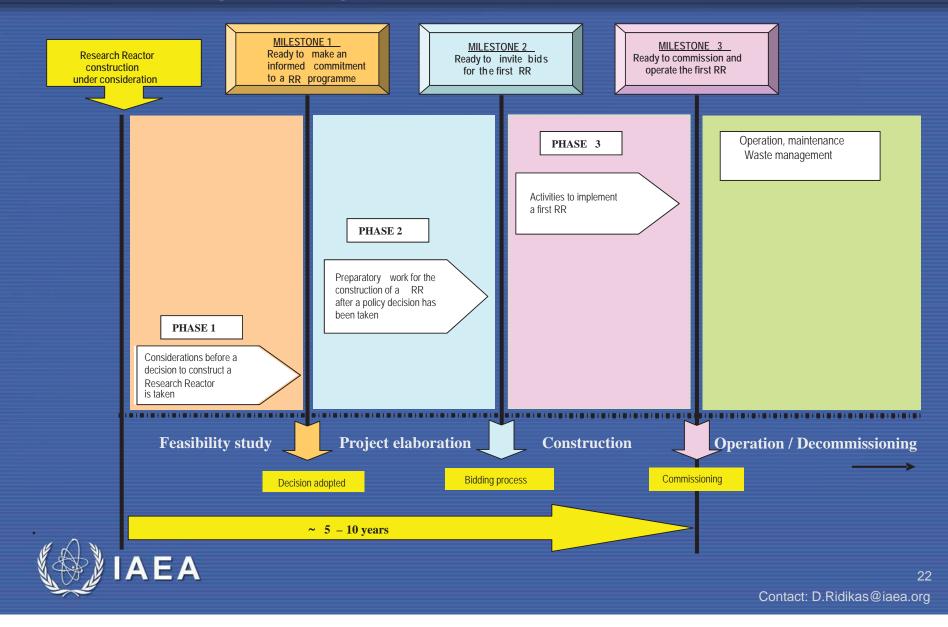
2.

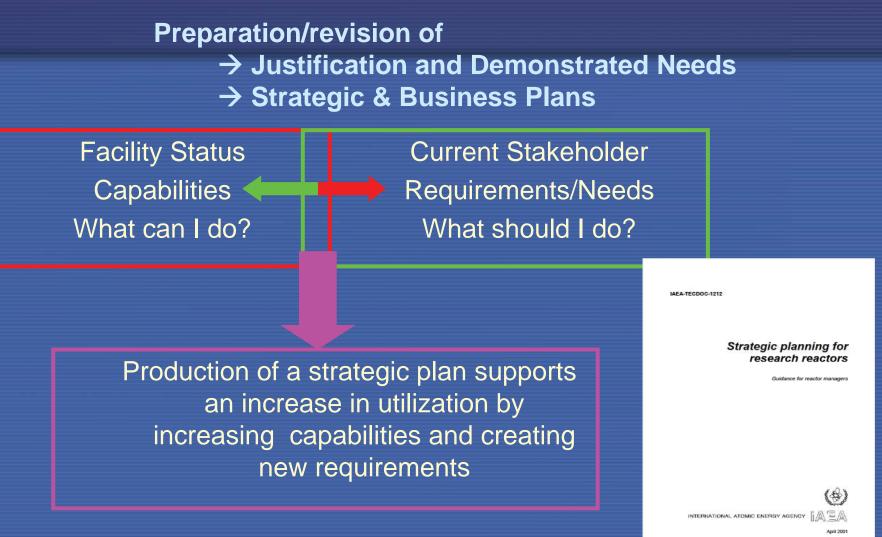
Activity: TC projects and new RRs Planned RRs as of today

- More than <u>30 ongoing IAEA TC projects related to RR utilization, safety, fuel cycle,</u> refurbishment and modernization, etc.
- <u>4 ongoing projects to start the 1st RR in the country</u>
 - 1) <u>Azerbaijan</u>: Conducting a Feasibility Study for Planning and Establishing a RR
 - 2) <u>Jordan:</u> Establishing a RR
 - 3) <u>Sudan:</u> Sudan Nuclear RR Project
 - 4) <u>GCC:</u> Developing a Regional Nuclear Training Centre for Capacity Building and Research

<u>7 new project concepts submitted and related to the 1st RR in the country</u>

Jordan, Lebanon, Philippines, Saudi Arabia, Sudan, Tunisia, and Tanzania


→ Other countries: Argentina, Brazil, The Netherlands, South Korea, South Africa,...


21

Activity: Newcomer Member States

Planning, Building and Operation of RR: phases/milestones

Activity: New & old RRs

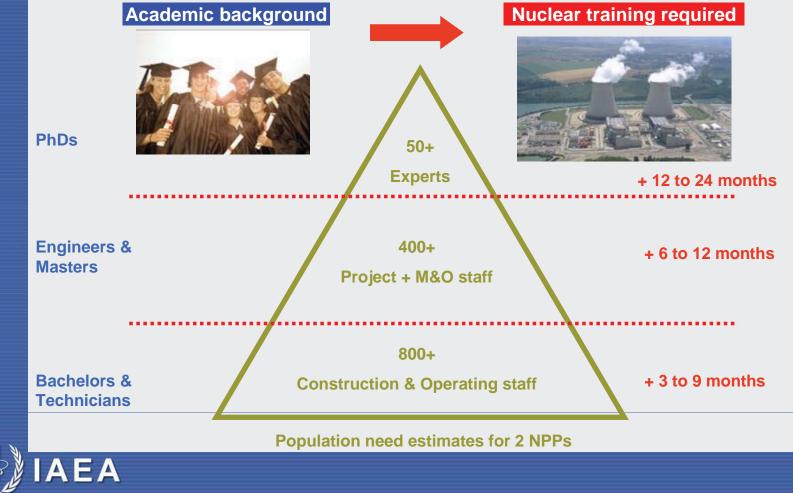
Support/assistance from the IAEA is dependent

on having a demonstrated need, i.e. ... a strategic plan

23

\rightarrow Role of RR in E&T (1)

- Public tours and visits
- Teaching physical and biological science students
- Teaching radiation protection and radiological engineering students
- Nuclear engineering students
- NPP operator training

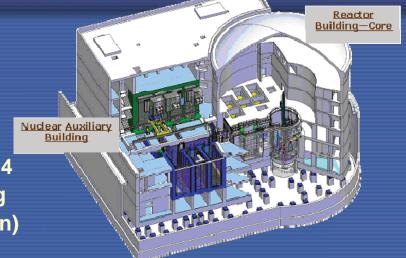


\rightarrow Role of RR in E&T (2)

Typical flow from Academics to Nuclear

Jordan Research & Training Reactor (JRTR)

In the detailed design stage, construction to start in 2011


- 5 MW (upgradable to 10MW), neutron flux ~1.5*10¹⁴ n/(s cm²)
- Fuel: ~19.75 % U-235, U_3Si_2 -AI, Coolant & Moderator: H_2O , Reflector: Be
- Multipurpose RR: radioisotope production, Si doping, neutron beams, NAA, E&T, etc.
- 1st step to the national NPP programme

RR under construction

JHR, France, operation expected in 2014

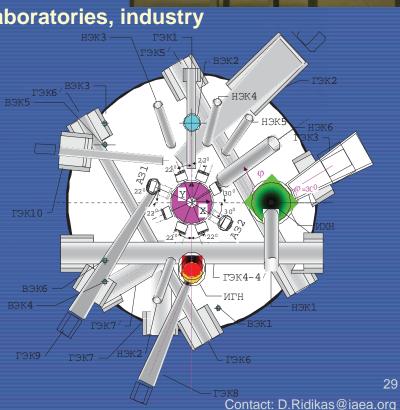
- MTR pool, 100 MW, in core flux ~1*10¹⁵ n/(s cm²)
- Fuel: Ref. UMo LEU, Backup: $U_3Si_2 27 \% U-235$
- In support of future nuclear power, Gen3+ & Gen4
- Dedicated for material/fuel irradiation and testing
- Other applications envisaged (isotope production)
- International consortium

CARR, China

1st criticality in May 2010; full power expected by the end of 2011

60 MW, in core flux ~1*10¹⁵ n/(s cm²)

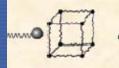
- Fuel: 19% U-235, Moderator: H_2O , Reflector: D_2O
- Replacement for 10MW HWRR (2007)
- Multipurpose RR with the main objectives in basic research
- Open to users from universities, governmental laboratories, industry


PIK, Russian Federation

1st criticality in March 2011, full power expected in 2013

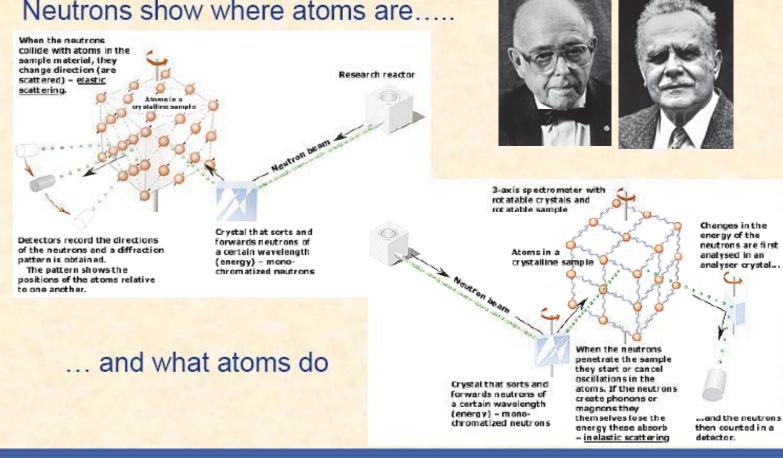
- 100 MW, in neutron trap flux ~4.5*10¹⁵ n/(s cm²)
- Fuel: ~90% U-235, Moderator & Reflector: D₂O
- Replacement for WWR-M (18MW)
- Multipurpose RR with the main objectives in basic research
- Open to users from universities, governmental laboratories, industry

Basics on neutron scattering research Why Neutrons?

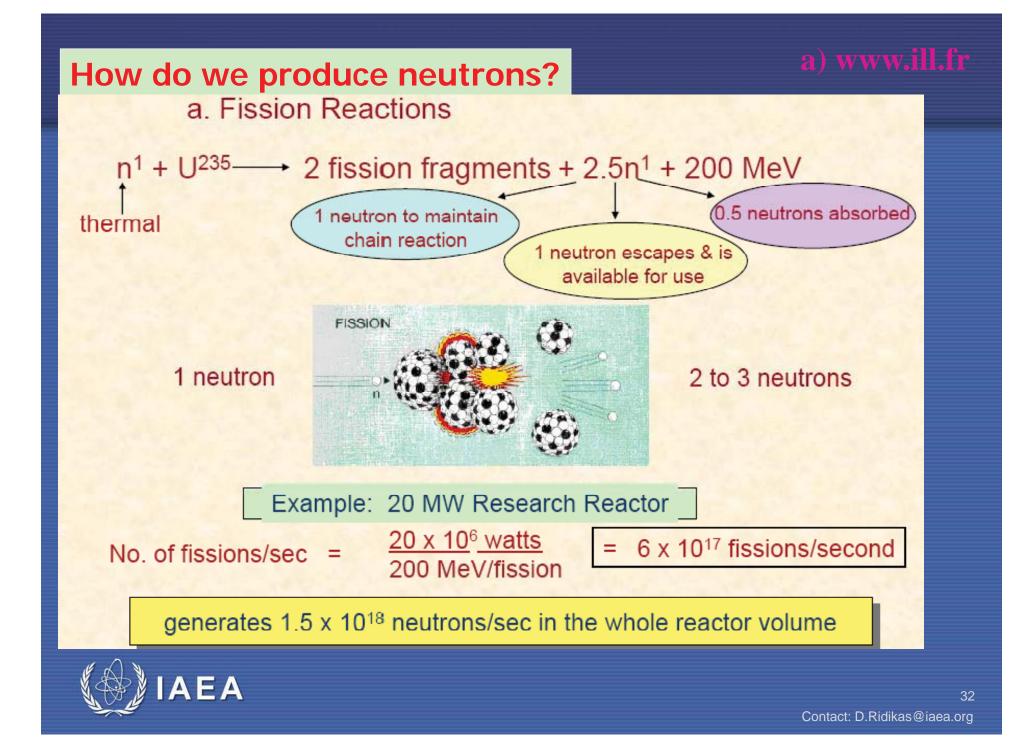

1. Neutrons have the right wavelength

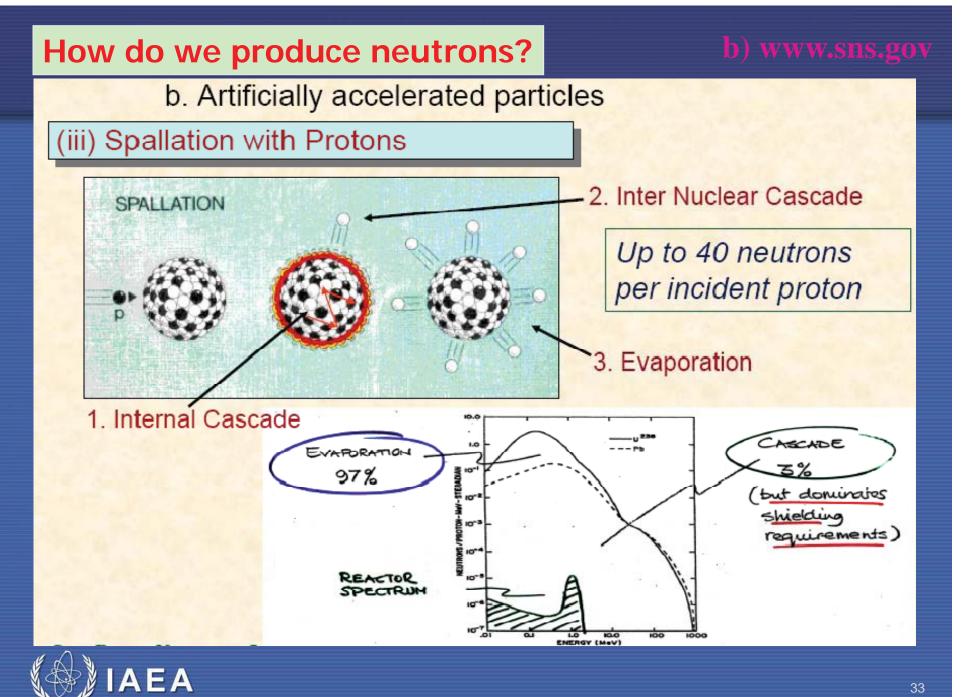
. Neutrons see the Nuclei

Neutrons see Light Atoms next to Heavy Ones

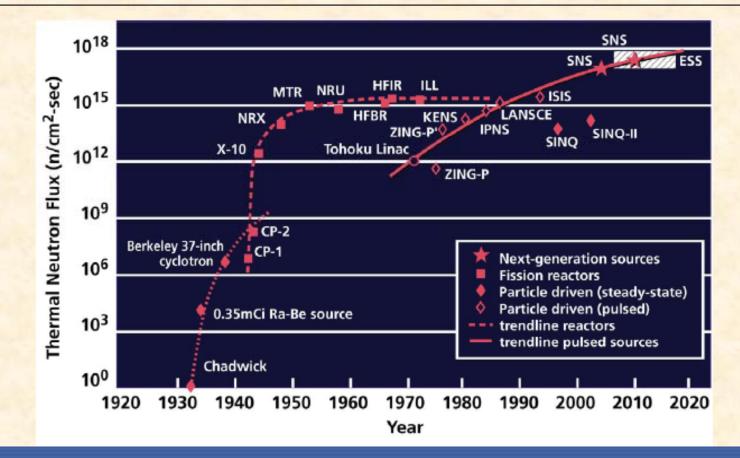


- . Neutrons measure the Velocity of Atoms
- 0
- 5. Neutrons penetrate deep into Matter
- 6. Neutrons see Elementary Magnets


Neutrons in scattering research What do neutrons do?

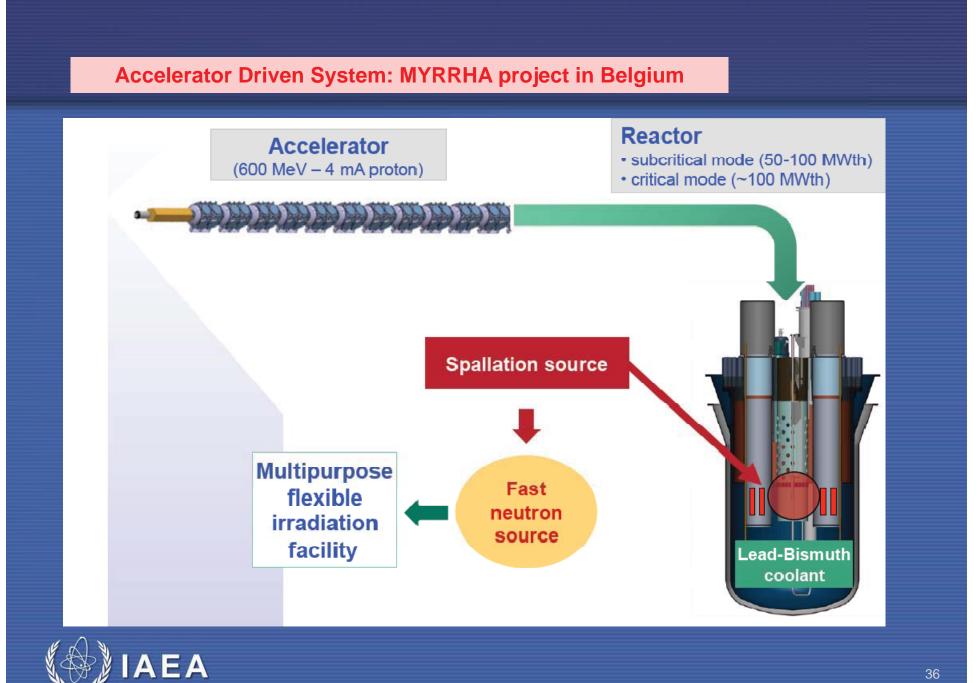

Nobel Prize in Physics 1994 - Shull and Brockhouse

Neutrons show where atoms are



Higher neutron fluxes?

Reactors have reached the limit at which heat can be removed from the core *Pulsed sources* have not yet reached that limit and hold out the promise of higher intensities



34

J-PARC = Japan Proton Accelerator Research Complex

Thanks for your attention and...

